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Summary

Creating products from scratch is time consuming and costly. Evolving an existing product is
a strategy often chosen by companies to meet customer demands in a timely manner. Evolving
a product, however, poses great challenges, especially if the product is a complex system.

The ability of a system to be easily evolved is termed evolvability. Many terms in
literature refer to the ability of a system to withstand change. In this Thesis, some of those
concepts are reviewed and evolvability is clarified. Evolvability refers to how a system design
changes from one generation to the next, such as specifying which aspects of the design are
passed down and which are new to the previous generation.

Evolution challenges employees face in an industrial context have been investigated,
finding out that managing system complexity, lack of system overview, ineffective knowledge
sharing, troubles in finding system information, and difficulties in communicating across
disciplines and departments are the main barriers to evolve systems. Those factors, especially
the lack of knowledge sharing, have been found to be in many situations the root cause of
development problems and poor decisions.

Current strategies to support evolution are based mainly on providing “design rules” to
create modular designs, which are argued to be more evolvable, and developing automated
ways to estimate the impact of change, so undesired impact of redesigns can be avoided.
Other approaches focus on supporting the team in charge of evolving the system by providing
them with the right tools. In this Thesis, some of those approaches are tested in real on-going
projects at industry. Lessons learned from those experiences will be used to understand what
is needed to support evolution of complex systems.

Over the years, technologies, designs and implementations of a system may have
changed completely. It may be only the architecture that remains from the original system.
Architectures, once consolidated in an architecture description, are of paramount importance
for the development and evolution of systems. Architectures provide a framework in which
evolution can be performed, enable early analysis of the system, facilitate communication
among stakeholders, etc. The concept of architecture and what elements belong to an archi-
tecture description are still unclear.

The process of creating architectures is called architecting. This responsibility lies with the
architect. We have identified that one of the major needs of architects is to share architecture
knowledge. In other fields such as software engineering sharing architecture knowledge has
been identified as one of the key factors for project success. Sharing architecture knowledge,
however, is not common practice in most companies. Current research to share architecture
knowledge is developed from a technology perspective, which is usually not the preferred
option of architects. Architects prefer simple, easy to use methods and tools. In addition, most
solutions are not tailored to the architecting process at a particular company, or do not fit in
an industrial context.

Even if a knowledge sharing mechanism succeeds in delivering architecture knowledge,
if this knowledge cannot be effectively communicated to the variety of stakeholders, it can
render a great architecting work ineffective. Effective communication in the architecting



Figure 1: A3 Architecture Overview Example. Left: A3 Summary; Right: A3 Model

context means that individuals and teams understand the essential aspect of the architecture
knowledge other individuals or teams want to share.

Communication of architecture knowledge is perturbed by “architecture noise”. This
noise is caused by human factors such as limited processing capabilities, and organizational
factors such as company location. Any mechanism designed to share architecture knowledge
should take those factors into account so architecture noise is prevented and knowledge
communicated effectively.

The A3! Architecture Overview is a tool designed for effective communication of archi-
tecture knowledge. In the design of the A3 Architecture Overview, human and organizational
factors, as well as experiences in the use of other tools have been taken into account. The
aim of an A3 Architecture Overview is not to be complete, formal or executable. An A3 Ar-
chitecture Overview is meant as an artifact to support effective communication of architecture
knowledge. As shown in Figure 1, an A3 Architecture Overview uses two sides of an A3 sheet.
One side displays a structured model (A3 Model), composed of several interconnected views,
while the other side displays structured textual information (A3 Summary). Visual represen-
tations are encouraged to aid understanding. Structure in the A3 improves readability and
comprehension.

A Reverse Architecting method is provided to collect, abstract and present the im-
plicit architecture knowledge spread within the company, in the form of A3 Architecture
Overviews.

The A3 Architecture Overview tool has been used in real industrial projects at Philips
Healthcare MRI department as a communication tool to share architecture knowledge. It has
shown to be an improvement to the traditional way in which companies share architecture
knowledge. When compared with architecture documents as a means to share architecture
knowledge, which is usually the most common form to share knowledge at companies, the
A3 Architecture Overview has proven to be more readable, more understandable, have better
usability (e.g. at meetings) and have a more adequate amount of information.

Based on observations and feedback from users obtained in different surveys at Philips
Healthcare, the A3 Architecture Overview has proven to be useful to mitigate evolution
barriers, to meet architect’s needs, to fit in an industrial environment, to be easily incorporated
into the architecting process, and to provide additional benefits such as capturing architecture
insight. Those results show that the A3 Architecture Overview is a powerful tool for effective
communication in product evolution.

A3 is an international paper size standard of 297 x 420 mm (American metric equivalent of 11 x 17 inches)



Preface

This is no ordinary Thesis. At least that is what I have been told by those who have
read it. This research done in this Thesis is aimed to expand the Systems Engineering body
of knowledge. This work in particular focuses on the human side of Systems Engineering,
which is often left aside by many other engineering fields. This human side is very hard
to measure or quantify, and even harder to validate. For that reason, you will barely find
formulas here, nice graphs or simulations. You will find however facts based on experiences
in real projects, feedback from real practitioners, and observations of real-life situations in a
company. Whether you are an architect, designer, manager, engineer, or just a person who
needs an approach to communicate some knowledge, I think you will find in this Thesis a
valuable tool that you can use in your daily work.

“Scientific” is usually synonym to complicated and hard to understand. The more com-
plicated the more scientific it looks. Scientific is usually related to formulas, equations, simu-
lations, graphs, and such things. Sometimes this is taken to the extreme; if there is no doubt
a research work looks scientific, even when the research value is unclear, it gets accepted. In
this Thesis it is just the opposite; people see the value immediately, however as it is easy to
read and easy to understand people worried about the scientific value. Scientific validation is
always a challenge in this kind of research. The most well-known book in this field is named
"The Art of..."”, highlighting that many of the work done in this field resemble more an art than
a science. This is even more challenging when the research is done in an ever-changing in-
dustrial environment, where situations and experiments are hard to replicate. This, however,
does not mean that scientific work is not possible. What it means is that there is not a nice
formula or graph that clearly validates the work done. Research in Systems Engineering relies
on observations, experiences, feedback, and similar means for validation. You will find plenty
of those in this Thesis.

The most difficult part of this Thesis was making the A3 Architecture Overview simple.
It was so easy (and tempting) to add features, functionality, technology (e.g. to develop an
automated software tool), and other things that we engineers find so fascinating that I felt
into all those pits. After all, by adding those features it felt more scientific. I had to learn the
hard way that “new”, "software-based” and "different” is not a reason to do things. The fact
that the research has been carried out within a company helped me to realize what is needed
and what is not, no matter how fascinating or how “publishable” it looks like. If the outcome
of the research is not useful or applicable, it is easily put aside.

Although the focus is evolution of complex products and systems architecting, that does
not mean this work is only applicable to those fields. The A3 Architecture Overview is tailored
to architecting, but it can be easily adopted in other fields. For that it is necessary to find out
what is the essential knowledge that is required in a particular field, and define an optimal
structure and an effective way to represent the knowledge. You do not have to be an architect
or evolving a system to use an A3 Architecture Overview.

Before you start reading this Thesis, a word of advice; do what I say and not what I
do. In this Thesis I describe a way to support effective communication of knowledge, and to



achieve that I state thinks like that; the amount of information should be limited (to an A3 to
be precise), visual attributes should be encouraged, human and organizational factors taken
into account, and many other advice based on the work carried out at Philips Healthcare.
However, if you read this Thesis, you will find that I do not follow my own advice; this
Thesis has too much information, its size is not A3-based, visual attributes are scarce, there
is repetition in the text, and much more. The reason (excuse) is that I was constrained by
the academic format of a Thesis, and that I was not brave enough to challenge it with an A3
Architecture Overview Thesis (although I almost tried). I hope, however, that you have the
bravery to challenge the “traditional” way of consolidating knowledge in your work and try
the A3 Architecture Overview, because I do know it works.
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Chapter 1

Introduction

In this chapter we identify the main problem that triggered this research; the evolution
of complex products. Terms like evolvability, systems architecting, architecture, know-
ledge, and communication are introduced. To deal with such a diﬂ‘lgculf topic, the context
in which this research has been carried out; the Darwin project and Philips Healthcare
MRI as the industrial partner are presented. Finally, the research itself is introduced;
the focus and scope, the goal, the research questions, the research approach, and how to
evaluate this research.

1.1 The Problem

In today’s competitive environment, companies struggle to reduce time to market for new
products and to stay ahead of competition. Companies are pressured to shorten their product
development cycles, increase the performance of their products, incorporate new features to
cope with increasing customer demands, while reducing their development budgets. Since
developing a system from scratch is time consuming and costly, a strategy often chosen is
to create new products by evolving an existing one (see Chapter 3). This strategy enables
companies to reuse existing infrastructures and available knowledge, while focusing their
resources on product improvement.

Nowadays, designing a system that is easily evolved is considered best practice in many
industry domains. With evolvable systems, companies can benefit from a system that can
adapt to design changes at a cost less than is required to build a new system. The ability of a
system to be easily evolved is termed evolvability.

Research regarding evolvability of complex systems is scarce. Most research regarding
evolvability and evolvable systems focuses in establishing guidelines or ”design rules” during
the design process so evolvability concepts can be built into the system (e.g. a modular
system is expected to have a higher degree of evolvability). Other approaches focus on how to
estimate the impact that a design change may have in the system, so undesired consequences
can be avoided. Another trend of research focuses on how to support the person responsible
of evolving a system; the system architect. By helping architects to best use their abilities in
their duties, they can make better decisions, enhancing the evolution process.

During the evolution of a product, changes in the design are inevitable. Technology
evolves, engineers find better ways of doing things, design problems are identified, new
features incorporated, etc. Consequently, products have increased in complexity over the
years, as well as the organizations that develop them. Evolving complex systems requires
multidisciplinary teams, as no single individual or group can handle or understand the
whole system. Complexity leads to non-trivial dependencies across system and organizational
boundaries. As a result, the impact of design changes can have extensive consequences due to
unknown or hidden dependencies within the system and the organization.

The understanding that a company has about the impact that design changes have on the
system determines its ability to cope with system evolution. That understanding enables the
company to focus the development effort in adding value to the system rather than dealing
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with unexpected problems that may arise in the process. For understanding, knowledge
should be available to all team members. Typically some of this knowledge is explicit in
the form of text documents; however most of this knowledge is implicit in experts” minds.
Companies already have a large amount of knowledge about the domain, yet few companies
know how to capture the implicit knowledge effectively, and even fewer companies know
how to reuse that knowledge. Decision making therefore fails to take advantage of the
knowledge the company already has.

Sharing of knowledge is therefore, essential. By helping the different teams to share
and reuse the knowledge the company already has, they are able to make better informed
decisions, enhancing the evolution process. Current support to knowledge sharing however
is very limited. Consequently, evolvability is usually delegated to the architect’s experience
and intuition.

Figure 1.1: Car Evolution

Dealing with evolution is complicated, as implementations, technologies, and designs
may have changed completely over the years. As apparently everything from the original
system has changed, that makes it hard to know which knowledge should be captured to
support evolution. Something from the system however has probably remained; the architec-
ture. The architecture of a highly evolbable system is likely to not change at all. For example,
as shown in Figure 1.1, while the implementation, the technologies, and the design of a car
have changed completely over the years, there are some aspects of the design such as the use
of wheels to move the car, an engine to power it, the need of room for a passenger, etc, that
have remained. Those aspects belong to the architecture and are present in the different car
evolutions. While implementations of the system may have changed several times during the
lifespan of a system, it may be only the architecture that remains from the original system.

Creating architectures is often called architecting. Architecting is an essential step in the
design process. The architecting phase involves determining what the system is supposed
to do and how specifically it will do it. During this phase vital decisions must be made,
and those decisions are the responsibility of the architect. Despite the importance of the
architecting phase, there is little support to systems architecting. The architecting process is
usually performed by people who have gained experience over the years.

Architectures, once consolidated in architecture descriptions, enable a way to understand
the evolution of complex systems, to design them, to manage them, and to provide long-term
rationale of decisions made. Architecture descriptions also play an important role in managing
communication among stakeholders, as they serve as a reference artifact that can be used to
share knowledge about the design and the decisions that led to the system. The knowledge
related to architectures is termed architecture knowledge (see Section 4.2.1).
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State of the art research about architecting and architectures comprises several activities,
such as developing conceptual modeling languages, software tools, applications for storing
design decisions, repositories and databases search engines, “intelligent advice”, applications
to support writing documents, software to perform architectural analysis, and text mining of
stored knowledge (see Section 4.1.1). Most research effort focuses on supporting the storage of
architectural knowledge, and little on how that knowledge is communicated and consumed
by the various stakeholders. A great architecting work can become useless if architecture
knowledge is not effectively communicated to the stakeholders.

Research in Systems Engineering has shown that successful companies in product devel-
opment have enhanced their design and development process by improving communication
between and within teams (see Chapter 5). Communication is improved by making available
knowledge explicit, in a fashion that enhances visibility on key issues and by having effective
design reviews more often. The goal is to promote collaboration across disciplines, to facili-
tate reuse of knowledge, and to allow teams to become more aware of how each part of the
system'’s design impacts one another. However, how to capture implicit knowledge, and how
to effectively communicate it remains a challenge.

There are organizational measures to reduce communication barriers such as allocation
of experts to projects, design meetings, project reviews, etc. Those measures however do
not eliminate communication barriers and do not create a synergetic way of working. The
communication process is an essential part of the design process, as ideas, opinions and views
are exchanged to share knowledge, to solve a problem or to design a solution. During the
decision making process, architects must communicate and share knowledge with a variety
of stakeholders. By understanding the communication process, architects are more likely to
achieve their objectives of knowledge sharing, influencing attitudes or to persuade on specific
decisions.

The goal of this Thesis is to find a way to support effective communication in order
to enable sharing of architectural knowledge to enhance product evolution. By making the
implicit architecture knowledge within a company explicit, in a fashion that enables effective
communication, we aim to support shared understanding and a way to estimate the impact
that a change may have on the system. For that, we have designed a reverse architecting
process to consolidate implicit knowledge, and a tool to support effective communication
during product evolution; the A3 Architecture Overview. The proposed reverse architecting
process and the A3 Architecture Overview tool are the result of experiments, experiences,
feedback and observations from different projects carried out at Philips Healthcare MRI.
The A3 Architecture Overview aims to aid the architect in communicating the architectural
knowledge he needs to share to successfully evolve a system. A good shared understanding
of architecture knowledge allows the architect to factor into the overall design process the
important design issues that can have a big impact on the overall success of the evolved
system. In addition, armed with this architecture knowledge, teams can make more informed
decisions, better balance competing or overlapping requirements and constraints, and make
sure that the evolved system meets customer needs.

1.2 The Darwin Project

The Darwin project had the objective to develop methods and tools for optimizing system
evolvability. Although architecture was considered important, the Darwin project did not limit
itself to architectures alone. Since the influence of an architect is not limited to the architecture,
the Darwin project also focused on what an architect can do to improve evolvability.
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To this end, a consortium of industrial and academic partners was set up to carry out the
Darwin project with the Embedded Systems Institute (ESI) having the Project Management re-
sponsibility. The partners are Philips Healthcare - MRI division (Carrying Industrial Partner),
Philips Research, University of Twente, Delft University of Technology, Eindhoven Univer-
sity of Technology, University of Groningen (RuG), and the Vrije Universiteit Amsterdam. For
the majority of the project time, the researcher was located at the Philips Healthcare facilities
in Best.

RESEARCH

UNIVERSITY OF TWENTE. 4% Embedded Systems
TU/e == € Zupelft o =
e sindhoren vrije Universiteit Pelm nbenraiiy o Tochesioge
PROJECT MANAGER INDUSTRIAL PARTNER
Embedded Systems pH I I_I ps
INSTITUTE
.
DARWIN

Figure 1.2: Darwin Consortium

The team members had different responsibilities in the Darwin project. The Embedded
Systems Institute was responsible to capture and consolidate the knowledge generated in the
project. Philips Healthcare MRI was the Carrying Industrial Partner pulling for solutions that
fitted its industrial context. Philips Healthcare MRI provided access to technical and business
experts and to its repositories containing large amounts of industrial data and knowledge.
Furthermore, Philips Healthcare MRI provided feedback on the appropriateness of proposed
methods. University of Twente, Philips Research and other universities were the solution
providers aiming to develop and prove methods that solve industrial problems.

1.2.1 INDUSTRIAL PARTNER: PHILIPS HEALTHCARE

Koninklijke Philips Electronics N.V. (Royal
Philips Electronics N.V.), usually known as PHILIPS
Philips, is one of the largest electronics com-
panies in the world, founded and headquar-
tered in the Netherlands. In 2009, its sales
were 23.18 billion Euros. The company em-
ploys 123,800 people in more than 60 coun-
tries [Philips, 2009]. Philips Healthcare is a
global leader in diagnostic imaging systems,

2Z
healthcare information technology solutions,
patient monitoring and cardiac devices. p H I l I ps
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Philips Healthcare! is headquartered at Massachusets (USA) and its development site is
located at Best (The Netherlands). Founded in 1896, Philips Healthcare has 32.500 employees
worldwide. Philips Healthcare offers diagnostic imaging systems, healthcare information
technology solutions, patient monitoring and cardiac devices. Among those products it is
the Magnetic Resonance Imaging system (see Chapter 2), which is the case study for this
Thesis.

1.3  Focus and Scope of the Research

The scope of this Thesis is on Systems Engineering (SE). Systems Engineering is an interdis-
ciplinary field of engineering that focuses on how complex engineering projects should be
designed and managed. Systems engineering deals with processes and tools to handle such
projects, and it overlaps with both technical and human-centered disciplines such as control
engineering and project management. Systems Engineering focuses on concepts like architec-
tures, complexity, processes, and the system boundary is very broad. Systems Engineering
seeks to apply those concepts to the process of creating systems.

Focus of this Thesis is Systems Architecting. Specifically on how to support the person
in charge of this process; the architect. This Thesis aims to expand Systems Engineering and
Systems Architecting body of knowledge by providing means to assist architects during the
system evolution process. The research presented in this Thesis does not focus on the system
itself (redesigning the system to be more evolvable) but on the architect who has to evolve the
system, and how to support his? work so the evolution process is enhanced.

1.4 Research Goal

The philosophy behind this Thesis is not to create an automated tool or software application
that automatically deals with evolution problems. The goal is not to take away tasks or
responsibilities of architects, but to support them during the evolution process.

The goal of the research presented in this Thesis is to design an approach, supported with
tools that support architects during the evolution process by:

providing a way to consolidate knowledge;

representing architectures for a wide variety of stakeholders;

communicating effectively with a wide variety of stakeholders, and;

sharing architectural knowledge in a fashion that triggers discussion and enables col-
lecting feedback.

In summary, we try to find a way to support architects to evolve a system by enabling
easy sharing of knowledge and by providing an mechanism to effectively communicate that
knowledge to the variety of stakeholders involved in system evolution. By achieving that, we
aim to support evolution by making better informed decisions.

1.5 Research Questions

In this Thesis, we try to provide answer to the following Research Questions (RQ):

!Formerly Philips Medical Systems
Zhe, his, him will be used from now on to reference he/she, his/hers, him /her
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1. RQ: What are the main challenges to evolve complex systems? (Chapter 3)
2. RQ: What is needed to support architects to evolve complex systems? (Chapter 4)

3. RQ: Which are the requirements a tool should meet to support effective communication
of architecture knowledge? (Chapter 5)

4. RQ: Which are the challenges when communicating architectural knowledge? (Chapter
5)

5. RQ: Are popular approaches to support evolution applicable in an industrial context?
(Chapter 6)

6. RQ: Are current ways of capturing architectural knowledge in industry effective? (Chap-
ter 6)

7. RQ: How should knowledge be captured and presented to support effective communi-
cation? (Chapter 7)

8. RQ: Can we design a tool that supports effective communication and that is applicable
in industry? (Chapter 8)

1.6 The Research Approach: Industry-as-laboratory

This Thesis, and the project in which it was developed (see Section 1.2), aimed to develop
tools and methods to support evolvability in an industrial context. For that, the research
approach Industry-as-Laboratory was used. As in other research approaches like action research
[Baskerville, 1999], used in clinical research, researchers and practitioners work together to
find improvements in a real life situation, which is too complex to transfer to a research
environment [Avison et al., 1999].

Industry-as-Laboratory is different from other approaches such as traditional research or
case study research in which the research method depends just on observation, interviews,
documents and the researcher’s impression [Jaring et al., 2004]. In the Industry-as-Laboratory
research approach, the researcher works together with an industrial partner in close collabo-
ration with a practitioner (system architect for this research). The practitioner guides, mentors
and supports the researcher. In the Darwin project, the researcher is given the role of project
leader in real assignments (Advance Development plans), aligned with company interests to
solve real problems of the company. In this sense, the researcher becomes part of the com-
pany “staff”, enabling the author to experience the context and obtain feedback firsthand. In
the Industry-as-Laboratory approach, validation of the research happens when the outcome of
the research is applied in the industrial context, and ideally becomes part of the company
"toolkit” [Muller, 2010a].

As summarized in Table 1.1, the Industry-as-Laboratory approach presents a series of
benefits, as well as some drawbacks both for the researcher and for the industry.

For Researchers — The Industry-as-Laboratory approach enables researchers access to
industrial knowledge and repositories. It also allows access to state-of-practice approaches
and solutions, which provide insight needed to arrive at effective solutions for systems
engineering problems. It provides a good environment to collaborate with practitioners. With
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Table1.1: Bem.ﬁfs and drawbacks of Industry-as-Laberatory research approach (based on [Laar, 2010])

For Researchers

Benefits

Drawbacks

- Access to industrial knowledge and repositories

- Access to state-of-practice approaches and solutions
- Opportunities to observe and to collaborate with
practitioners

- Insight in industrial problems and their urgency

- Early feedback

- Involvement of more stakeholders in the research
- Pressure to produce company deliverables

- Limited commitment of practitioners in
non-urgent matters

- Conflicting interest concerning publications
(confidentiality)

For Industry
. Benefits Drawbacks
- Focus on the long term - Need of specific documents (no-scientific papers)
- Insight on technology advances - Outcome may be scientifically relevant yet not
- Challenge of assumptions useful for the company
- Unbiased feedback - Confidentiality issues

this approach insight is gained in industrial problems and their urgency. This approach also
enables early feedback; by closely working with practitioners, researchers get feedback which
helps to determine whether the goal is realistic, achievable, and desired, and whether the
solution fits in an industrial environment.

A challenge of this research approach for the researchers is the involvement of more
persons in the research team than just the researcher and the academic supervisor, such as the
project manager and the practitioner. This results in more discussions and more requirements
to obtain and maintain a common goal. Another challenge is commitment. Practitioners may
have more urgent matters to attend to than the research.

For Industry — A benefit of Industry-as-Laboratory for industry is focus on the long term.
Companies usually focus on the short term, among others, due to market pressure. As a
result, no time is taken to reflect on root causes and how to solve them. Researchers on the
other hand focus more on root-causes and the elimination thereof. Another benefit is insight
in technology advancements. As keeping up-to-date by reading all the literature available is
almost impossible. For company employees, cooperation with researchers provides valuable
insights in state-of-art technology without substantial investments. Industry benefits also by
challenging of assumptions. Over time a company builds up many implicit and company-
wide shared assumptions, and employees rarely have time to challenge these assumptions.
Finally a benefit for industry is obtaining unbiased feedback. Researchers are less biased by
company policies, management pressure, and company culture. This way they can provide
feedback without the bias produced by the company, like a consultant would do.

A drawback for industry is the need for specific documents. Researchers are interested in
scientific publications, which have different goals, style and use than a company document.
In addition, researchers need to publish the outcome of their research, while industry wants
to protect the knowledge gained with it.

1.7 Research Evaluation

To evaluate the outcome of this Thesis in the Industry-as-laboratory research context poses
great scientific challenges. As stated in [Bonnema, 2008], scientific research in a field in
which the best known book is named “The Art of...” is a challenging undertaking. This is
even more challenging when the research is carried out in a real industrial environment. In
an industrial context, it is nearly impossible to set up scientifically perfect tests to evaluate



8 1. Introduction

contributions to the systems architecting field. Companies are like living organisms that
change with time, as priorities, needs, and even people change. In addition, resources used are
expensive. Consequently, recreating experiments or setting up situations is almost impossible.
Additionally, evolution may take several years, as in the case of MRI systems, and may require
hundreds of man-years. Many factors play a role in the evolution process, and it is almost
impossible to separate and analyze all the variables present in the evolution process.

Then, the question that arises is; in this context, how to evaluate whether an approach,
tool or method supports the evolution process?

The Industry-as-laboratory research approach enables the researcher to test and observe
results firsthand. Observations then become an important source to evaluate whether some-
thing works in industry or not. Another key source to evaluate the research is feedback from
practitioners, users and any other person related to the research.

In this Thesis, feedback has been gathered mainly in two ways; first, through face-to-
face interviews and secondly, through surveys. While the data gathered from those sources is
presented in Appendix A, the insight obtained from those surveys will be used in different
chapters of the Thesis to support the findings of the research.

Final validation, as described in Section 1.6, happens when the architect finds the out-
come of the research useful, and ideally this is incorporated into the design and development
process.

1.8 Thesis Outline

The Thesis is structured as follows. In Chapter 2, the study case; Philips Magnetic Resonance
Imaging system (MRI) will be introduced.

In Part I of this Thesis, we explore the relation between evolution and systems archi-
tecting. In Chapter 3, current work regarding evolution and system evolvability is reviewed.
Evolution barriers are discussed and architectures are introduced as means to understand
system evolution. Chapter 4 reviews systems architecting. Duties and needs of architects are
discussed. The concept of architecture knowledge is introduced. Chapter 5 deals with effective
-human- communication, specifically that of architecture knowledge. In Chapter 6 experiences
of applying different approaches to support evolution at Philips Healthcare are presented, and
lessons learned from those experiences provided.

In Part II of this Thesis a tool designed to support effective communication of architecture
knowledge, the A3 Architecture Overview, and the process to collect, abstract, and present the
architecture knowledge spread within a company are introduced. In Chapter 7, a reverse ar-
chitecting process is introduced in order to recover architecture knowledge and to present it in
a fashion that enables effective communication. Chapter 8 describes the tool designed to con-
solidate architecture knowledge, the A3 Architecture Overview. In Chapter 9, a step-by-step
guideline is provided to guide practitioners in the creation of A3 Architecture Overviews.

In Part III of this Thesis, the A3 Architecture Overview is applied in an industrial context
and evaluated. Chapter 10 provides the real industrial cases in which the A3 Architecture
Overview has been used as a means to support effective communication, and lessons learned
from those experiences. In Chapter 11, based on the feedback from practitioners and A3
Architecture Overview users and creators, the A3 Architecture Overview is evaluated as a tool
to support product evolution. Chapter 12 concludes the Thesis with conclusions, discussion,
recommendations and future work proposals.



Chapter 2

Philips Magnetic Resonance Imaging System (MRI)

In this chapter the Philips Magnetic Resonance Imaging system and the Philips
organization are presented. Basic MRI concepts are explained, and the Philips MRI
system is introduced as an interesting case study of evolution of complex systems. Some
evolution challenges observed at Philips Healthcare MRI are discussed. Finally, this
chapter discuss present and future MRI directions and the need for evolvable systems.

Magnetic Resonance Imaging (MRI) has evolved from unpromising beginnings in the
1970s to become nowadays the imaging method of choice for a large proportion of radiological
examinations. MRI is an imaging method based principally upon sensitivity to the presence
and properties of water, accounting for up to 70% to 90% of most tissues. The properties and
amount of water in tissue can alter dramatically with disease and injury. This makes MRI very
sensitive as a diagnostic technique. It can be used not just to image anatomy but to investigate
organ function, to probe in vivo chemistry and even to visualize the brain thinking [McRobbie
et al., 2007].

(a) Philips MRI (b) MRI Images

Figure 2.1: MRI System (Courtesy of Philips Healthcare)

MRI is based on the principles of Nuclear Magnetic Resonance (NMR). In 1971, research
showed that the magnetic relaxation time of different tissues differs, enabling different tissues
to be distinguished. This discovery enabled magnetic resonance (MR) for scanning the inside
of the human body. It was during the late 1960s that Philips started to conduct their own MRI
research and produced the world’s first head images using the MR principle in 1972.
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2.1 Principles of Magnetic Resonance Imaging

The principle of Magnetic Resonance Imaging lies in the directional magnetic field, or mo-
ment, that is associated with charged particles in motion. Nuclei containing an odd number
of protons and/or neutrons have a characteristic motion or precession. Because nuclei are
charged particles, this precession produces a small magnetic moment. Hydrogen has a signif-
icant magnetic moment and is abundant in the human body. For that reason the hydrogen is
the most common element used in clinical imaging.
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Figure 2.2: Magnetic Resonance Imaging

When a human body (or any other body) is placed in a large magnetic field, many of
the free hydrogen nuclei align themselves with the direction of the magnetic field. The nuclei
precess about the magnetic field direction like gyroscopes. This behavior is termed Larmor
precession. The frequency of Larmor precession is proportional to the applied magnetic
field strength as defined by the Larmor frequency (F) (see Figure 2.2). While gamma is the
gyromagnetic ratio and B is the strength of the applied magnetic field. The gyromagnetic
ratio is a nuclei specific constant.

To obtain an MR image of an object, the object is placed in a uniform magnetic field.
Next, a radio-frequency pulse is applied with a frequency equal to the Larmor frequency.
Once the RF signal is removed, the nuclei realign themselves such that their net magnetic
moment. This return to equilibrium is referred to as relaxation. To produce an image in a
specific region, the signal must be encoded for each dimension. The encoding in the desired
direction is accomplished by adding a gradient magnetic field (b( x, y, z)) to the magnetic
field. During relaxation, the nuclei lose energy by emitting their own RF signal at different
frequencies (F + f( x, y, z)).

A Fourier Transform is then used to transform the encoded image to the spatial domain.
The intensity of a given tissue type (i.e. white matter vs gray matter) depends on the proton
density of the tissue; the higher the proton density, the stronger the RF receive signal.
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2.2 MRI System

The MRI department of a hospital is arranged differently from the remainder of the imaging
department, due to its peculiarities (e.g. vibrations and RF signals may affect image quality).
It is likely to have its own dedicated reception, administration, waiting and patient handling
areas. The MRI system itself is distributed between three rooms as shown in Figure 2.3; the
Examination or RF Room, which houses the magnet, coils and patient handling; the Technical
Room, full of supporting equipment such as amplifiers; and the Operator Room which houses
the MRI console from which the operator controls the MRI and patient communication.

(c) Examination (RF) Room (MRI without covers)

Figure 2.3: Philips MRI System (Courtesy of Philips Healthcare)

Figure 2.4 shows an overview of the MRI system (lateral cut). The cylindrical layers of
the machine, and the opening, called bore, with the patient and coils are drawn in cross
section.
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2.2.1 MRI COMPONENTS

The biggest component of the MRI system is the magnet, which provides a static magnetic
field B (see Figure 2.3(c)). This static magnetic field suffers from inhomogeneity. As a homoge-
neous field is required in the scan region (Field of View, see Figure 2.4), shimming is applied.
Passive shimming involves placing pieces of iron into the magnet, and is done at install time
of the MRI system in a hospital. Dynamic shimming, by controlling currents in electrical shim
coils, can be performed on a per-patient or exam case. The magnetic field generated by the
magnet outside the bore area is called fringe field, and is limited by magnetic shielding. Three
orthogonal linear magnetic field gradients b(x, y, z) are used for spatial localization of the
MRI signal to select the region to scan. To generate RF pulses at a specific frequency F (Lar-
mor frequency), RF transmit coils are used. Depending on the examination to be performed,
the control console determines the signals needed to create RF pulses and gradient pulses. To
have the desired effect, these pulses need to be amplified considerably, and this is done in the
RF amplifier and gradient amplifier respectively. The positioning of the patient in the bore is
also done by the control console and based on the exam to be performed (see Figure 2.3(a)).
The RF receive coils detect the MRI signal F + f( x, y, z), which is digitized for use in either the
image reconstruction or for control purposes, such as calibrations. A physician or radiologist
can view the reconstructed image on the workstation, and when the image quality is satisfac-
tory it can be sent to the picture archiving and communication system (PACS) for future use
1
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Figure 2.4: MRI Components (Courtesy of Alexander Douglas)

2.2.2 PHILIPS MRI

The Philips MRI system is based on the above components or building blocks, grouped by
functionality in so-called chains. A chain is a hierarchically organized, functional unit of the
MRI system. It consists of a number of hierarchically lower building blocks and has a unique
name and description with a tree structure.

!For more detailed information on MRI systems and technology see [McRobbie et al., 2007] [Weishaupt ef al., 2006]
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The Philips MRI system consists of the following chains:

Magnet Chain: The function of the magnet chain is to produce a strong, static magnetic
field. The magnet consists of coiled wires made of super-conductive material, which
requires liquid helium to be used as a cryogenic cooling fluid. The imaging capabilities
of an MRI system is expressed in terms of its operating magnetic field strength?. The
strength and homogeneity of the magnetic field created by the magnet influences image
quality. Poor homogeneity results in image degradation and artifacts.

Radio Frequency (RF) Chain: The function of the RF chain is to produce the RF pulse
sequences (RF Transmit) and to capture the signals produced within the patients tissue
(RF Receive). RF pulses are generated by a transmitter coil which surrounds the whole or
part of the body. The signals produced in the body as a consequence of those RF pulses
are detected using receiver coils. Those signals are very weak and sensitive to electrical
interference. Therefore special shielding is built into the examination room (known as
Faraday cage) to minimize interferences.

Gradient Chain: The function of the gradient chain is to modulate the magnetic field in
the region to scan, by localizing the signals in the body. This is achieved by generating
short-term spatial variations in the static magnetic field strength, referred to as gradient
fields. The gradient fields are produced by three sets of gradients coils, one for each
direction (x,y,z), by applying large electrical currents repeatedly in a controlled pulse
sequence.

Data and Acquisition System (DAS): The function of the DAS is to control and to
synchronize the MRI chains?, as well as to generate the data required to generate the
pulse sequence. DAS is also in charge of collecting the received signals, process them
and transform them into images. Of special interest for this Thesis is the Data and
Acquisition system. The architecture and system evolution of this subsystem will be
case study of this Thesis (see Figure 2.5).

Patient Handling Chain: The function of the patient handling chain is to position, to
monitor, and to observe the patient. Precise patient positioning is achieved by using
light alignment markers. For communication, an intercom is provided between the op-
erator’s console and the bore of the magnet. Monitoring is performed by physiological
measurement equipment, such as peripheral pulse, ECG and respiration, which is used
to collect physiological signals that may be used to control the timing of the scan (e.g. to
prevent motion caused by breathing).

2.2.3 PHiILIPS MRI KNOWLEDGE REPOSITORY

Philips Healthcare mostly uses traditional documents stored in repositories to capture know-
ledge. The documentation and archives are structured according to chain hierarchy, result-
ing in abstract (top-level) archiving and detailed (low-level) archiving. Each chain has one or
more building blocks. Top-level archiving is about grouping functionality, whereas low-level
focuses on the actual implementation [Jaring et al., 2004].

2The unit used is the Tesla (T), which equals 10.000 gauss (G). The Earth’s magnetic field is approximately 0.5G.

3Some

subsystems require to be synchronized to the nanosecond level.
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Building blocks are also used as a management tool to track development. Project
deliverables are expressed in building blocks and each building block is subject to design,
implementation and test standards. Each building block has an owner assigned who is
responsible for the contents of the block. Building blocks that require more than one area
of expertise (e.g. software and hardware disciplines), have multiple owners assigned. System
architects are responsible for the building block hierarchy.

2.3 Philips MRI as a Case Study of Evolution of Complex Systems

The Philips MRI system, as well as the Philips Healthcare organization represents a great
case study to learn about evolution of complex systems. In the early days, the MRI was the
domain of the physicist and engineers who invented and built it. Because of the diversity
of sciences and technologies that gave birth and continue to nurture MR], it is an extremely
difficult subject to master. Authors from the MRI field have stated that a lifetime is not enough
to become expert in every aspect [McRobbie et al., 2007]. Within Philips Healthcare MRI, it is
estimated that it takes about 5 years to understand the MRI system.

2.3.1 COMPLEX SYSTEMS

Complexity is widely studied in many fields of research (see for instance [Axelsson,
2002, Jauregui, 2010, Ottino, 2003]) it is not our goal to repeat those. The adjective “complex”
is usually referred to a difficult to understand system, one which behavior is hard to predict,
difficult to model, with a large number of parts, etc [Bonnema, 2008]. In this Thesis, a com-
plex system is one that no single person or team can handle or understand completely, and
therefore requires a multidisciplinary team or teams for its development and evolution.

2.3.2 PHILIPS MRI AS A COMPLEX SYSTEM

To design and evolve an MRI system requires multidisciplinary teams with competences in
areas such as mechanics, electronics, physics, material science, software and clinical science.
All the disciplines have to work together on different aspects of the design, such as real-
time behavior, control theory, analogue and digital technology, power related issues such
as cooling, etc. However, typically people are specialized in a single discipline, and each
discipline has specific ways of working, which adds complexity to the design process. The
MRI behavior is in itself very complex and involves many parameters and several domains
[Weishaupt et al., 2006]. To illustrate the complexity of MRI systems, some indicative numbers
of Philips Healthcare MRI products and development are provided in Table 2.1. All this is
excluding research, marketing and production floor.

Table 2.1: MRI as a Complex System

MRI Complexity Value
Developers 250 (approx)
Disciplines Physics, Mechanics, Electronics,

Computer Science, Clinical Applications, etc
Development Sites 3
Technologies Used 50 (approx)
Lines of Code (SW) 7MLOC, 10 programming languages (approx)

MLOC = Millions Lines Of Code
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2.3.3 PHILIPS MRI EVOLUTION

As shown in Figure 2.5, since Philips released the first commercial scanner back in the 80's,
Philips has successfully evolved it several times leading to the present system. The main
architecture of the system and the design principles behind it have remained almost un-
changed compared to the original system. Implementations and technologies used however
have changed completely in those 30 years.

1979 1983 1989 1994 2000 2004 2012
Proton S-Line T-Line NT-Line Intera-Line Achieva-Line ?
Prototype Composite ADAS BDAS BDAS CDAS DDAS /

Figure 2.5: MRI Generations and Data and Aquisition System Evolution

If “the test of a good architecture is that it will last” [Robert Pinrad, 1993], we can argue
that the Philips MRI architecture is a good one. The complexity of the system however, has
increased dramatically over the years, making new developments more challenging. As it can
be observed in Figure 2.5, time-to-market has increased considerably in the latest generation.
It is desirable that evolution problems could be avoided so future systems could be released
in the shortest time possible. For that, understanding which the evolutions challenges are
and providing a way to cope with them is needed. The need to reuse existing knowledge to
provide guidance and prevent problems is more relevant than ever.

Taking all this into account, we believe the MRI system is an ideal case to study system
evolution of complex systems.

2.3.4 MRIEVOLUTION CHALLENGES

Manufacturers of medical equipment such as MRI machines have to cope with difficult market
conditions. Competition is fierce among manufacturers [MagNet, 2010], and among imaging
modalities. The average age of world's population and the life expectancy is increasing, which
in general means that more healthcare services should be made available. More functionality
and better performance is thus required. For MRI equipment this for example means being
able to detect more different substances in the body, a higher imaging resolution, having more
examination types available and being interoperable with other imaging modalities. Size and
weight of patients are increasing, leading to change in system requirements, requiring a bigger
bore* and an enhanced patient table. Overall the trend is that the complexity of the imaging
modalities is increasing, but due to the larger population requiring healthcare services the
costs should be kept low. Besides the functionality increase there are also increasingly strin-
gent demands in areas like safety and reliability. In addition to those challenges, there are also
organizational and historical challenges that make evolution difficult.

*Power scales to the power of 5 with diameter of bore [Huettel et al., 2004]. To increase the bore with a factor of two while
having the same energy reaching the patient (achieving the same image quality), requires a power increase of a factor of
32,
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From Incremental Development to Top-down Architecting — From a historical perspective
the Philips MRI system has evolved in an incremental fashion. The first experiments with
magnetic resonance produced promising results, and the system was extended with more and
more components to add new functionality and to solve problems identified. In the beginning
this was a logical approach because the system was relatively small. As the system grew over
the last two decades, the system became too complex for a few people to oversee, and the
system was divided into chains of logically grouped sub-systems like the gradient chain, the
magnet chain and the radio frequency (RF) chain.

Steep Learning Curve — There is a relatively long and steep learning curve for newcom-
ers to the MRI field. It takes many years to understand the MRI system. There is not a clear
way in place to learn about MRI outside people’s field of expertise. Architects are required
in many meetings to provide the missing system overview. This illustrates the challenge of
transferring the knowledge from experienced architects and developers to new employees for
complex systems.

Hard to Estimate the Impact of Change — Because of the logically grouping of the system
into sub-systems, teams usually focus on that sub-system only. Yet sub-systems have to fit
together to form the total MRI scanner, and this is monitored and guided by the system
architects. They have an overview of the entire system and they know parts of the system
in detail. The largest part of the development team has very specific knowledge of a small
part of a sub-system, but only has limited knowledge of the other parts. This complicates
estimating the impact that a local change may have on the system.

Mono disciplinary focus of developers — Even though a developer might be part of a
design team working on a certain sub-system, most of the time people develop themselves
as a specialist in a specific discipline (e.g. mechanics, software, electronics, thermodynamics).
Due to the need of specific competences with deep knowledge of specific areas, people are
working on the same field for years, and thus are encouraged to specialize, leaving limited
time to learn part of the discipline of other developers.

Lack of Overview — Due to the missing of system wide overview and the mono disci-
plinary focus, it is difficult for most of the developers to estimate what the impact of a change
in their part of the system will be on another part of the system. There is thus a gap between
the information the system architect needs and the information that the developers can pro-
vide. Moreover, the impact of a change brought on by one developer is often hard to estimate.
This is also caused by legacy in the architecture. That is, parts of the system that have not
been changed for a long time and of which the knowledge in the organization has faded (e.g.
experts leaving the company). These parts might be relevant or redundant for today’s re-
quirements, but almost nobody can give a quick answer, because nobody is familiar with it
anymore, and documentation might be outdated or missing.

Difficulties to Re-partition the System — The previous observations contribute to the diffi-
culties to partitioning the system. The main cause seems to be missing system wide overview
for the largest part of the development team (see Section 3.3.2). The person responsible for
making the decision on how to distribute the requirements across the sub-systems, the sys-
tem architect, does not have an in depth knowledge on all sub-systems. Discussing with the
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experts can clear up many uncertainties, however due to the mono disciplinary focus of most
developers and missing system wide overview of developers, getting reasonable estimates for
tasks is almost impossible. Therefore, repartitioning the system is too risky due to unknown
impacts that may arise in the process.

2.4 What Next?

Most likely the mail stream will be to continue to build traditional whole body scanners with
the main effort being spent on improving quality, adding features, increase bore size, and
reduce cost, staying true to the proven architecture. However, with the growing number of
examinations in an equally increasing number of applications, dedicated MRI scanners as
shown in Figure 2.6 will become available sooner rather than later. Why acquire an expensive
full size MRI scanner if there are enough patients to keep a less universal but dedicated
scanner busy? This specialization has been observed in other modalities. Similarly, with
healthcare budgets being downsized almost everywhere, hospitals will no longer be in a
position where they can afford dedicated operators for each modality. This in turn will call
for equipment that is “properly trained” in defining its acquisition and geometry parameters
all by itself.

(b) MRI Orthopedics Concept

(c) MRI Psychiatrist Concept (d) MRI Surgery Concept

Figure 2.6: Dedicated MRI Concepts (Courtesy of Philips Healthcare)
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In addition, there are many patients who experience anxiety when confronted with the
bore. Open systems such as Philips Panorama bring relief for this patient group but there
are other solutions as well. For that, among other developments, new system designs are
needed. Such designs would have the added benefit of offering excellent patient access for
interventional procedures such as surgery (see Figure 2.6(d)).

Whether the Philips MRI system stays with the cylindrical design and/or new designs
are created, what it is certain is that the Philips MRI system will evolve. This means that
future MRI requirements such as specialization or bigger bore would benefit from adopting
approaches to effectively deal with evolution.
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Chapter 3

Evolution of Complex Systems

In this chapter the concept of evolution and a review of existing work on system evo-
lution and system evolvability are presented. By studying the MRI system and the
Philips organization, main development and evolution challenges are iden fiﬁed. Pop-
ular approaches proposed to deal with system evolution are introduced. Finally, archi-
tectures are proposed as a way to understand system evolution in order to provide the
foundations to deal with it, and hopefully incorporate it in the design and development
process.

In most industrial sectors, competition is fierce and price erosion is fast. Product man-
ufacturers are under severe pressure to reduce product and development costs and shorten
development time, and yet remain technologically ahead of competition. Customer demands
for new features to add value to products such as higher performance, improved reliability,
more safety and interoperability have been increasing rapidly in recent years. Budgets are re-
duced despite the increasing need to incorporate increased advanced electronics and software
into products. All those demands are leading to an increase in product complexity, which
result in additional development challenges. In a study over 140 companies about their ex-
periences in product design and development, it was found that those pressures, as show in
Table 3.1, are driving companies to improve their design and development process in order to
survive [Boucher and Houlihan, 2008].

Table 3.1: Top pressures driving companies to improve the development process (Source [Boucher and Houlihan,
2008])

Pressures

Shorter product development schedules

Increased customer demand for increased product performance

Reduced development budgets

Accelerated product optimization

Increased requirements to incorporate electronics and software into product

In addition to those pressures, customers demand personalized products. Companies
must deal not just with one product but a family of products. This causes an even larger
increase in the resources required during the design process, as product families are usually
derived from a common platform in order to enable reuse of current knowledge and infras-
tructures [Muller, 2008].

Since designing and developing complex products from scratch is both time consuming
and costly, a development strategy often chosen by companies is to evolve existing products.
New systems are built reusing previous system designs or existing platforms. For this reason,
the ability of a system to be easily evolved, termed evolvability (see Section 3.1.1), is a prop-
erty vital in the industry for the survival of companies [Isaac and McConaughy, 1994].

Designing a system that is easily evolvable is considered best practice in many industry
domains [Schulz et al., 2000]. With evolvable systems, companies can benefit from a system
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that can adapt to changing requirements at a cost less than is required to build a new system.
Modernization of evolvable systems is expected to take less time and reduce costs. Evolvable
systems enable easier insertion of new technology and mitigation of the risk of obsolescence
in the system. Life-cycle cost is reduced by a long-lived architecture that eases evolution
rather than large-scale system redesign [Laar et al., 2007]. In addition, evolvable products
give additional flexibility, as the company can either reuse existing infrastructure to tackle
changing requirements or to develop a new product.

Some industrial sectors such as aerospace, automotive, naval and military, have already
identified the necessity of adopting evolvability concepts in their development process and
have placed it as a primary requirement [Steiner, 1998] [Schulz and Fricke, 1999]. Despite the
need for evolvable systems, it is still a relatively unknown field. Nowadays there is no clear
way to design evolvable systems and what is needed in the design and development process
to enhance evolvability. Evolvability is mainly addressed by increasing system modularity
(see Section 3.2.1), and required tasks in design and development process are delegated to the
architect’s intuition and experience (see Section 4.1.2).

Evolving complex systems however is far from being a simple task. Systems have in-
creased in complexity over the years, as well as the organizations that develop them [Bonnema
and Borches, 2008]. This causes non-trivial dependencies across system and organizational
boundaries. As a result, changes may have extensive consequences due to dependencies, un-
known or hidden within the system and the organization. Even minor top-level functional
changes can have lengthy, costly and difficult to predict development cycles. The understand-
ing that a company has about the impact change has on the system determines its ability to
cope with system evolution. During evolution, technologies, implementation and the design
may have changed. How to deal with a system when apparently everything has changed? The
answer lies in the architecture. While it may seem that everything has changed, it may be only
the architecture that remains from the previous system.

In this chapter we review existing work on system evolution and system evolvability,
aiming to clarify the apparent confusion about what system evolvability is!. We investigate
the challenges of evolving a complex system by studying the MRI system and the Philips
organization? (see Chapter 2). We also review popular approaches proposed to deal with
evolvability. Finally, evolvability being such a difficult property to deal with, we propose
a way to understand it in order to provide the foundations to deal with it, and hopefully
incorporate it in the design and development process.

3.1 Evolution and Evolvability in Literature

Evolution as a concept has its deepest roots in biological and social sciences. Most literature
regarding the ability to evolve refers to those sciences. Darwin’s theory, characterized by
heritable variation and natural selection, is often used as a starting point [Darwin, 1859]. For
example, in biology evolvability has been variously defined such as “the ability of a population
to produce variants fitter than any yet existing” [Altenberg, 1994] or “the genome’s ability to
produce adaptive variants when acted on by the genetic system” [Wagner and Altenberg, 1996]. Not
surprisingly most of those biological and social theories and approaches are not appropriate

!This work is based on the paper presented by the author in the proceedings of Tools and Methods of Competitive Engineering,
2008. See [Borches and Bonnema, 2008b]

2These findings are published in paper written by the author in the proceedings of 8th Annual Conference on Systems
Engineering Research, 2010. See [Borches and Bonnema, 2010b]
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for complex man-made systems as species and systems are not similar enough (e.g. there is
no clear analogue of “gene”)’.

In fields close to Systems Engineering such as computer science, since [Lehman and
Belady, 1976] laid the groundwork for research into software evolution, this has been an
active field of research [Mens et al., 2005]. Evolvability in those fields is defined for instance
as “the capability of software products to be evolved to continue to serve its customer in a cost effective
way” [Cook et al., 2000]. Much can be learned from experiences in software evolution. Yet
software and Systems Engineering have differences in goal and scope (e.g. designing complex
systems requires multi-disciplinary teams, while designing software may require limited
collaboration from other disciplines). Systems Engineering requires a dedicated approach in
order to incorporate evolvability concepts into the creation of systems.

In this section we review existing work regarding evolvability. Popular definitions are
revised, and other system properties that also deal with change are reviewed. A suitable
definition for evolvability is proposed, and existing work regarding how to assess evolvability
is presented.

3.1.1 SYSTEM EVOLUTION AND EVOLVABILITY

Many years have passed since the first paper regarding “system evolvability” was published
[Isaac and McConaughy, 1994]%. Since then, some theoretical work to understand how sys-
tems evolve has been done in the Systems Engineering field [Rowe and Leaney, 1997] [Chris-
tian III, 2004]. A few papers have attempted to measure evolvability of complex systems
[Christian III, 2004] [Christian IIT and Olds, 2005], and few more tried to analyze evolvabil-
ity on computer systems [Rowe and Leaney, 1998] and aerospace systems [Christian IIT and
Olds, 2005]. The importance of adopting evolvability in complex systems has been discussed
by several authors [Isaac and McConaughy, 1994] [Rowe and Leaney, 1997] [Ring and Fricke,
1998] [Steiner, 1998] [Christian IIT and Olds, 2005]. Finally the role that evolvability plays in the
system architecture has been described in [Isaac and McConaughy, 1994] [Steiner, 1998].

Despite those contributions, system evolvability is almost an unexplored field. The term
system evolvability is used in manifold papers, yet it is used differently depending on the
context. System evolvability definition is still open for discussion. In addition, there is no
formal way to assess or measure evolvability and evolvability is confused with other system’s
properties such as changeability [Fricke and Schulz, 2005]. From literature we can conclude
that there is almost no real work done in the systems field, and there is almost no research
regarding how to support the evolution process and the persons in charge of it.

System Evolvability Definition

Over the years, there have been a few attempts to define system evolvability. Regardless of
those attempts, there is still no broadly accepted definition of system evolvability and each
author tailors the definition to the specific research carried. Some of those definitions are:

e "System evolvability is a trait of a system that allows the system to be easily modified due to
changes in the environment” [Percivall, 1994].

* “System evolvability is a system’s ability to withstand changes in its requirements, environment
and implementation technologies” [Rowe and Leaney, 1997].

31t should however be mentioned the work of [Dawkins, 1981] who propose analogies for gene outside the biology field
4To the author’s knowledge. The relation between evolution and complex systems however was introduced by [Simon,
1962]
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» "System evolvability; ‘an attribute that bears on the ability of a system to acconmodate change in
its requirements throughout the system’s lifespan with the least possible cost while maintaining
architectural integrity” [Rowe and Leaney, 1998].

» "System evolvability; the capacity of a system to successfully adapt to changing requirements
[IEEE, 1990] throughout its life-cycle without compromising architectural integrity. Further-
more, an evolvable system must meet the new needs of the customer in a more cost effective
manner than developing a new system” [Christian III, 2004].

Each of those definitions tries to identify the main properties that evolvability should
incorporate into the system, such as easy adaptation to changing requirements and environ-
ments. However they do not agree upon those properties and how they should be addressed.
Other definitions of system evolvability are similar to those presented.

In addition to existing evolvability definitions, in literature many terms refer to a system’s
ability to accommodate change. It is worth to briefly review some of those terms to better
understand similitude and differences with evolvability:

* Adaptability: the ease with which a system or component can be modified for use in applications
or environments other than those for which it was specifically designed. [Rowe and Leaney,
1998]

* Flexibility: the property of a system to be changed easily and without undesired effects [Schulz
and Fricke, 1999].

* Changeability: the ability to meet changing situations and diversified operations with mini-
mum disruption or delay [McCay, 1996].

» Extensibility: the capability of being extended resulting in easier, faster, and less costly upgrade
in capability [Bensley et al., 1995].

* Enhanceability: the ease with which new functionality can be added to a system [Dasgupta,
1991].

More system properties deal with change [Muller, 2004], such as; portability, being able
to change the underlying platform; upgradeability, the capacity of upgrading an entire part of the
system with improved features; extendability, the capacity to add options or new features; and
maintainability, the capacity of maintaining the well-being of the system. Though this list is
not exhaustive it is significant enough to demonstrate that many different terms deal with
different, but closely related aspects of change.

However, even if a system can accommodate change one way or another, it does not
automatically mean that it is evolvable. While other system properties focus on how to design
a system so it can accommodate change during the life-time of the product, Evolvability refers
to how the system design changes from one generation of a product to the next, such as
specifying which aspects of the design are passed down and which aspects of the design
are new to previous generations.

Additionally, previous definitions focus only on the system itself, neglecting the context
and the design process. Research has shown that systems can be successfully re-architected
to incorporate system ’ilities” by considering methods that extend beyond the domain of
physical design to include organizations [Richards et al., 2007]. Thus, not only delivered
systems or system designs have to incorporate changes to include evolvability concepts,
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companies themselves need to incorporate changes within their design and development
process. A success in the transition from a non-evolvable system to an evolvable system even
without major changes in the system’s design might be possible by setting up the appropriate
mechanism into the design process. Based on those ideas, within the context of this Thesis, we
define evolvability as:

The ability of a system and its context to provide the means to easily identify what aspects of the design
can be passed on to a new generation to meet new requirements, with a controlled impact of change.

Taking that definition of evolvability, an evolvable system would be; a system in which
designers can easily identify what aspects of the design can be reused to develop a new
generation, and what new aspects need to be incorporated to the system to meet new
requirements. Also in an evolvable system, the impact of required changes can be estimated
so the best design and development strategies can be put in place and undesired impacts can
be avoided.

Assessing System Evolvability

Over the years there have been a few attempts to assess system evolvability. Approaches
developed to assess system evolvability are based primarily on the work of Mario Bunge
[Bunge, 1977]. Although philosophical in nature, Bunge’s work has lead to extensive research
in ontology’s application to the engineering and computer science disciplines.

Regarding system evolvability, [Rowe and Leaney, 1997] proposed a model of systems
architecture evolution based on Bunge’s ontology. In that model, evolution is considered a
type of change and modeled as an ‘event’. An event is a pair of states, where each state (start
and end) exists in the ‘possible state space’. This concept of modeling evolvability implies
that both the initial and final evolved states must be known. [Christian III, 2004] tried to use
the same approach to measure system evolvability on aerospace systems in order to find out
which aerospace designs were more evolvable, by adding some metrics such as figures of
merit. However, in a later publication the approach was replaced with another approach based
on experts’ estimations [Christian III and Olds, 2005]. The method relies on a self-made scale
of system evolvability to provide numbers and the experts” understanding of evolvability to
select numbers. Despite those contributions, it is not clear why one system is more evolvable
than another, and how to use those numbers in future designs. Since then there have been no
more attempts to assess system evolvability.

Although in the software community we can find many approaches to measure evolution
[Allen and John, 2005], in the Systems Engineering field finding ways to measure evolvability
of complex systems is still far from a trivial task. Although finding scales of measure for
evolvability is beyond the scope of this Thesis, we believe that any metrics meant to assess
evolvability should not only assess system attributes, but should assess the organization
as well. As stated in Section 3.1.1, companies play an important role regarding system
evolvability; evolvability may be incorporated into the system if a company is equipped with
the right mechanisms to support evolution.

3.2 Supporting Strategies to System Evolution

Research on system evolvability comprises two main approaches; to drive a system’s design in
such a way that the impact caused by changes is kept small, and to provide means to improve
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the design process in a way that previous knowledge can be reused in future developments. In
this section we present research approaches that deal with the first approach, while in Chapter
4 we will dive into the second approach to support system evolution.

3.2.1 DESIGN RULES: MODULARITY

A field of research that supports evolution focuses on the discovery of heuristics and best
practices, also termed “design rules” [Baldwin and Clark, 2000]. These design rules aim
to guide designers in their work, so properties such as flexibility or evolvability can be
incorporated in the system design [Ernst and Armin, 2005]. According to those design rules,
evolvable systems are achieved by adding higher degrees of modularity. It is to say, a system
with a modular design enables evolvable systems [MacCormack et al., 2008].

The link between modularity and evolution was first stated in [Simon, 1962]. In Systems
Engineering, modular design is an approach that subdivides a system into smaller parts (mod-
ules) that can be independently created and then used in different systems to drive multiple
functionalities. Modularity is often referred to as the degree to which system components
may be separated and recombined, and the degree to which the system architecture enables
(or prohibits) those combinations [Schilling, 2000].

The challenge of modularity is how to identify the modules. According to authors such
as [Isaac and McConaughy, 1994], evolvable systems should be built on the aspects of the
system which are likely to remain unchanged. Those “islands of architectural stability”, once in
the form of modules, should enable a complex system to evolve quicker [Percivall, 1994].
By designing systems with independent modules, each of them can evolve at a different
pace without affecting the other modules [Baldwin and Clark, 2000]. Modular designs are
supposedly loose-coupled, so changes can be made in one module without impacting the
others, preventing change to ripple through the system. In literature, popular examples of
modular systems are cars and computers.

Although there are documented experiences in fields such as software engineering of
the success of this approach [MacCormack et al., 2008], in the systems engineering field the
challenge remains on how to identify, design and build modules, especially when system
aspects span different domains. This approach is even more challenging when evolving an
existing system, in which modularity was not included in the original design.

3.2.2 ESTIMATING THE IMPACT OF CHANGE

The task of accurately estimating impact of change is one of the larger engineering problems
[Ring and Fricke, 1998], and was also observed at Philips Healthcare MRI (see Section 2.3.4). A
field of research focuses on estimating the impact of change and change propagation [Clarkson
et al., 2004] [Giffin et al., 2007]. By understanding and assessing the consequences of those
changes, design effort can be directed towards avoiding undesired impacts and guide the
design of the system to one that enables easy evolution. A few approaches can be found in
literature, most of them based on Design Structure Matrices (DSM).

The Design Structure Matrix, as shown in Figure 3.1, is a popular representation within
the design and engineering communities. DSM is used in a variety of contexts, including
product development, project planning, project management, systems engineering, and or-
ganization design [Browning, 2001]. A DSM can represent a large number of system elements
and their relationships in a compact way that highlights important patterns such as feedback
loops, modules and so on.
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Figure 3.1: Design Structure Matrix Representation vs Graphical Representation

A DSM is useful to capture information to make systematic analysis. In the work of
[Clarkson et al., 2004], mathematical models to predict the risk of change propagation in terms
of likelihood and impact of change are developed and presented in the DSM cells (see Figure
3.1). With knowledge of likely change propagation paths and their impact on the delivery of
the product, design effort can be directed towards avoiding change to “expensive” subsystems
and allowing change where it is easier to implement.

In literature, this approach has been tested in real complex systems such as helicopters
[Clarkson et al., 2004], in which a 19x19 DSM is created to model the helicopter. However,
as it will be show in Section 6.1.3, this approach has clear limitations that make it hard to
apply it in an industrial context; the amount of information required is large, and it needs
a complete set of input data to produce reliable results. In addition, although suitable for
analysis, information within the DSM is very hard to visualize for a human (see Section 6.1.3).
Those aspects may limit the utility of this approach, especially in large complex systems.

3.2.3 TRIZ, TRENDS OF SYSTEM EVOLUTION

TRIZ is an algorithmic approach to problem solving [Altshuller, 1998]. According to TRIZ,
every system evolves in the direction of the “ideal system”. That is, technical systems evolve
over time to higher states of ideality. In the TRIZ framework, patterns have been discovered of
how systems evolve, and they are referred to as laws or trends of evolution. Those laws denote
general conditions for the creation and development of technical systems and what particular
phases of evolution a system passes through. Although the application of a particular trend
does not guarantee an increase in ideality of the system, they are meant to predict how systems
will evolve into the future.

The main purpose of using trends is to predict the future technology and future evolution
of a product or system. Trends of evolution aim to help improving the product in the right
direction, and make the product more successful. It is however not easy to use those trends
in the development process, especially in complex systems. E.g. Transition from rigid to flexible
to wave technologies. According to this trend, products are moving from rigidity to flexibility.
This means that future stages of a product will be more and more flexible.
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3.2.4 OTHER APPROACHES

There are some other approaches that can be applied to deal with system evolution,. To name
a few:

* Knowledge-Based Design: In this approach, knowledge engineers elicit knowledge from
domain experts and build a knowledge-based design system. The system generates de-
signs or supports their creation. In this approach, the amount of knowledge the system
possesses and the way it applies the knowledge directly influence the performance of
its designs [Liu et al., 1995].

* Lean Development: This approach consist on the application of the principles of the
Toyota Product Development System to software or systems development. In theory
when correctly applied, lean development results in high quality systems that are
developed quickly and at the lowest possible cost [Poppendieck and Poppendieck,
2003].

3.3 Evolvability in the Design Process

The design and development of systems has reached a new level of complexity as companies
strive to integrate mechanical, electrical and software components (see Table 3.1). Each of
those design elements requires specific engineering disciplines with unique knowledge bases,
processes and tools. Bringing them all together into a single product or product family is far
from a simple task. Coordinating the diverse disciplines required to design a system presents
demanding challenges for companies to overcome.

While there is no simple approach to Systems Engineering, there are steps that companies
can take to improve the development process with the resources they have at hand. In order
to enhance the design process to support the evolution of complex systems, it is necessary to
understand what the challenges the company faces during product development are. Then,
more specifically, what barriers employees face during the evolution process. Once those
barriers are identified, appropriate mechanisms to overcome those barriers can be designed
and incorporated into the design process.

In this section we aim to identify main development and evolution barriers, by reviewing
existing work done in the field, and by performing our own survey to Philips Healthcare MRI
employees.

3.3.1 PrRODUCT DEVELOPMENT BARRIERS

In the development of complex products, it is necessary to bring together multiple compli-
cated disciplines with little understanding or visibility in their companion areas. Not surpris-
ingly, as shown in Table 3.2, in a study done over 140 companies, companies indicated that
the top challenge when developing complex systems is the lack of cross-functional knowledge
and qualified systems engineers. This problem arises when a solution for design conflicts is
needed, especially when they cross different disciplines. Related is then the inability to under-
stand the impact a design change will have across disciplines, which is another major devel-
opment challenge also observed at Philips Healthcare MRI (see Section 2.3.4). This is often an
expert’s limited understanding of the other disciplines involved in the design as well as the
lack of an integrated solution.
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Table 3.2: Top six challenges of complex systems development (source [Boucher and Houlihan, 2008])

Top Development Challenges

Lack of cross-functional knowledge and difficulty finding experienced system engineers

Inability to understand the impact a design change will have across disciplines

Early identification of system level problems

Difficulty predicting/ modeling system behavior until a physical prototype exists

Ensuring all design requirements are met in the final system

Difficulty implementing an integrated solution for all disciplines involved in product development

As stated in Section 3.1.1, a success in the transition from a non-evolvable system to an
evolvable system might be possible by setting up the appropriate approach into the design
process. In [Boucher and Houlihan, 2008], it was stated that successful companies are less
likely to report a lack of cross-functional knowledge as an obstacle. Those companies were
able to manage the challenges of systems engineering by providing a multidisciplinary ap-
proach and improving communication and collaboration across disciplines. How to specifi-
cally address those activities remains a challenge for most companies.

In the study, it is stated that successful companies have adapted their product devel-
opment in ways to overcome communication barriers and facilitate collaboration. This is
achieved by having formal reviews more often with all the disciplines involved in the de-
sign, encouraging formal documentation of issues, and developing collaboration tools. The
study also states that successful companies are more likely to look at the system as a whole,
and more likely to analyze system behavior to determine function or architecture tradeoffs.
Unsuccessful companies on the other hand, spend more resources analyzing the impact of
changes (see Sections 2.3.4, 3.2.2), however they lack a process to communicate changes as
well as collaboration tools to make sure the changes are effectively communicated.

3.3.2 PRODUCT EVOLUTION BARRIERS

In Section 2.3.4, observed evolution challenges from an outsider point of view were discussed.
In order to understand why companies face the development challenges mentioned above, it
is also necessary to understand barriers employees face when evolving systems. As we dis-
cussed in Section 2.3.3, Philips Healthcare has designed several generations of MRI systems
for over 30 years. All of those designs are based on the previous system (see Figure 2.5). This
means that employees are familiar with the evolution process. To get insight in evolution bar-
riers, a survey to the MRI development organization was performed (see Appendix A).

Table 3.3: Profile of Philips” employees that contributed to the survey

Job Title Experience
Managers/Leaders 8 <5 Years 4
Architects 5 | 5<Years<10 13
Engineers 10 | 10 <Years<20 9
Designers 7 | Since MR Proton
Domain Experts 2 | (>20 Years) 9
Other 3

Total 35 | Total 35

The target of the survey was the MRI development organization (250 employees approx-
imately). Marketing, sales, logistics and related departments were not addressed. The goal of
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the survey was to identify major barriers employees face when working on the next product
generation. In this survey 35 people® (around 1/7 of the MRI development population) filled
in a questionnaire with 40 questions (see Appendix A.1). To uncover whether background
or experience of employees play a role when addressing evolution barriers, those factors, as
shown in Table 3.3 were taken into account in the later analysis. From this survey it was found
that major evolution barriers employees face when evolving a complex system such as an MRI
are, as summarized in Table 3.4:

Table 3.4: System Evolution Barriers (details of the survey provided in Appendix A.1)

Evolution Barriers Response

Managing system complexity Figure 3.2(a)
Lack of system overview Figure 3.2(b)
Ineffective knowledge sharing Figure 3.2(c)
Finding the required system information Figure 3.2(d)

Communicating across disciplines and departments  Figure 3.2(e)

Managing System Complexity — As shown in Figure 3.2(a), most employees found
system complexity a problem when dealing with new developments. Many domains are
involved in the development process, and the consequences of local changes can impact the
system at different levels and different domains. In addition, it was pointed out that legacy
implementations increase system complexity. This complexity leads to unclear interfaces
between system elements, requirements not clearly transformed into design parameters, lack
of budgets, etc.

Lack of System Overview — As shown in Figure 3.2(b), and observed already in Section
2.3.4, most employees from all disciplines, regardless the experience they have, felt the need
for a system overview to support their development activities. Despite this need for a system
overview, it was found that more than half of the MRI development population did not have
any kind of system overview. While architects and domain experts claimed they have a system
overview, most engineers, designers and managers do not have any. It was also found that,
most employees who claimed to have a system overview, this overview was not explicit but in
their minds (a mental system overview). Some employees claimed that they acquired a system
overview by using old paper diagrams obtained during oral communication.

Ineffective Knowledge Sharing — The essential knowledge required to understand the
MRI techniques and designs are usually referred to as design principles within Philips
Healthcare. It was found that only half of the surveyed were familiar with most design
principles®. Among those, it was found that while all architects were familiar with them, other
employees such as designers and managers were not familiar with them at all. It was clear
from the survey that knowledge about design principles was obtained by experience. That is,
the more experience the more familiar people are with design principles. The reason for this
may be that existing ways to share this kind of knowledge by using tools such as Wikis are not
effective, and therefore this knowledge must be acquired by experience. As shown in Figure
3.2(c), it was found that that this lack of knowledge sharing of design principles was cause of
development problems and poor decisions.

5The survey was sent to the whole Philips MRI development population
Described in the SDS, see Section 2.2.3
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Question: MRI system complexity is a
problem when dealing with new developments.

Question: Having a System Overview
supports you in your development activities

Strongly
Don't Know Disagree 0% Disagree
14% 9%

Strongly
Agree 14%

Strongly Ol
Don't Know? >237e® %rn
1

Remarks: All disciplines think alike.
Experienced employees feel the same as new
employees.

(a) System Complexity

Remarks: Engineers is the group that most
lack this system overview. Many Designers don't
have a system overview either. Experience does

not play a role.

(b) Need of Overview

Question: Have you or your team had
situations in which having more available
knowledge of a specific design principle would
have prevented a problem or helped to make a
better decision?

Question: You can easily find the system
information you need to cope with your work.

Once a
week 0%

Strongly

Don't Know Disagree 9%

20%

Strongly
Agree 3%

(c) Knowledge Sharing

Remarks: Managers and Domain Experts
seem to suffer this problem less than the rest of
the disciplines. Experienced employees have
more difficulties finding the information than new
employees.

(d) Finding System Information

Question: Communication across disciplines
is a problem that affects your work.

Question: Communication across
departments is a problem that affects your work.

Strongly
Disagree 0% Di
Don’t Know
1 14%

Strongly A
Disagree 0% Disagree
Don't Know 9

Remarks: All disciplines think alike. Having more experience does not ease the communication

problem.

(e) Communication Across Disciplines and Departments

Figure 3.2: Main System Evolution Barriers (details statistics per job title and experience provided in Appendix
Al)
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Finding the Required System Information — Companies have plenty of ways to store and
retrieve information, such as repositories, Wikis, search engines, etc. Philips Healthcare is no
exception. Despite those mechanisms, as shown in Figure 3.2(d), finding system information
to cope with one’s work is perceived as a problem for a large part of employees. From the
survey it was found that managers and domain experts suffer this problem less than other
employees. Managers claimed that they probably needed less system information for their
work than other disciplines, while domain experts have mastered the knowledge they need
over the years. It was found that designers could not find the information they need at all, and
that architects and engineers had troubles as well. Architects however stated that they have
developed their own ways to find the information they need without relying on tools (mostly
through oral communication). Engineers and designers on the other hand, stated that they
did not have any other ways to find information than by using the repositories, which did
not solve their need for information. It was found that this problem was perceived as more
serious for experienced people, who probably need more specific information, that is even
more difficult to find.

Communicating across Disciplines and Departments —  As shown in Figure 3.2(e), it was
found that communication across disciplines and departments is a serious problem that
affects employees’ work. We found that this problem affected all disciplines alike, regardless
the experience they have. Communication problems ranged from lack of communication
among different teams that resulted in integration problems, to difficulties understanding
other disciplines and departments points of view (e.g. documents used to communicate) that
resulted in misunderstandings and /or missing requirements.

Survey Conclusions

With the survey we showed a clear link between evolution barriers, especially ineffective
knowledge sharing, to development problems and poor decisions. The reaction to the survey
findings by Philips’ management was, “we have not discovered anything new; however it is
clear that the magnitude of the issue is bigger than we thought, and consequently deserves niore
attention”.

To find out whether those findings were Philips Healthcare specific or apply to other
companies as well, they were presented and discussed with representatives from other com-
panies such as ASML, Océ, Philips Lighting and Daimler. Although they did not provide data
to support the findings, they all stated that those problems have been recognized in their own
companies.

3.4 Architectures as a Means to Understand System Evolution

As discussed in Section 2.3.3, during the evolution process, technologies, designs and im-
plementations may have changed completely over the years. How can we understand and
support the design and evolution of a complex system, if the technology, implementation,
design and even the people might have changed? The answer lies in the architecture. While
implementations of the system may change several times during the lifespan of the system, it
is likely that the architecture remains from the original system.
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3.4.1 THE ROLE OF ARCHITECTURES IN THE DESIGN AND EVOLUTION OF SYSTEMS

Systems Engineering focuses on a number of abstract concepts because they provide a general
framework for guiding the development of systems, so that these systems will provide the de-
sired functions in the desired ways. Among these abstract concepts is that of architecture.

The definition of architecture is still open for discussion. The architecture standard IEEE
Std 1471-2000 (now ISO/IEC Std 42010) defines Architecture as “the fundamental organization
of a system embodied in its components, their relationships to each other and to the environment
and the principles guiding its design and evolution” [IEEE]. INCOSE [Group, 2000] defines it
as "the arrangement of elements and subsystems and the allocation of functions to them to meet
system requirements”. In other fields such as software, architecture is defined as “the highest
level breakdown of a system into its parts, the decisions that are hard to change... and to whatever the
important stuff is” [Fowler, 2002].

The concept of architecture is also described by some authors as "the earliest design
decisions”, “those aspects that are the hardest to change” [Klusener et al., 2005] or “the set of
information that defines a systems value, cost, and risk sufficiently for the purposes of a system
sponsor” [Rechtin and Maier, 2000]. This implies that the concept of architecture goes beyond
the system structure to include other important concepts such as design decisions, relevant
information, etc. (see Section 4.2.1).

It can be concluded from those definitions that an architecture is paramount in the de-
velopment and evolution of systems, and therefore the architecture and its related knowledge
are worthwhile to preserve.

3.4.2 ARCHITECTURES AS A MEANS TO SUPPORT EVOLUTION

Architectures, once consolidated in architecture representations, are considered of paramount
importance to the development and evolution of systems. Architectures provides the frame-
work in which the evolution and design of a system is performed [Crawley et al., 2004]. An
architecture representation is a key artifact for the early analysis of the system, it facilitates
communication and understanding among stakeholders, and drives both system design and
evolution [Liang et al., 2009b]. Architectures enable a way to understand complex systems, to
design them, to manage them, and to provide long-term rationality of decisions made early
in the project [Crawley et al., 2004]. Architecture representations serve as a reference artifact
that can be used to share knowledge about the design and decisions that led to the current
system. In [Smolander and Paivarinta, 2002] reasons for making architectures explicit (e.g. in
architecture documents) at companies are examined. The study concluded that besides the
traditional use as a starting point for the system design, they serve to communicate, negotiate
and to capture knowledge.

As an example, in Figure 3.3, the evolution of receivers of the MRI radio frequency
chain is depicted (see Figure 2.3(d)). More than 15 years of changes separate the last receiver
design from the original. The design has changed (e.g. miniaturization), the technology has
changed (e.g. backplane replaced with serial), the embodiment has changed, etc. However,
the architecture, as presented in Figure 3.4, has remained the same. Understanding the
architecture and its related knowledge that led to its current design is key to understand
evolution and to support future evolution.

Bottom line is that every system has an architecture. They may be the result of a deliberate
process in the design of a system, an evolution of previous designs, the result of applying
standards and protocols, the addition of smaller architectures, or just an amalgamation of
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Figure 3.3: Technology Evolution (Evolution of MRI Receiver Hardware)

design artifacts. Architectures are long-lived either because they determine the design of
several generations of products or because the resulting systems are themselves long-lived
[Crawley et al., 2004]. Architectures are therefore an adequate means to understand and
manage system evolution.

Architectures are then a means to understand evolution. However, architectures being
such an abstract concept, the challenge is how to represent them in a way that can be used
in the development and evolution process. Other challenges are to know what information
belongs to the architecture and what does not, and finally, how should architectures be
captured to help overcoming evolution barriers and to support evolution.
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3.5 Conclusions

Product manufacturers are under severe pressure to shorten development schedules, increase
performance, optimize the product, incorporate more electronic and software into the product,
reduce development cost and yet remain ahead of competition. As developing systems from
scratch is time consuming and costly, a strategy often chosen is to evolve existing systems.

In literature, many terms refer to evolution, mostly from biological and social sciences.
In other fields such as computer science, evolution has been an active field of research. In the
Systems Engineering field however, system evolution is almost an unexplored field. Despite
the existing contributions, an approach to deal with evolution is still needed in the Systems
Engineering field.

Evolvability refers to how the system design changes from one generation to another,
such as specifying which aspects of the design are passed down and which are new to
previous generations. An evolvable system then would enable designers to easily identify
what aspects should be incorporated in the next generation, and which aspects can be
reused from the previous system to meet changing requirements, with a controlled impact
of change.

Strategies to deal with system evolution are mainly based on providing design rules to
add modularity to the system’s design, and providing ways to estimate impact of change.
Regarding modularity, the challenge is how to identify those modules, especially on systems
which were not originally designed to be modular. Ideally, by estimating the impact of change,
design effort could be directed towards avoiding undesired impacts. Current techniques
however have clear limitations, such as the need for complete and exhaustive data.

We have found that major barriers employees face when evolving a system are; manag-
ing system complexity, lack of system overview, ineffective knowledge sharing, finding the
required system information, and communication across disciplines and departments.

Successful companies have adapted their product development in ways to overcome
communication barriers and facilitate collaboration. In addition, those companies are more
likely to look at the system as a whole. Unsuccessful companies on the other hand, spend
more resources analyzing the impact of changes, however, they lack a process to communi-
cate changes as well as collaboration tools to make sure the changes are effectively communi-
cated.

During evolution, technologies, implementations and designs may have changed over
the years. It is likely, however, that the architecture remains. Although the concept of architec-
ture is still open for discussion, once consolidated in an architecture representation, it is a key
artifact to the development and evolution of systems.






Chapter 4

Sharing Architecture Knowledge to Support System
Evolution

In this chapter architecting and known means to support it are reviewed. Duties and
needs of architects are discussed. As one of the major needs of architects is to share
architecture knowledge, the concept of architecture knowledge is introduced, and
existing means and research approaches to share this knowledge are discussed. Finally,
the impact of ineffective knowledge sharing and the need to tailor the knowledge
sharing mechanism to the architecting process are presented.

In the previous chapter, development and evolution barriers were identified. Architec-
tures, unlike technologies or implementations, are usually long-lived and once consolidated
in an architecture representation, are a key artifact to support development and evolution.
Consequently architectures were proposed as a way to deal with system evolution.

The process of creating architectures and its related activities is called architecting
[Rechtin and Maier, 2000]. Architecting is an essential step in the design and production of
complex systems [Bonnema, 2008, Gulatti and Eppinger, 1996, Muller, 2004]. The architecting
process is the responsibility of an architect, and his role, duties, and skills is a common topic
of discussion [Fowler, 2003, Muller, 2007a]. During the architecting process major decisions
are made. For that, architects need to balance all kind of inputs, and based on their judgment,
architects are expected to take good design decisions. For the decision making process, archi-
tects share ideas and knowledge with various stakeholders and collaborate with them to find
an optimal solution.

Despite the importance of the architecting process, currently there is little support to
systems architecting [Muller, 2004]. The process is usually performed by people who have
gained experience over the years. Architecture principles, methods and frameworks aim to
support this process. While architecture principles, methods and frameworks aim to provide
guidance in the creation of architectures and how to represent them, there is little support
on how to share the architecture knowledge generated in the process. Making architecture
knowledge explicit is not common practice in most companies [Tang et al., 2006]. As a result,
this knowledge remains implicit in people’s minds and cannot be effectively reused to design
new systems.

In the following sections we review architecting and known means to support it. The
duties and needs of the architect are discussed. As one of the major needs of architects is to
share architecture knowledge, we review the concept of architecture knowledge and existing
means and research approaches to share this knowledge.

4.1 Architecting

The process of creating architectures and its related activities is often called architecting
[Rechtin and Maier, 2000]. Architecting is an essential step in the design and evolution of
complex systems [Bonnema, 2008, Gulatti and Eppinger, 1996, Muller, 2004]. In this phase of
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the design process, the needs and concerns of all stakeholders are taken into account to come
with a well-balanced solution [Van Vliet, 2000]. This step involves, among other activities (see
Section 4.1.2), determining what the system is supposed to do and how specifically it will do
it.

Traditionally the process of creating an architecture follows a process of decomposition, in
which a top-level concept of the system’s required functions is broken down into subfunctions.
At the same time the abstract version of the physical form is broken down into subsystems
capable of delivering those subfunctions. This process of decomposition may continue until
single parts are reached. The design process does not always follow this top-down approach
but may stop when other disciplines take over the design process.

The result of the architecting phase is a series of major design decisions that shape the
system to be delivered, as well as the development process [Koning, 2008]. Those design
decisions are usually captured in the form of architectures, and represented in an architecture
representation (see Section 4.1.1).

In this section we review existing support to architecting and the role and duties of the
person in charge of this process; the architect. Finally, what the architect needs to better use
his abilities during architecting is discussed.

4.1.1 ARCHITECTING SUPPORT

A distinction between engineering and architecting, is that while engineering deals mostly
with measureables using analytical tools derived from mathematics and hard sciences, archi-
tecting deals largely with unmeasurables using non-quantitative tools and guidelines based
on practical lessons learned [Rechtin and Maier, 2000]. Architecting remains an art which
is performed typically by people who have gained knowledge and experience over the
years.

One of the goals of research in systems architecting is to uncover a set of principles, meth-
ods and tools that supports the architecting process and the architect to deliver an optimal sys-
tem in the given context. Among those, it is worth to mention architecting principles, methods,
frameworks and representations.

Architecting Principles

Architecting is guided by lessons learned through experience and observation. Given enough
lessons, their meaning can be codified into expressions called “heuristics”, a Greek term for
guide. Heuristics used to support architecting are usually referred as architecting principles.
They encapsulate useful insights to guide the architecting process, and are meant to pass on
to future generations lessons learned from experience. An example of a heuristic is:

In partitioning, choose the elements so that they are as independent as possible; that is,
elements with low external complexity and high internal complexity. [Rechtin and Maier, 2000]

Heuristics can be used either as evocative guidelines, as codifications of experience, or
just as “rules” to follow in the design and development process. A collection of architecting
principles or heuristics can be found in [Rechtin and Maier, 2000].

Architecting Methods

An architecting method aims to support the architecting process by providing a set of steps to
guide the architect to a near optimal design. Inherited from the software field, an architecting
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method that provides a stepwise process and a prescribed set of artifacts to create an architec-
ture design is Structured Analysis and Systems Design (SASD) [Yourdon, 1989]. Structured
analysis is used to analyze the user requirements and produce a structured model of the sys-
tem to be developed. SASD has been around for over 20 years, and it is still popular today
and widely used by many software development companies. Some widely-used architecting
methods are described in [Muller, 2010b].

Architecture Frameworks

An architecture framework aims to provide guidance for what information, what presentation
and what structure to use to capture the architecture. There are many architecture frameworks
available, such as [Zachman, 1987], which presents the architecture design in 36 (6x6) views
and provides guidance to the creation of those views. In [Greefhorst et al., 2006] an overview
of existing architecture frameworks is provided.
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Figure 4.1: Zachman Architecture Framework [Zachman, 1987]

Architecture Representations

An architecture representation -or architecture description- defines a domain model for archi-
tecture concepts that can be used to describe architectures. There are generic standard mod-
els for architecture descriptions, such as IEEE 1471-2000 (now ISO/IEC 42010) [IEEE]. An-
other well-known model for architecture description is the Customer objectives, Application,
Functional, Conceptual and Realization (CAFCR) model [Muller, 2004]. As shown in Figure
4.2, CAFCR is a representation of an architecture into five views:

* The Customers objective view: what does the customer want to achieve.
¢ The Application view: how does the customer realize his goals.
¢ The Functional view: which describes the what of the product.

¢ The Conceptual and Realization views: describe the how of the product.
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Figure 4.2: Architecture Representation in CAFCR model

Those views describe the system and its context from different perspectives such as de-
composition of the system into building blocks, mapping of software into hardware elements,
etc. Such views typically consist in one or more diagrams, tables or pieces of text.

4.1.2 THE ARCHITECT

The responsibility of architecting lies with the architect. The role of the architect is a common
topic of discussion, as well as which duties, skills and knowledge architects need [Fowler,
2003, Muller, 2007a]. Besides architecting, the architect has plenty of responsibilities and duties
[Farenhorst et al., 2009]. A summary of the main duties of the architect is presented in Table
4.1. Some of those duties are:

* Decision making: Based on his judgment, the architect is expected to balance all kind of
constraints and take the best design decisions that ensure meeting stakeholder require-
ments. Architects are also responsible to decide an adequate system decomposition for
later system integration, to map organization structure, and to estimate the impact that
changes might have on the architecture.

¢ Communication: During the architecting process architects need to communicate and
share ideas with various stakeholders in oder to incorporate feedback, share knowledge,
inform of decisions taken, and to provide overview of the system and its context.
Stakeholder collaboration in the design process is essential to ensure optimal global
solution and prevent focus just on localized optimizations.

* Documentation: Another important activity of architects is to document the knowledge
generated during the process, such as architectures and design decisions and their ratio-
nale. In addition they must ensure the integrity of the system and design specifications
as they will be used later during product development. They are also responsible for the
storage of architectural knowledge.

* Asses and review: Architects are expected to assess and review any architectural-
related issues that arise in the architecting process, such as evaluate proposals, judge
which of them should be implemented, and convince the stakeholders of the value of
architectural decisions taken.

* Knowledge acquisition: Architects need to acquire new knowledge to expand the body
of knowledge of the business and get insight in the best strategy for the company, to
ensure that the system meets both of them. For that, they need to keep up-to-date with
technology advances, research on the architecting field, learn from colleagues, etc.
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Table 4.1: Architect Duties

Architect Duties

Decision Making

Balance system properties and internal design properties
Ensure meeting stakeholders requirements

Decomposition and integration

Impact of changes in the architecture

Study reasoning behind taken design decisions
Communication

Inform stakeholders from the results of the work

Obtain feedback from stakeholders

Convince stakeholders of the value of a architectural decision
Explain architectural principles

Discuss and share knowledge

Provide overview of the system and its context
Documentation

Create architecture representations

Check integrity of system specifications and designs

Reuse existing material to create new deliverables

Store architecture knowledge

Write documents such as reports and proposals for different stakeholders
Assess and Review

Evaluate architecture issues

Check and evaluate architectural proposals

Judge whether architectural proposals should be implemented
Encourage stakeholders to share their knowledge

Knowledge Acquisition

Learn from colleagues more about architectural principles
Read literature on architectures

Keep up-to-date with technology advances

Expand the knowledge about business and company strategy

The Needs of Architects

What kind of support architects need in their duties (see Table 4.1) has been addressed
by some researchers, specially from the software architecting field. To support storage of
knowledge, various researchers have proposed tools to help storing design decisions and
rationale by using software templates, and storage facilities [Babar and Gorton, 2007, Capilla
et al., 2007, Jansen et al., 2007]. To support decision making, research has focused on efficient
search through repositories and databases [Fan et al., 2006], to provide “intelligent advice” to
architects [Garlan and Schmerl, 2007] and to develop tools to support writing architectural
documents and perform automated analysis of the data [Liang et al., 2009a]. An extensive list
of available architecting tools can be found in [Farenhorst ef al., 2009].

Research has shown that most approaches are to support the architect duties developed
from a technology perspective, which is often not the preferred solution for architects [Faren-
horst et al., 2007b]. Architects rather stay in control of the architecting process and are not
interested in automated or intelligent support [Huysman and de Wit, 2004]. In the work of
[Farenhorst et al., 2009], around 300 software architects were interviewed about their activi-
ties in order to characterize architects’ preferences. In this study it was found that architects do
not want automatic tooling or automated support of their architecting activities. For architects,
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dedicated or custom-made tools have little added functionality to support their architecting
work yet require a to learn the tool and to maintain the tool. As a result, they often turn to
generic tools such as modeling tools (e.g MS Visio) and spreadsheets (e.g. MS Excel).

Table 4.2: Needs of Architects (Source [Haveman, 2009])

Needs of Architects

Deliver the right information to the stakeholders while keeping the irrelevant part of information low
Make sure that information is conveyed and interpreted correctly

Collect (filter and select) relevant architecture information that exist in the organization in a smart way
Record changes in the architecture knowledge repository

Retrieve architecture knowledge stored in the heads of people

Reuse knowledge from previous experiences and products in current developments

Keep a structured overview of what has been communicated with a stakeholder

Most research in this field has focused on software architects. In order to understand
what system architects need to support their duties, [Haveman, 2009] conducted a series of
interviews with system architects. System architects from different companies such as Philips
Cardio/Vascular, Océ, Thales and Philips Consumer Lifestyle were interviewed. The goal of
that study was to determine which support system architects need. As shown in Table 4.2, it
was found that main needs of architects are related to sharing and communicating architecture
knowledge. Architects need to recover architecture knowledge, and to be sure that knowledge
is shared and communicated effectively to the stakeholders. Architects know that reusing
knowledge is essential for developing new products.

4.2 Sharing Architecture Knowledge

Although sharing knowledge is not common practice in most companies [Tang et al., 2006],
in fields such as software engineering it is considered a dominant factor for project success
[Jansen and Bosch, 2005]. In Section 3.3.2 we already identified the lack of knowledge sharing
as one of the evolution barriers that causes development problems and poor decisions.

One of the problems of architecture knowledge sharing is to know what information
belongs to the architecture. Another problem is the consolidation of that information so
knowledge can be preserved. According to [Nonaka and Takeuchi, 1995], knowledge1 is
created only when tacit information is made explicit. Therefore, architecture knowledge is
created when facts and information that belongs to the architecture are made explicit (e.g.
in the form of an architecture representation). In this sense, if architecture information is not
made explicit (e.g. in an architecture representation), no knowledge sharing can occur.

In this section, the concept of architecture knowledge is reviewed and common ap-
proaches to share it are discussed. Finally, in order to develop a successful mechanism to share
architecture knowledge, the architecting process is studied so the mechanism can be tailored
toit.

4.2.1 ARCHITECTURE KNOWLEDGE

It is not clear what knowledge is required to support architecting in the evolution and design
of systems. In the work of [de Boer and Farenhorst, 2008], 115 papers that use the term

! Oxford Dictionary defines knowledge as: what is known in a particular field or in total; facts and information
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“architecture knowledge” were reviewed. From that work it was concluded that there is
not a clear definition of architecture knowledge and what type of information belongs to it.
Different communities have different knowledge needs for their own purposes:

The requirements engineering community sees architecture knowledge as the informa-
tion that clarifies the relation between problem domain and solution space. Architecture
knowledge in this sense is the knowledge that supports the rationale of the system re-
quirements for the proposed design.

The model-oriented community considers architecture knowledge as the information
related to the architecture in terms of components and interfaces.

The software architecture community has a view on architecture knowledge in the form
of components and interfaces as well, however this community also consider design
decisions that led to the design part of that knowledge.

The mechanical engineering community, besides components and interfaces, this com-
munity considers the functionality of the system as a vital part of the architecture know-
ledge.

The systems design community expands the concept of architecture knowledge to
include organizations, processes, operations, people, services and technologies.

In the article of [Fowler, 2003], it is argued that the knowledge that should be part of

any architecture representation is not dictated by a set of rules, but by what is important for the
stakeholder. In other words, if a stakeholder believes something is important, that knowledge
belongs to the architecture knowledge.

Although different communities and disciplines have a special interest in specific types

of information, all those types identified are needed for all of them to get the complete picture
of the architecture. Then, by gathering those types of information, we see that the body of
architecture knowledge should at least contain, as shown in Figure 4.3:
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and interfaces. .
Architecture ionali
2.- Information about the desired Structure Functi ty
functionality. L ) L )
3.- Design decisions and their (" N N
rationale. Design Decisions Problem
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Figure 4.3: Architecture Knowledge
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By looking at literature and other communities, we do not find other types of information
that should be part of the architecture knowledge. Other authors of the architecture know-
ledge research field give other generic definitions: In [Lago et al., 2008], it is argued that archi-
tecture knowledge consist in all knowledge used or produced during architecting. In [Liang
et al., 2009a], it is stated that architecture knowledge consist on architectures, design decisions,
rationale and all other architecture relevant information. By providing the above mentioned
types of information, we can ensure to meet the architecture information needs of most com-
munities and stakeholders involved in architecting.

4.2.2 ARCHITECTURE KNOWLEDGE SHARING SUPPORT

As architecture knowledge is a relatively new concept, there are only a few approaches pro-
posed to share architecture knowledge. Among those approaches we mostly find architec-
ture knowledge sharing through models, pattern structures and web technologies [Parizi and
Ghani, 2008]. In [Liang et al., 2009a] other strategies used by the software community to share
architecture knowledge such as Wikis are described. Despite those contributions, according
to [Avgeriou et al., 2007], those approaches fail in sharing architecture knowledge as they do
not provide key information such as design decisions and rationale. In addition to the lack
of vital information, research effort focuses on capturing and making information available,
but little research is done on how to make existing implicit information explicit, and how is
that captured information consumed or communicated. A review of existing approaches for
knowledge sharing can be found in [Cummings, 2003]. Research has shown that develop-
ment of methods and tools alone to share knowledge does not automatically lead to increase
in knowledge sharing [Ghosh, 2004], therefore, other aspects besides which tools can be de-
veloped with existing technologies should be also taken into account.

For those reasons, current practice is that architects, for good reasons, make their own
choices on how to share knowledge [Koning and Vliet, 2006]. Traditional documents such as
architecture documents, design specifications, reports, and similar means are still a common
way to capture and share knowledge by architects [Muller, 2007b].

Text Documents as Means to Share architecture Knowledge

Within a company, text documents are a common way to capture knowledge?. In a company
that develops complex products, it is likely that among those documents there is a SDS.
A System Design Specification (SDS) is used by companies in the development process
to consolidate design specifications, to support ‘development memory’ and for educational
purposes. In other words, it is the main description of a system design.

Within Philips Healthcare MRI a SDS is meant to specify how requirements are met. It
also serves to consolidate the partitioning of the system into system components, to map
requirements onto system elements, to define interfaces between system components, to
provide budgets among components when they need to cooperate, to describe behavior, etc. In
the SDS we can find most types of information that belongs to the architecture knowledge. In
the Philips MRI SDS, we find the description of the system’s structure in terms of components
and interfaces, description of the desired functionality, some design decisions, and some
additional important information.

2These findings are published in paper written by the author in the proceedings of 8th Annual Conference on Systems
Engineering Research, 2010. See [Borches and Bonnema, 2010b]
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After discussions with several companies about the SDS, we found out that although they
may vary on structure from company to company, most of them have one thing in common;
they are large text documents with few drawings in them.

To assess the effectiveness of text documents such as the SDS as a way to share knowledge
among multidisciplinary teams, a survey (see Section 3.3.2) was used to collect feedback from
Philips employees (survey results are available in Appendix A). Some of the main results of
this survey are:

* SDS use: Capturing the design of a complex system such as an MRI is difficult. It
requires a large and complicated SDS document (see Section 10.1.2 for details on the
Philips MRI SDS). Despite the great effort invested to update and maintain the SDS
document for different system releases, it was found from the survey that it was barely
used within Philips. Reasons for this may be that, as shown in Figure 4.4(a), only half
of the development population was familiar with the SDS document, and that only a
smaller part found it useful.

¢ SDS acceptance: Architects, designers and engineers are the expected users of the SDS,
however, while architects were familiar with the SDS, designers and engineers were not.
The main users of the SDS were found to be managers which, as shown in Figure 4.4(b),
see the SDS a useful source to get insight on the system.

* SDS architecture knowledge support: Regarding whether the SDS provided enough
architecture knowledge outside the user’s domain of expertise, as shown in Figure
4.4(c), the majority stated it does not. The SDS was found of little use in supporting
communication across disciplines and departments as well as supporting management
of system complexity. SDS was found useful only for new employees as a means to learn
about the system.

¢ SDS importance: Despite the lack of use, as shown in Figure 4.4(d), the SDS was
perceived by all employees as very important to support the development process. Most
employees stated that a new format for the SDS would probably increase its acceptance
within the organization.

From the analysis of the survey it was concluded that current SDS was not an effective
way to share architecture knowledge, and many stakeholders stated that a new format would
be desirable (see Section 10.1.2 for the new SDS style project). These results were shared with
representatives of other companies to evaluate whether this was a problem of the Philips
Healthcare MRI SDS. Most representatives stated that this problems are also present in their
own SDS documents (or similar means).

4.2.3 THE IMPACT OF INEFFECTIVE KNOWLEDGE SHARING

As stated in Section 3.3.2, ineffective knowledge sharing results in development problems
and poor decisions. In addition, research has shown that the lack of an effective mechanism to
share architecture knowledge leads to other problems such as [Farenhorst et al., 2007a]:

* Dispersion of architecture knowledge: There is no alignment between the architecture doc-
uments and the functional design and technical design documents used by developers.
Because of the lack of alignment, valuable architecture knowledge might be dispersed
within the organization without architects knowing it, resulting in potential integration
problems.
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(a) Employees familiarity with the SDS (b) SDS usefulness

Question: The SDS provides the necessary Question: The use of the SDS should be

knowledge to understand MR principles outside my encouraged within the organization
domain of expertise

Strongly _Strongly
Disagree 11% D°"1'm“°w Disagree 0% ;< agree 0%

Remarks: Mostly new employees find it Remarks: Not a single person thinks the
useful, the more experience employees have the less | | SDS should not be encouraged, even when they
useful the SDS is to get this kind of knowledge, think it is not useul.

(c) SDS as a means to share knowledge (d) SDS importance

Figure 4.4: SDS as a means to share knowledge

* Architect work overload: Architects usually have to explain the architecture knowledge
such as design decisions more than once. The reason for this is that decisions made in
meetings, including the rationale for these decisions, are not adequately stored in the
architecture document. As knowledge sometimes dissipates quickly, architects need to
meet again with the developers to get this knowledge explicit at a later point in time.

* Lack of feedback: Developers sometimes wear the hat of the architect and also make
system design decisions. However, architects may not be informed on the decisions
made by the developers unless explicit meetings take place as there is no effective
mechanism in place that allows developers to share what they are doing.

* Outdated knowledge in repositories: The architecture knowledge is usually kept in experts’s
minds, consequently the repository contains little to no information on key aspects of
the system such as the design decisions, technology preferences, standards used, etc.
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As a consequence, knowledge dissipates over time, specially when someone leaves the
company.

It is therefore in best interest of the company to prevent those problems by adopting and
implementing an effective mechanism to share architecture knowledge.

4.2.4 TAILORING THE ARCHITECTURE KNOWLEDGE SHARING MECHANISM TO THE ARCHI-
TECTING PROCESS

To develop a successful architecture knowledge sharing mechanism, not only does it have to
meet architect’s needs (see Section 4.1.2), it also has to be tailored to the architecting process.
It is then important to understand the characteristics of the architecting process. When
developing an architecture knowledge sharing mechanism, the following characteristics of
the architecting process should be taken into account:

* Architecting is an art: During the architecting process the creativity of the architect
plays a crucial role [Eeles, 2006]. Architecting approaches need to take this characteristic
of architecting into account and should support the architect’s creativity instead of
constraining it. Therefore, an architecture knowledge sharing mechanism should be
flexible enough to allow architect’s creativity.

¢ Architecting is communication-intensive: As stated in [Clements et al., 2007], in the
architecting process many stakeholders are involved. In order to make good decisions,
all involved stakeholders need to obtain relevant architecture knowledge. Therefore a
knowledge sharing mechanism should consolidate that knowledge in a fashion that can
be used and understood by a wide variety of stakeholders.

¢ Architecting is constrained by time: In practice a heavy constraint for architecting is the
available time architects have. Often, time-to-market forces architects to choose for easy
and simple ways to consolidate the outcome of the architecting process. An knowledge
sharing mechanism should be simple enough to make efficient use of the limited amount
of time architects have.

¢ Architecting impacts the complete life-cycle: Architecture knowledge is not only rele-
vant during the architecting phase, but during all phases of the life-cycle of the system.
It is therefore important to keep architecture knowledge in a way that can be used af-
ter the architecting phase. If relevant architecture knowledge is not explicitly captured
knowledge loss may be the result. Consequently, an architecture knowledge mechanism
should encourage the consolidation and dissemination of knowledge [Farenhorst et al.,
2007b].

Finally, in order to find a suitable mechanism to share architecture knowledge, insight in
how the architecture knowledge is communicated and consumed by the various stakeholders
is needed. Even when architecture knowledge is shared with other stakeholders, if it cannot
be effectively communicated to the stakeholders, it may render a great architecting work
ineffective.
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4.3 Conclusions

Architecting is an essential step in the design of complex systems. In this phase, needs and
concerns of stakeholders are taken into account to come to a well-balanced solution. The result
of this phase is a set of design decisions that shape the product and the building process.
Unfortunately there is little support to systems architecting,. It is performed by people who
have gained experience over the years.

The responsibility of the architecting lies on the architect. Architects have many duties;
They are in charge of decision making, communication, documentation, assess and review,
and knowledge acquisition. From a study in which the needs of architects were examined,
it was found that one of the major needs or architects is to retrieve and share architecture
knowledge. Most approaches to share architecture knowledge however are developed from a
technology perspective, which is often not the preferred solution of architects. There is little
support on how to make implicit knowledge explicit.

Sharing knowledge is not common practice in most companies. One of the problems of ar-
chitecture knowledge sharing is to know what information belongs to the architecture know-
ledge. Different communities have different needs of knowledge, and therefore have different
views of what architecture knowledge is. By studying the needs of different communities, we
concluded that architecture knowledge should contain at least: information about the archi-
tecture structure, information about the system functionality, design decisions and rationale,
information about problem and solution domain, and important stakeholder’s concerns.

As architecture knowledge sharing is a recent field of research, there are only a few ap-
proaches borrowed from the software community. Those approaches, however, focus mostly
on architecture structures, and neglect other vital information such as design decisions and
rationale.

Architecture documents, design specifications, reports, and similar means remain as the
main mechanism to capture and share architecture knowledge. Based on a survey done at
Philips Healthchare MRI, by analyzing the effectiveness of the System Design Specification as
a way to share architecture knowledge, we have found that it is not an effective way to share
architecture knowledge.

A successful mechanism to share architecture knowledge needs to be tailored to the
architecting process. For that, it should take into account that architecting is an art, so it should
support the architect’s creativity. It is communication-intensive, so it should be understood
by a wide variety of stakeholders. It is constrained by time, so it should not demand too
much time from the architect. Finally, architecting impacts the complete life-cycle, so it should
encourage the consolidation and dissemination of knowledge so this knowledge is available
during the whole life of the system.



Chapter 5

Effective Communication, a Basis for Knowledge
Sharing

In this chapter we investigate how architecture knowledge is communicated. To under-
stand which factors may hamper the communication process, a well-known model is
proposed to model the communication process in the systems architecting context. By
using that model, sources of "architecture noise” are identiﬁed and spectﬁc measures
to prevent the noise from affecting the communication process are discussed. Finally,
two popular strategies to support effective communication are reviewed; Model-Based
Systems Engineering (MBSE) and Toyota A3 Reports.

In the previous chapter the need for an effective sharing mechanism was discussed. How-
ever, even if a mechanism succeeds in sharing architecture knowledge -all relevant architec-
ture knowledge is delivered to the stakeholders-, if it cannot be effectively communicated
-stakeholders cannot understand it-, it may render a good architecting work ineffective.

Although communication is present in many forms in all aspects of life, communicating
effectively is far from a simple task. Many people have difficulties communicating across
organizational boundaries and therefore in sharing knowledge [Domb and Radeka, 2009].
There are organizational measures to reduce communication barriers such as co-location
of experts from different fields in the same project, design meetings, etc. However those
measures do not eliminate communication barriers such as different jargons, different points
of view, and do not create a synergetic way of working [Bonnema and Borches, 2008].

Research effort in knowledge sharing focuses mostly on storage, organization and re-
trieval of information. Little effort is spent on how information is produced, communicated
and consumed. In addition, current solutions do not take into account the human side of sys-
tems architecting. Tools do not design or evolve systems, humans do [Axelsson, 2002]. For ex-
ample, unlike tools, humans may overlook vital information if the reader is overwhelmed with
irrelevant information or confused by the format chosen to consolidate architecture know-
ledge.

The architecting process is mainly a human activity, in which effective communication
between architect and stakeholders is required. The communication process is in itself an
essential part of the design process, as ideas, opinions, views are exchanged to acquire the
knowledge to solve a problem or to improve an existing system. Architects must rely on
communication to work adequately and to produce high-quality results. That communication
takes place in many formal and informal ways.

As stated in Table 4.1, communication is an important duty of architects. Only by under-
standing the communication process, architects are more likely to achieve their objectives of
sharing knowledge, influencing attitudes, or to persuade on specific decisions, which are the
most prominent reasons why organizations need to communicate [Fill, 1999].

In the following sections we investigate how architecture knowledge is communicated.
To understand which factors may hamper the communication process, the well-known
Shannon-Weaver model (see Figure5.1) is proposed to model the communication process in
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the systems architecting context [Shannon and Weaver, 1949]. Once the sources of “architec-
ture noise” are identified, specific measures can be taken to prevent them from affecting the
communication process. Finally, two popular strategies to support effective communication;
Model-Based Systems Engineering (MBSE) and Toyota A3 Reports are reviewed.

5.1 Communication in Systems Architecting

Although communication is ubiquitous, it is still difficult to define. Different fields define
communication in different ways depending upon their interests. As an example, from the
social science field, [Ruben, 1984] states that communication is any “information related behav-
ior”. Other definitions from other fields emphasize the significance of symbols, such as “The
transmission of information, ideas, emotions and skills...by the use of symbols” [Berelson and Steiner,
1964] and “the transmission of information, ideas, attitudes, or emotion from one person or group to
another...primarily through symbols” [Theodorson and Theodorson, 1969].

In the context of this Thesis, communication is the process by which individuals and
teams share knowledge. Effective communication means that individuals (or teams) at one
end understand the essential aspects of the knowledge other individuals (or teams) at the
other end want to share.

In this section a way to model the communication process, in order to map it to the
architecting context is proposed. By using that model, major sources of "architecture noise”
that may affect the communication process are identified.

5.1.1 MODELING THE COMMUNICATION PROCESS

Many theories exist about the communication process, such as those described in [Laswell,
1948], [Schramm, 1954] and [Berlo, 1960] to name a few. One of the most popular theories
about communication comes from the information theory field; the Shannon-Weaver model
[Shannon and Weaver, 1949]. The Shannon-Weaver model of communication has been called
the “mother of all -communication- models” [Woods and Hollnagel, 2005], due to its simplicity
and generality. The model emphasizes that the fundamental problem of communication is
that of reproducing at one point a message created at another point. This theory has been
widely adopted in other fields such as social science, education, organizational analysis and
psychology [Verdii, 2000]. As shown in Figure 5.1, the model proposes that all forms of
communication must include five elements:

An information source which produces a message or sequence of messages to be
communicated.

* An encoder or transmitter, which operates on the message in some way to produce an
encoded message suitable for transmission over the channel.

A channel, the medium used to transmit the encoded message from transmitter to
receiver.

A decoder or receiver, which reconstructs the message from the encoded message.

An information destination, which is the person (or thing) for whom the message is
intended.
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In all communication, the encoded message is perturbed by neise during transmission
or reception. This means that the received message is not necessarily the same as that sent out
by the information source. Effective communication mechanisms have a deep understanding
of potential noise sources and have developed mechanisms to avoid or prevent them from
disturbing the communication.

Information ] Encoder/
Source V| Transmitter

Decoder/ r] Information
Receiver ¥] Destination

Message

Noise
Source

Figure 5.1: Shannon-Weaver Communication Model

If we position communication in the systems architecting context by using the Shannon-
Weaver model, as presented in Table 5.1, we see the architect as the information source. The
message is the architecture knowledge the architect wants to communicate. Encoding happens
when the architect chooses a specific fashion to consolidate the architecture knowledge he
wants to communicate and writes it down for electronic or paper distribution, or speaks it
out in meetings or presentations. Architecture frameworks, modeling languages, guidelines,
etc, are meant to support this encoding process (see Section 4.1.1). The encoded message is
then the architecture knowledge codified in a specific fashion (e.g. views, text). The channels
used are diverse, such as paper (e.g. documents), computer (e.g. email, PowerPoint) or air
(e.g. oral communication). Decoding is the reading or hearing by the receivers. Finally, the
information destination is the variety of stakeholders involved in the design process, such as
system designers, engineers, programmers, users, managers, fellow architects, etc.

Table 5.1: Communication in the Systems Architecting Context

Architecting Element Communication Model
Architect Information Source
architecture Knowledge Message
Writing / Talking Encoder / Transmitter
Architecture Representation Encoded Message
Paper, Computer, Air Channel
Reading / Hearing Decoder / Receiver
Stakeholders Information Destination

Although the Shannon-Weaver model only takes into account noise in the channel, in
architecting noises from other sources may arise, such as the context, the intentions of the
architect, the choice of channel or medium, etc. In addition, matters such as the organization
culture in which the message is transmitted, the assumptions made by source and receiver,
their past experiences and other factors may also generate “architecture noise”. For effective
communication, those noise sources should be taken into account when creating the message,
so the perturbation can be avoided or reduced.



52 5. Effective Communication, a Basis for Knowledge Sharing

5.1.2 SOURCES OF " ARCHITECTURE NOISE”

As previously mentioned, the transmission and reception of messages can be distorted by
different kinds of noises. Finding all possible sources of “architecture noise”, that is, all
factors that affect the communication of architecture knowledge, may be a herculean task.
Communication involves many different domains (e.g. human perception, cognition and
capability) at different levels (e.g. organization, culture, individual’s background). Despite
increasing interest in the impact that those human factors play in fields such as computer
science (e.g. interface design), major contributions in this area are still limited [Tory and
Moller, 2004]. Knowing and understanding those sources of noise would enable architects to
shape messages in a way that enhances the effectiveness and likelihood of a correct reception.
Although not exhaustive, we present some factors that affect the communication process
(noise) that we have found relevant in our research:

Human factors —  As the goal is to provide effective communication among humans, in
contrast with communication among e.g. computers, it is important to identify which are the
factors that may disturb the communication process between humans. Among those factors,
are:

* Limited processing capability: Research has shown that there are clear limits to the
amount of information a human can process in a period of time. In the work of [Miller,
1956], it is stated that the human brain is only capable of processing around seven
pieces of information simultaneously. More information results in an overload of the
processing capabilities. The result, according to [Chan, 2001], is that decision quality
deteriorates under information overload. To prevent this, the information provided in a
message should be limited to be within the human processing capability.

* Variable field of view: In the work of [Williams, 1982], it was shown that an increase in
the cognitive load, it is to say, the amount of information a human must process, affects
the field of view. When given a high level of cognitive load, the field of view was re-
duced by half. Although when a human can visualize large displays of information (e.g.
a poster size), when dealing with complex information, the reader can only focus on a
specific part of the information, ignoring the rest. This means that when providing com-
plex information, the message should not be encoded in a fashion that uses the whole
field of view. The needed field of view to present information should be minimized.

* Simple decision-making capabilities: Research has shown that there is a clear link
between formalisms used to support decision making and the quality of the decisions
taken [Hargis, 2000]. The efficiency of decision making is heavily dependent on the
simplicity of the formalism used to display information. This is a strong driver to keep
the encoding mechanism (e.g. architecture representation) simple.

* Limits in perception: As pointed out in [Bertin, 1983], there are clear limits in the
maximum number of objects, colors, forms, sizes, etc, a user can comfortably handle.
However, a viewer needs a certain minimal differentiation between types of objects,
and a certain minimum space between objects. Unlike computers which can differentiate
messages with one bit difference, explicit differentiation in the communication symbols
is required for the receiver to understand a message. The encoding “language” and the
chosen channel should take those limits into account.
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¢ Influence of previous experiences: How a viewer acquires knowledge from a visual
representation depends on many factors, including culture, and previous experience
[Ware, 2000]. In the work of [Borchers et al., 1996], it was shown that the human brain
matches objects to things already known!. This means that a consistent way to encode
the message should be applied during the communication process, in order to train the
information destination in a specific way to decode messages.

There are other human factors that may affect communication, such as semantic noise,
different interpretations of the meaning of certain words; cultural noise, stereotypical assump-
tions that cause misunderstandings; psychological noise, certain attitudes that make commu-
nication difficult [Berko et al., 2003], etc.

Organizational Factors— Research has proven that many social [Kankanhalli et al., 2005],
organizational and cultural [Cummings, 2003], and personal factors [Nonaka and Takeuchi,
1995] affects communication. Among those factors, it is worth to mention:

¢ Lack of a common model: In the psychology field it is known that; "If the concepts
in the mind of one person are very different from those in the mind of the other, there is no
common model of the topic and no communication” [Taylor and Fiske, 1975]. Every person
sees the world in his own way, and therefore different models are created for different
stakeholders. Mental representations are therefore different, and each individual tends
to believe his or her mental representation is the ‘right’ one. For effective communication
a shared model close to the concept in the mind of the readers is needed.

¢ Lack of intention: Companies do not engage employees to perform fundamental tasks
such as knowledge sharing. There is the fact that at companies a lot of the available
knowledge is not made explicit at all, but instead remains tacit in the minds of people
[Nonaka and Takeuchi, 1995]. The reason for this lack of intention is the belief that
capturing such tacit knowledge is very hard [Haldin-Herrgard, 2000]. Information
sources should then be encouraged to create more messages by providing a simple way
to capture tacit knowledge.

¢ Lack of autonomy: Companies do not let employees to act independently and to find
new ways to share knowledge [Nonaka and Takeuchi, 1995]. Employees are forced to
use existing mechanisms and ways to share knowledge, even when they do not trust
the system. Many knowledge sharing mechanisms fail because employees are reluctant
to share knowledge through those systems [Kankanhalli et al., 2005]. The encoding
mechanism and the channel should be flexible enough to allow employees to find their
ways to share their knowledge.

¢ Imposition of technology-based solutions: Literature presents warnings for the fact
that incorporation of communication technologies does not mean they are automati-
cally successful (see Section 4.2.2). Most communication or architecture knowledge is
done through written means (e.g. documents) or through verbal communication (e.g.
meetings). Although those means should not be discarded, as they have proven to work
over the years, existing written communication means can be improved [Sobek IT and
Smalley, 2008].

IThis property of the human brain is termed Law of Experience
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Other organization factors may play a role in the communication process, such as the
working environment, as how a viewer perceives knowledge in an architecture representa-
tion depends on many environmental factors including lighting conditions, visual acuity, sur-
rounding items, color scales, etc [Ware, 2000]; the physical distance between the information
source and destination, as research has shown that sharing knowledge is slower when com-
pany sites are further apart [Cummings, 2003]; the relationship between information source
and destination, as duration and quality of the experience that the source and the receiver
have working together influences the communication process [Cummings, 2003], etc.

5.1.3 PREVENTING ARCHITECTURE NOISE TO SUPPORT EFFECTIVE COMMUNICATION

The aim of developing an effective communication mechanism is to strengthen the sharing of
knowledge from architect to stakeholder [Koning et al., 2002]. For that it is necessary to know
what the architect can do when delivering a message to the stakeholders (e.g. an architecture
representation), to prevent the architecture noise to disturb the communication. As shown
in Figure 5.2, the communication of architecture knowledge “messages” can be divided in
several general steps.

Architect Stakeholder

Create / Collect
Architecture Knowledge > < Read & Look >

l Message(s) l

Model Architecture .
< Knowledge > |::> < Build Mental Model >
Write & Dr. Process Architecture
rite aw Knowledge

Encoding Decoding

Figure 5.2: Communicating architecture Knowledge through Representations (adapted from [Koning, 2008])

On the part of the architect:

1. Create / collect architecture knowledge: This step consists of collecting and structuring
the needed features, technologies, solutions, major design decisions, etc, that the archi-
tect wants to communicate.

2. Model architecture knowledge: In this step the architecture information is made con-
crete. In this process how the architecture will be represented for communication is de-
cided (e.g. text, diagrams).

3. Write and draw: The final step is preparing the actual deliverables (message), it is to say,
preparing e.g. text and diagrams using a specific notation and placing them in a specific
channel (e.g. document).

In a real project these steps are not clearly divided. Actually there is a constant switching
between gathering knowledge, modeling and drafting. The accent gradually shifts from the
first step to the third.

Next, on the part of the stakeholder:
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1. Read and look: In this step the text and diagrams are reviewed. Understanding the
architecture starts with reading the messages. In this step the reader decides whether
the information provided on the architecture representation is of any interest to him.

2. Build a mental model: In this step, the reader creates a mental model of the architecture
from the information acquired.

3. Process architecture knowledge: In this step the information provided is rationally and
emotionally processed so decisions can be made.

In practice there is no sharp distinction between these steps, but the focus gradually shifts
from mere readingé&looking to realizing the consequences. When stakeholders start to discuss

with the architect both ends meet.

Table 5.2: Encoding Strategies to Prevent Architecture Noise

Human Factor Noise Cause Communication Phase Noise Prevention
Limited processing Information overload Readé&Look Limit the amount of information
capabilities Use visual representations
Variable field High density of information, Readé&Look Use an appropriate size to
of view complex information display complex information
Simple decision Complex formalism to Process architecture Keep the formalism
making display information knowledge simple
capabilities
Limits in Too many visual elements Readé&Look Limit the amount of visual
perception and/or attributes. Ensure clear
very similar visual elements differences between attributes
Influence of Unfamiliar formalism or Process architecture Keep a consistent way
previous experience mechanism to knowledge of communication. Agree on
display information a predefined format
Organizational Factor Noise Cause Communication Phase Noise Prevention
Lack of Different views Build a Provide a
common model of the same concept mental model shared view
Lack of Information not made Create&Collect Implement a simple process
intention explicit, capturing architecture knowledge, to capture implicit
information is hard Write&Draw knowledge
Lack of Imposition of existing Model architecture Enable a flexible way
autonomy mechanism, lack of trust knowledge to share knowledge
Imposition of Search for technology Write&Draw Improve existing
technology-based solutions written mechanisms
solutions

During the coding and decoding of the architecture representation used to share architec-
ture knowledge, as shown in Figure 5.2, the message is disturbed by architecture noise, lead-
ing to communication problems. In Table 5.2 we have collected the identified noise sources
and mapped them to specific steps of the coding and decoding process in order to develop
simple ways to prevent the noise. Any mechanism aimed to share architecture knowledge
should incorporate those prevention strategies (or similar means) so the architecture know-
ledge can be effectively communicated.

5.2 Strategies for Effective Communication in Product Development

In recent years, research has recognized that effective communication among employees is a
key factor for project success in companies [Gruba and Al-Mahmood, 2004]. Regarding com-
munication in the Systems Engineering field, main effort to support effective communication
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has focused on the creation of models and mechanisms to support it. This is usually termed
Model-Based Systems Engineering (MBSE). Another interesting strategy for effective com-
munication comes from the management field, specifically from Toyota; the A3 Reports. A3
Reports are named after the paper size used to represent the outcome of Toyota’s management
system.

5.2.1 MODEL-BASED SYSTEMS ENGINEERING (MBSE)

Model-based Systems Engineering is about elevating models to a central and governing role
in the specification, design, integration, validation and operation of a system. MSBE is the
formalized application of modeling to support systems design, analysis, verification and
validation activities. It covers from the conceptual design phase, continuing throughout the
development and later life-cycles [INCOSE-TP-2004-004-02, 2007]. MBSE is meant to be a shift
from traditional document-based approaches.

Model-based Systems Engineering spans from the use of simple models to support
Systems Engineering activities, to the use of formal modeling languages in a systematic way.
Most disciplines today use model representations of a system to effectively communicate. In
the field of Systems Engineering common forms are; Function Flows Block Diagrams (FFBD),
Data Flow diagrams, N2 Charts, IDEFO diagrams, Use Case, Sequence diagrams, Behavioral
diagrams, etc. Much research is done in developing new graphical metaphors [Spence, 2001].
Also is the widespread availability of software that can use model-based representations to
perform automatic verification and validation of designs [Wang and Dagli, 2008].

Several factors make it interesting to use models for communication. For communication,
visual modeling languages are preferred as visual representations aid readers to grasp the
information better [Koning, 2008]. Visual representations not only transfer information to
build up a mental model, according to [Narayanan, 1997], they also assist in processing the
information. Viewing a diagram of an architecture helps keeping part of the model conscious
in mind and it inspires and corrects thinking. It inspires because people can combine objects
and attributes in the diagram to construct alternative diagrams. It corrects because people
“see” more easily what is possible and what is not.

Modeling Languages: SysML

A current research field focuses on how to strengthen the work of describing architectures
by proposing conceptual modeling languages, sometimes accompanied by software tools.
A modeling language is an artificial language that can be used to express information or
knowledge of systems in a structure that is defined by a consistent set of rules. There are
many visual modeling languages in the field of computer science, project management and
systems engineering [Wikipedia, 2010].

One modeling language that deserves special attention in the system evolution context
is SysML, as it is meant specifically for systems engineering. SysML is a graphical language
for building models of large-scale, complex, and multi-disciplinary systems [OMG]. There
already are a number of commercial tools supporting SysML. SysML reuses a subset of UML,
and adds some new diagrams specifically designed to support systems engineering. SysML is
currently being intensively applied in many fields, such as verification, simulation, translation
tool, etc [Kwon and McGinnis, 2007]. For effective communication however, the problem is,
among other things, that these modeling languages are complicated and need long learning
curve [Koning, 2008].
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5.2.2 TOYOTA A3 REPORTS

Toyota Motor Corporation is perhaps best known for the efficient production system, dubbed
“lean manufacturing” [Womack et al., 1990]. Toyota’s efficiency extends not only to the produc-
tion floor but to product development, prototyping, testing and all other business operations
[Sobek II and Smalley, 2008].

An A3 report, as shown in Figure 5.3, is a tool that Toyota uses to propose solutions to
problems, give status reports and report results of information gathering activities. The A3 re-
port is named after the paper size used to create them (297 x 420 mm, metric equivalent of 11 x
17 inches). Toyota uses the tool pervasively and it forms part of their continuous improvement
program. The goal of the A3 report is to have a physical artifact that both the author and the
reader, can literally point to and discuss, facilitating communication and knowledge sharing,.
The continuous documentation approach enables sustained organizational learning [Sobek I
and Jimmerson, 2004].
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Figure 5.3: Problem Solving A3 Report (based on [Sobek I and Smalley, 2008])

The creation of A3 reports does not require long hours of specialized training [Sobek II
and Jimmerson, 2004], they can be drafted with paper and pencil, enabling people to work
closely to the problem without needing a computer. The graphical nature of the A3 report
aims to communicate problems more clearly so readers can readily grasp the problem. The A3
size forces brevity, so synthesis of the information is encouraged. Graphical representations,
such as sketches and charts are encouraged to convey information efficiently.

A3 reports are tailored to the PDCA (Plan-Do-Check-Act) management process of Toyota.
An A3 report is a one page document that records the main results of a PDCA cycle. The
PDCA cycle starts with the Plan step, in which the problem is researched until understood,
finding the root causes of the problem and ideas to counteract it. The Do step is the plan
in action, where measures are taken. The Check step involves measuring the effects of the
implementation. The Act step refers to establishing the process, solution or system proposed
if the results are satisfactory. An A3 report, as shown in Figure 5.3, establishes a concrete
structure to implement the PDCA management process.
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Figure 5.4: A3 Report Example (from [Ariyanto, 2010])

5.3 Conclusions

Architecting is an activity that requires effective communication between the architect and the
stakeholders. Although communication is ubiquitous, it is difficult to define. In this Thesis,
communication is the process by which individuals or teams share knowledge. Effective
communication means that individuals or teams at one end, understand the essential aspects
of the knowledge other individuals or teams at the other end want to share.

The Shannon-Weaver model is proposed to model the communication process in the
systems architecting context. By using this model, sources of "architecture noise” can be
identified, such as human processing limits, or lack of intention at organizations. Once main
sources are identified, appropriate actions are proposed so any mechanism developed to
support effective communication can prevent or minimize the noise perturbation.

The aim of developing an effective communication mechanism is to strengthen the
sharing of architecture knowledge from architect to stakeholder. For that, it is necessary to
know what the architect can do when creating a message to support the reader in quickly and
correctly extracting the information and prevent architecture noise.

From literature, it is interesting to look at two strategies for effective communication;
Model-Based Systems Engineering, and Toyota’s A3 reports. MBSE elevate models to a central
role in the design of a system. The use of visual models is an effective way to support effective
communication, as visual representations aid readers to grasp the information better and they
also assist in processing the information. An A3 report is a structured document style, tailored
to Toyota’s management process. The limited room to display information forces brevity and
synthesis of knowledge, making it a suitable tool for effective communication.



Chapter 6

Experiences in Supporting Product Evolution in
Industry

In this chapter popular approaches introduced in previous chapters are evaluated.
Different study cases in which those approaches have been applied are described.
The outcome of those projects and lessons learned from the experiences are presented
and the results obtained are discussed. Finally, the requirements that an effective
communication tool for architecture knowledge sharing must meet are provided.

The goal of this chapter is to evaluate whether popular approaches from literature in-
troduced in previous chapters are applicable in industry. Following the Industry-as-Laboratory
research approach (see Section 1.6), during the research carried out at Philips Healthcare, those
approaches to support evolution, such as the creation of architecture representations, the use
of modeling languages, and the impact of change estimation have been tested in real ongoing
projects. Lessons learned from the experiences in those projects will be used to shape a more
effective tool to support effective communication of architecture knowledge.

6.1 Study Cases

Following the Industry-as-Laboratory approach (see Section 1.6), the author ran different
projects at Philips Healthcare MRI. In those projects, selected approaches were tested. These
projects and approaches are presented in Table 6.1. Not all approaches from literature could
be tested. Some approaches such as modularity and TRIZ (see Section 3.2) as bringing those
approaches to real life situations given the time and resources allocated for the projects was
unfeasible. In other cases, only well-known approaches from those available could be applied
due to the limited amount of time.

Table 6.1: Projects and Approaches Used

Philips MRI Projects Approach Used
MRI Communication Overview Architecture Representation (Physical and Functional Views)
Independent Coil Releases Architecture Representation (several views)

and Specification Document
Control Communication Evolution Design Structure Matrix (DSM), MBSE (SysML)

As shown in Figure 6.1,we selected approaches with different characteristics to evaluate
whether one characteristic or another from a specific approach is more applicable in industry.
We have tested approaches that are formal, it is to say, with agreed rules and conventions, and
informal, in which the author can use his preferred way to display the information. We also
tested free-format approaches, that is to say, those in which there are no rules to follow in the
creation of the representations, and systematic approaches, which provide a specific way to
the creation of the representations.

In this section those projects will be described, as well as the approaches used to meet
project goals and lessons learned from the experiences.
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Figure 6.1: Approach Selection Criteria

6.1.1 PROJECT: MRI COMMUNICATION OVERVIEW

Like most new employees at Philips Healthcare, the author had to participate in projects
without being familiar with the MRI system. Training and time to learn about the MRI system
was limited due to the urgency of the projects.

In this project, a new communication design was desired for the MRI system to incor-
porate new functionalities and remove obsolete technology. In order to contribute to the new
design, understanding of current design by the different teams that are involved in the project
was essential. In a complex system such as the MRI, there are many difficulties when a change
requirement has a crosscutting nature. That is, the requirement can only be met by modify-
ing multiple chains or domains (see Section 2.2.2). This is the case for the communication
subsystem, which is part of the DAS (see Section 2.2.2). Different chains have different com-
munication requirements, and the new design must meet them.

Goal

Provide a system overview to have a better visibility and understanding of the MRI commu-
nication subsystem. Support the estimation of change propagation of a potential redesign in
the DAS'.

Approach Used

The approach chosen for this project was to create an architecture representation (see Section
4.1.1). From the many alternatives available to represent an architecture, we chose a physical
building block view and an functional view to be part of the architecture representation. The
reason behind this selection of views was that a building block view is a common view in
any system representation, so we expected stakeholders to be able to understand it. For the

IThe findings from this project are published in paper written by the author in the proceedings of CIRP Design Seminar,
2008. See [Borches and Bonnema, 2008a]
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functional view, as MRI chains are building blocks grouped by functionality, therefore a way
to display the functionality of the MRI chains was desired.

Therefore the approach consisted of creating a architecture representation composed of
a physical view, to understand the impact of changes at the physical level, and a functional
view, to understand the crosscutting nature of the changes across chains.

No systematic approach for the creation of the views was followed. The creation process
was free and up to the author experience. A few pictures of a real MRI system, arranged in
a hospital layout (see Section 2.3), as shown in Figure 6.2(a) were used as a starting point for
the modeling process. By reviewing key documentation from the Philips MRI repository (see
Section 2.2.3), a draft architecture representation was created and used as a communication
tool.

To collect the implicit knowledge from the stakeholders, individual interviews were per-
formed, mainly with system architects and system designers. A list of key architects and de-
signers from the different chains was created. Interviewees were requested to add physical
elements and functions to the physical and functional views, as well as correct inconsistencies
and errors. After each interview, the outcome was validated by sending the processed infor-
mation to the interviewee, who corrected and in occasions extended the captured information.
This process was repeated several times (once or more per interview).

Once the views were finished and therefore the architecture representation completed (no
modifications were suggested by the stakeholders), an informal way to communicate the out-
come was used; a workshop with the architects and designers was organized. The objective of
the workshop was to evaluate whether the architecture representation was effective to com-
municate and visualize the changes required in the MRI with the new DAS communication
design, as well as to check whether it could be used to estimate the impact of that change.

QOutcome

In Figure 6.2, the views that were part of the architecture representation are shown. The
physical view provided the physical building blocks and interfaces plotted in an A2 sheet
size (420 x 594 mm) (Figure 6.2(b)), and the functional view provided the main functions
performed by the MRI (Figure 6.2(c)), arranged horizontally by chains in an A0 sheet size (841
x 1189 mm).

As shown in Figure 6.2(b), in the physical view, the main MRI building blocks are
arranged by spatial location, and the communication interfaces displayed. The functional
view, as shown in Figure 6.2(c) shows the functions required by the MRI system to create an
image, from the moment the operator enters the necessary information (top of the diagram)
till the image is created (bottom of the diagram). The functions are arranged horizontally
by chains, and vertically according to order sequence. Functions were color-coded based on
whether they are allocated to software (red) or hardware (green) building blocks. Arrows in
the view represent inputs and outputs. Additional relevant information, such as quantification
obtained during the workshop, was included in the views as annotations.

Creation Effort

The creation of the architecture overview took approximately 3 man-months. About 20 experts
were interviewed (some of them more than once). No specific software tool was required to
create the views.
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Figure 6.2: MRI Views (non-readable for conﬁdentiality reasons)

Lessons Learned

The views chosen to display the MRI communication architecture (physical & functional
diagrams) were considered useful by most stakeholders involved in the project. The physical
view was well accepted as another MRI representation of physical elements, which is not
uncommon within Philips MRI. The functional view was also accepted and reported as very
interesting, even when architects and designers were not familiar to that kind of view of the
MRI, they found it very useful.

The creation process was easily incorporated into daily activities and did not require
specific training. The views were useful as a discussion tool, as they triggered discussions and
provided people with a common framework to discuss. Employees trusted the views, as the
knowledge was provided by experts within MRIL. The fact that no specific tool was required
for the creation of the architecture representation was important for practitioners.

The views were not easy to use due to their size. Although the views hung on the walls of
some offices, they were not easy to use in daily activities such as meetings. The views ended
up embedded in a Word document (as an icon, as their size was too big for an A4 sheet), as
part of the architecture documentation.

When used as communication tool, quantification, requirements and additional insight
obtained during the workshop was partially captured in the views. However, other informa-
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tion from architecture knowledge such as design decisions and rationale was not captured by
the architecture representation (see Section 4.2.1).

Some drawbacks of the architecture representation for practitioners was; lack of explicit
allocation of functions into physical building blocks, limited amount of quantification data,
and size of the views (as the views require a plotter instead of a regular printer).

6.1.2 PROJECT: INDEPENDENT COIL RELEASES

Coils are a fundamental part of the MRI system (see Figure 2.3(d)). Ideally, an MRI coil is
shipped to the customer with an “information package” (e.g. CD, DVD) that can be installed
on any system release. However, currently, the introduction of new coils requires adaptation
of the MRI software. New coils can only be released if the customer acquires a software
upgrade.

Dedicated coils are used for specific diagnosis, and coil selection determines to a large
extent the quality of the images created. Customers are therefore interested in acquiring new
dedicated coils during the entire life of the MRI system.

Goal

The goal of the project was to provide a way to estimate the impact that the introduction
of independent coil releases would have on the system, such as affected interfaces, building
blocks, etc, and the development process. In addition, the goal required to consolidate and
communicate the findings to the various stakeholders involved in the project.

Approach Used

As in the previous study case, to create an architecture representation was the approach
chosen for this project. Unlike the previous case, a systematic way to create specific views
was followed. Specific system engineering views used for different kind of stakeholders were
created in order to provide multiple viewpoints of the situation.

To collect the implicit knowledge from the stakeholders, individual interviews were
performed. A life-cycle diagram of the coil was used to identify key stakeholders for each
of the different phases, such as hardware, software, service, customer, application specialist,
etc. Once key stakeholders were identified, meetings were scheduled with them to collect
information. Views frequently used in systems engineering besides functional and physical
views, such as Data Flow and Sequence Diagrams (see Section 5.2) were created for the
architecture representation. The views were reviewed by different system architects.

To communicate and share the knowledge created, a specification document was created.
A Specification Document was developed as a means to share the architecture knowledge as it
is the formal way in which findings are consolidated and communicated within Philips MRIL.
In the document, views created were included and additional key information that belongs
to the architectural knowledge (see Section 4.2.1) that was not present in the views such as
design decisions, problem and solution, etc, was also included.

QOutcome

At the end of the project, as shown in Figure 6.3, up to seven views were created with the
information gathered.
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Figure 6.3: Coil View Examples

The gathered knowledge along with the architecture views, were consolidated in a 59
page Specification Document. The document contained the views, the requirements from
the different stakeholders regarding Independent Coil Releases, as well as the impact the
introduction of this project would have on the system.

Creation Effort

The creation of the architecture views and the specification document took approximately 2
man-months. About 16 experts were interviewed. No specific software tool was required to
create the views.

Lessons Learned

In order to share the architecture knowledge, feedback from experts using the Specification
Document was requested from 20 stakeholders. After 4 weeks only 3 experts found time
to read the document and provide feedback. According to the stakeholders, there were
mainly two reasons for this lack of feedback; firstly, the time required to read the whole
document and go through all the views was too much for most stakeholders, secondly, to
review a formal document such as an Specification Document required commitment from the
stakeholders.
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The document and the views were not easy to use. The views, although small enough to
fit in a document, were seldom used or commented. The reason for that was that the views,
although manageable, only provided partial views and the link among them was not clear to
most stakeholders. Having more views besides the physical and functional view did not bring
additional benefits. It was pointed by some practitioners that having to check more views was
a burden with little additional benefit.

6.1.3 PROJECT: CONTROL COMMUNICATION EVOLUTION

The control communication architecture of the MRI, groups functionality in one physical
place; the DAS (see Section 2.2.2). The current design of the control communication requires
proprietary components and specific competences. To reduce proprietary developments and
the need of specific expertise, the project aims to replace the current DAS design, C-DAS
(see Figure 2.5) with a new design that uses commercial off the shelf industry standard
technology.

Goal

The goal of this project was to support the evolution of the communication architecture by
providing different teams with means to easily discuss alternative communication designs
and requirements. In addition, it was required to provide insight regarding the impact that a
redesign in the communication architecture would have on the system.

Approach Used

An MBSE approach by using SysML modeling language (see Section 5.2.1) was chosen as a
way to create the different views that would belong to the architecture representation of the
MRI control communication architecture. SysML guidelines were followed to model the MRI
communication architecture.

To estimate the impact of change, the Design Structure Matrix (DSM) method to predict
change propagation proposed by [Clarkson et al., 2004] (see Section 3.2.2) was used. The chal-
lenge of this approach was to capture the dependencies among elements of the architecture,
as well as the probability that a change in one of the elements resulted in a change in the
related elements in order to automate the estimation of the impact of change in the commu-
nication architecture. While the architecture representation in SysML is meant to visualize the
architecture, the DSM approach is meant to provide an estimation of the impact of a design
change.

As the evolution of the control communication design was mainly the responsibility
of one system architect, weekly meetings were scheduled with him during the duration of
the project to create the SysML views. Three other stakeholders were also interviewed for
additional input and feedback on the views created.

49 building block were identified as related to the control communication. To gather
the information required to fill in the DSM matrix, interface documents were reviewed, and
questions to many different building block owners (see Section 2.2.3) were emailed. Email was
chosen to gather the information as requesting information to fill in a 49x49 matrix (2401 cells)
was unfeasible through meetings in the time allocated to the project.
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Outcome

As shown in Figure 6.4(b), several SysML diagrams were created to model the control
communication architecture. More than ten views were created to describe different aspects
of the architecture.

i
o

il

(b) SysML Models MRI Communication Architecture

Figure 6.4: Techniques to Model and Estimate Impact of Change of MRI Communication Architecture

A DSM matrix of 49x49, as shown in Figure 6.4(a) was created with the main elements of
the control communication architecture (49 elements). The algorithm to calculate the impact
of change based on the DSM data was developed in an Excel application.

Creation Effort

The project took approximately 5 man-months in order to create the model, select appropriate
SysML tools, collect data, create the DSM, etc. 4 experts were directly interviewed (some of
them more than once), and more than 30 experts were requested input for the DSM matrix. A
commercial software tool was required to create the SysML views.

Lessons Learned

SysML views were not successful as a way to communicate with stakeholders. Firstly, the
SysML model required the creation of many small views which were difficult to visualize.
Secondly, the views could not be easily shared electronically as they require a dedicated
software tool for their visualization. In addition, tools that support SysML diagrams are not be
currently compatible (although a standard is being developed to cope with that issue). Finally,
the architect and the other stakeholders could not use the diagrams created as they were not
familiar with the language?.

Most of the time spent at design meetings using SysML was used discussing notation
rather than collecting information. A common complaint from practitioners regarding the
SysML views was that “they do not resemble an MRI at all, therefore is hard to visualize the
information contained in the model”. In addition, SysML views had to be printed to be shared
with the stakeholders.

2Although this is currently a problem, advocates of SysML claim that if SysML like UML becomes the facto standard to
model systems, it is likely that future generations will be familiar with the language.
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The DSM approach as a means to estimate the impact of change was unsuccessful. Firstly
it took considerable amount of time to go through all the cells of the matrix (2401) to find
out whether or not there was a dependency between elements, and the probability of impact.
Many experts had to be consulted for this purpose and it was not easy for them to provide
such information. Secondly, in addition to the difficulties gathering the DSM data, it was hard
to verify the correctness of the values of the matrix. This caused stakeholders not to trust the
outcome of the approach. A change in one single cell resulted in a completely different output.
Finally, a major complaint was that the DSM did not allow easy visualization of the impact of
change.

6.2 Discussion of the Results

An architecture representation composed by a physical and a functional view was well
accepted by practitioners. Although practitioners were not familiar with functional views,
they were found useful. The size of the views however (A2 and AQ), the lack of explicit relation
among the views, and the lack of quantification, affected the usability of the architecture
representation in daily activities such as meetings. Making brief annotations in the views
was the only way to capture missing architecture knowledge generated during the use of
the model, additional room for textual explanations was desired.

An architecture representation composed by several views and additional architecture
knowledge consolidated in a document did not lead to better results than using physical
and functional views alone. Having more views did not result in better communication, as
practitioners had to check more views and the additional information provided by the extra
views did not lead to better insight. Using a document approach to communicate architecture
knowledge led to lack of feedback from practitioners. The size of the document and the lack
of time the practitioners could spend on it, resulted in poor feedback and insight.

For communication purposes, a modeling languages such as SysML resulted more a
barrier than a support. As it is unlikely that most stakeholders involved in a project are
familiar with the language, time is spent discussing on the notation rather than collecting
the required knowledge. The need of dedicated software tools to use the modeling language
led to additional communication problems, such as lack of tool compatibility, the need of
practitioners to have the tool, etc.

Automated approaches to estimate the impact of change based on techniques such as
DSM were unsuccessful. The need of a complete data set, the lack of impact of change
visualization, and the lack of trust in the output of the approach prevented it to be used during
projects.

From the experiences of applying the different approaches in industry we can conclude
that, for any architect-oriented approach to be used in industry, the approach should at least
meet the following criteria:

¢ Small overhead: Employees are pressured to meet deadlines, create deliverables, be
aware of the time-to-market, etc. They have little time, if any, to spare learning how to
use new approaches. The smaller the overhead, the more likely experts are willing to
incorporate an approach to their daily activities.

¢ Should not depend on custom-made software tools: Many approaches rely on custom-
made software tools to adopt the process. Although software tools do provide many
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benefits such as automation, speed, verification, etc, custom-made tools require dedi-
cated maintenance and expertise that need to be incorporated into the company. Main-
tenance of the tool becomes then a burden to the company. This is especially relevant if
the tool is the result of a research project, in which the researcher leaves and so does the
tool support.

* Trusted output: Many approaches rely on complex calculations to provide numbers or
figures to provide guidance. Those calculations are usually hidden to the user for good
reasons. Without a mechanism to provide credibility to those outputs or intensive testing
of the tool to validate its outcome, users will probably not trust the results provided.

* Should work even with incomplete and uncertain input: In any company, especially if
it is large or has different development sites across the world, finding input can be quite
a challenge. Employees are used to live with incomplete information and make the most
of it. Many approaches and tools however require a complete input data set to produce
reliable results, which may turn in practice almost impossible.

* Easy to use: Meetings, discussions and other forms of communication are part of
the daily activities of an architect. The approach should support the architect while
performing those activities, not just when the architect is sitting behind a computer.

¢ Should be “appealing”: For an approach or method to be useful, it has to attract the
attention of the user. Even when the approach or method meets all the previous criteria,
if it is not attractive to the user, it will be put aside or relegated to “I'll look into it when I
have time available”.

Many approaches focus on producing complete, accurate, and reliable output. However,
when some of them are brought into an industrial environment, there are some practical
limitations, like those mentioned above (e.g. they depend on custom-made software tools),
that prevent them to be used in practice. Unless an approach can guarantee that it will save
time and money to justify the effort required to adopt it, it is unlikely that it will be used.

6.3 Requirements for a Effective Communication Tool

At this point, we are in a position to provide the requirements that an effective communication
tool, aimed to share architecture knowledge to support product evolution, should have. By
collecting the findings from the previous chapters, and the lessons learned in the application
of different approaches presented in this chapter, we can define the requirements that the tool
should meet. Those requirements, as presented in Table 6.2, should lead to the creation of a
tool that:

* Meets practical industrial needs of communication tools, as identified in this Chapter 6.

Meets desired properties of communication tools, as identified in Chapter 5.

Is tailored to the architecting process, as identified in Chapter 4.

Supports the needs of architects, as identified in Chapter 4.

» Mitigates evolution barriers, as identified in Chapter 3.

Deals with observed evolution challenges, as observed in Chapter 2.
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Table 6.2: Requirements of a Effective Communication Tool for Architecture Knowledge Sharing

Requirements

I Meet Practical Industrial Needs of Communication Tools

Require small overhead

Do not depend on custom-made software tools

Provide trusted output

Work even with incomplete input

Easy to use

Appealing

II Meet Desired Properties of Communication Tools

Provide limited amount of information

Use visual representations

Use an appropriate size to display complex information

Keep the notation simple

Limit the amount of visual attributes and ensures differences among them
Keep a consistent way of communication

Provide a shared view

Enable a flexible way to share knowledge

Improve existing written mechanisms

111 Be Tailored to the Architecting Process

Support the creativity of architects

Used by a wide variety of stakeholders

Do not take too much time from architects

Encourage the dissemination of knowledge

IV Support the Needs of Architects

Deliver the right information to the stakeholders while keeping the irrelevant
part of information low

Ensure that the information is conveyed and interpreted correctly
Record changes in the architecture knowledge repository

Retrieve architecture knowledge stored in the heads of people

Enable reusing knowledge from previous experiences and products in
current developments

Help keeping a structured overview of what has been communicated with
a stakeholder

V Mitigate Evolution Barriers

Support management of system complexity

Prevent the lack of system overview

Deal with ineffective knowledge sharing

Help finding the required system information

Support communication across disciplines and departments

VI Deal with Observed Evolution Challenges

Support moving from incremental development to top-down architecting
Reduce learning curve

Support to estimate the impact of change

Deal with the mono-disciplinary focus of developers

Support repartitioning the system
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Chapter 7

Reverse Architecting: A Process to Consolidate
Architecture Knowledge

Reverse architecting aims to recover and to make explicit tacit architecture knowledge.
In this chapter a reverse architecting process meant to consolidate implicit architecture
knowledge in architecture overviews is designed. Challenges to the application of this
process in a company are discussed, and the iterative steps required to implement the
process are described. The concept of architecture overview and which views should be
included are presented.

From Part I of this Thesis, we can conclude that sharing architecture knowledge is
essential to support product evolution. This knowledge, however, is usually not made explicit
as it is believed to be a very hard process. For this reason, it remains tacit in the minds of
people (see Section 5.1.2). It is therefore no surprise that in Section 4.1.2 we found that some
of the major needs of architects are to recover architecture knowledge stored in the heads
of people, and to collect relevant architecture knowledge that exists in the organization in a
efficient way so it can be reused in future products.

In most companies, the main architecture knowledge remains implicit in the expert’s
minds, and only part of that knowledge is documented. Due to this lack of knowledge consoli-
dation, some key knowledge may be lost due to experts leaving the company, design decisions
and rationale not documented, and so on. This means that architecture knowledge has to be,
largely at least, recovered and made explicit. Doing this is called reverse architecting. How
to implement a reverse architecting process is, however, unclear. The challenge is how to col-
lect the large amount of information spread within the company, compress it to manageable
proportions and present it in an easy to use way without losing essential information in the
process’.

In order to make the implicit knowledge explicit, an approach to support this process is
desired. An approach designed to share architecture knowledge in a fashion that supports
effective communication requires; an easy process to consolidate the implicit architecture
knowledge spread within the company, and a tool that captures that architecture knowledge
in a fashion that is easy to share and supports effective communication.

Based on the findings from Part I of this Thesis, and the experiences of applying different
approaches in real projects at Philips Healthcare MRI, we are now in a position to design the
process that, along with a tool to capture information (see Chapter 8), enables the consolida-
tion of architecture knowledge in a way that provides effective communication.

In this chapter we propose a reverse architecting process meant to consolidate implicit
architecture knowledge. The goal of this chapter is to propose a simple process that, along
with a tool to capture architecture knowledge (e.g. an A3 Architecture Overview, see Chapter
8), enables to share and communicate the existing implicit architecture knowledge spread

!This process and experiences from its application in industry are published in paper written by the author in the
proceedings of the 19th Annual Symposium of the International Council of Systems Engineering (INCOSE’'09), 2009. See
[Borches and Bonnema, 2009]
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within a company. In this chapter, challenges to the application of this process in a company
are discussed, and steps required to implement the process are proposed.

7.1 Reverse Architecting

Literature regarding reverse architecting is scarce. Available literature is inherited mainly
from building architecture and software engineering fields. Although complex systems are
usually the creation of a multidisciplinary team, lessons learned from reverse architecting in
software engineering such as in [Mayrhauser et al., 1999] and in building architecture such
as [Galal-Edeen, 2002] may apply to the Systems Engineering discipline. In this section we
review existing work regarding reverse architecting.

As stated in [Krikhaar, 1997], “reverse architecting is a flavor of reverse engineering that con-
cerns all activities for making existing architectures explicit, and the main goal of reverse engineering
is to increase comprehensibility of the system for maintenance and new developments”. As shown in
Figure 7.1, reverse engineering is the process of analyzing a product to identify the system’s
elements and their interrelationships, and to create representations of the system in another
form or at a higher level of abstraction that is less implementation-dependent. By reverse
engineering the design of a system is recovered and made explicit [Chikofsky and Cross II,
1990].

Context Architecture

(Market, Business, etc,

---=-——--—---3" Architecting Architecture Knowledge L]

Architecting
[

System Structure, Requirements,  Design decisions, Design rules,  Problem, solution, Best practices,

Interfaces Business Goals  strategies, rationale guidelines  technology linitations guidelines

Y

( System ) Designing ( Design N Engineering /[;nplementatio_n\

[ System A ' 0 Car A
Reverse
o e

System Family Product Fam:lly
N
System Destgn
Documentation Documentation Documentation

Figure 7.1: Reverse Architecting in the Development life-Cycle (adapted from [Krikhaar, 1997])

Reverse architecting, as shown in Figure 7.1 is the process that makes implicit architecture
knowledge explicit. It is also a knowledge creation process. Although the process is the same
as in reverse engineering, the scope of reverse architecting is different. Reverse architecting
aims to recover knowledge in order to understand the system and its context, so appropriate
changes can be made [Chikofsky and Cross II, 1990]. The architecture knowledge, as shown
in Figure 7.1, once consolidated in an architecture representation plays a pivotal role during
the complete life time of a system, guiding system development and evolution [Koning et al.,
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2002]. While witting documents is the common approach to capture knowledge about the
implementation, the design or the system (see Figure 7.1), how to capture effective architecture
knowledge is still unclear (see Section 4.2.2).

7.1.1 ARCHITECTURE OVERVIEW

As shown in Figure 7.2 from all the available knowledge within a company, only a small part is
made explicit. Documents, diagrams, presentations and system history are the most common
forms of storing this knowledge. A rich source of architecture knowledge is the employees,
such as architects, experts, managers and other employees who can be interviewed to collect
information.

Company Knowledge

Lost

a0 =0
Uncertainty Lﬁﬂ Eﬂ @

Architecture Overview

Figure 7.2: Consolidating architecture knowledge

In the reverse architecting process it is not necessary to recover all architecture know-
ledge. As mentioned before, architects want to deliver the right information while keeping
the irrelevant information low. As discussed in Section 5.1.2, for effective communication a
limited amount of architecture information should be provided; it is to say, an overview. In
an architecture overview, as shown in Figure 7.2, only relevant architecture information is
present [Bonnema and Borches, 2008]. According to [Muller, 2006], an architecture overview
improves the effectiveness of the design and architecting process by:

* providing direction and guidance to the project team;
¢ driving and harvesting synergy by enabling better communication among disciplines;
* providing an architecture baseline and an architecture blueprint;

* capturing and sharing architectural patterns;
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» giving insight in important choices, conflicts and risks;
* focusing attention in issues that go beyond physical entities.

It should be noticed that recovering the complete architecture body of knowledge is
unfeasible [Ghosh, 2004] and that some knowledge may be lost or hidden, and consequently
impossible to recover. Therefore, as shown in Figure 7.2 and represented by the red arrow,
this missing knowledge will cause some degree of uncertainty that will be translated into any
architecture representation [Muller, 2006].

Architecture Overview Views

It is difficult to determine how to present architecture information. It is not without reason that
there are so many architecture frameworks (see Section 4.1.1). What is known is that a useful
architecture representation should have different views of the system [Muller, 2006, Zachman,
1987], but not too many for effective communication [Parsons, 2002]. A small and representa-
tive set of views should be selected for the architecture representation.

The most common view in any architecture representation is probably a block diagram
consisting of physical elements and their interfaces. For complex systems however, other
high-level abstraction views that are independent of the components should also be included
[Shaw, 1989]. When looking at literature regarding architectures, we find statements like:

» "Except for good and sufficient reasons, functional and physical structuring should match”
[Rechtin and Maier, 2000].

» "The architecture design of a system can be described from (at least) three perspectives: functional
partitioning of its domain of interest, its structure, and the allocation of domain-function to that
structure” [Bass et al., 2003].

» "Important aspects of a system’s architecture include the division of functions among system
modules, the means of communication between modules, and the representation of shared infor-
mation” [Lane, 1990].

Those and other authors make similar statements regarding the need for at least physical
and functional representations of the system. From our experience in creating architecture
representations (see Section 6.1.1), we have found out that those views are an effective
architecture representations, however what that kind of architecture representation lacks is
quantification; it is to say, numbers to grasp the relevance of the topic at hand. This finding is
also present in [Koning et al., 2002].

It is a well-known paradigm that you can manage what you can quantify [Gilb, 2005].
To achieve something in practice, quantification and later measurement are essential steps to
ensure reaching the goal. If critical parameters are not quantified, it is less likely that people
can deliver necessary performance levels. Without quantification, employees have no clear
targets to work towards, and there are no precise criteria for judgment of failure or success
[Gilb, 2008].

Not all architecture knowledge is captured in those views, however, additional archi-
tecture information such as design decisions, their rationale, etc, should also be part of the
architecture overview. Those views should be related to each other, and mapped as much
as possible one another. Finally, additional information needs to be added to those views to
complete the required architecture knowledge such as design decisions and rationale. We can
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Architecture Overview

Figure 7.3: Architecture Overview: Presenting architecture Knowledge

conclude that, as shown in Figure 7.3, a good architecture overview should have at least
three interconnected views: functional, physical, and quantification, optimally supported
with additional information.

7.2 Reverse Architecting Process

In [Muller, 1996], it is mentioned that the reverse engineering process (see Section 7.1) consists
of three phases; information extraction, abstraction and presentation. Although not explicitly
mentioned in literature, it is clear that frequent iterations are required in order to incorporate
new insights and findings discovered during the process. As shown in Figure 7.4, reverse
architecting being a specific flavor of reverse engineering, the same phases apply.

Information
Extraction

Figure 7.4: Reverse Architecting Process

Main challenges of the reverse architecting process are; how to extract the adequate infor-
mation in an effective way, what information to keep and how to compress it effectively with-
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out losing essential information in the process, and how to present the abstracted information
in a way that supports effective communication. In the work of [Eppler, 2004] communica-
tion problems between experts and stakeholders were investigated. The study concluded that
“experts struggle with three major issues when transferring their knowledge: First, reducing or synthe-
sizing their insights adequately, second, adapting these trimmed insights to the stakeholders’ context
without distorting them, and third, presenting the compressed and adapted findings in a trust building
style and reacting adequately to questions and feedback.”. Those findings are in line with the find-
ings from previous chapters, in which we found out that among major needs of architects are
4.1.2):

* Collect relevant architecture information that exist in the organization in a smart way;
that is to say, how to extract information.

* Retrieve architecture knowledge stored in the heads of people; that is to say, how to
extract tacit information.

* Deliver the right information to the stakeholders while keeping the irrelevant part of
information low; that is to say, how to abstract.

* Make sure that information is conveyed and interpreted correctly; that is to say, how to
present the abstracted information.

In this section we describe an iterative process that can be used to recover implicit or
spread architecture information, and bring it together, consolidating it in an architecture
overview. The process includes a series of three main steps, each of which breaks down into
individual considerations explained through the section. The iterative process enables one
to produce architecture overviews that can be refined by repeating the steps. At the end of
the process an architecture overview should be available to communicate the architecture
knowledge to all interested stakeholders.

7.2.1 INFORMATION EXTRACTION

Information extraction consists of effectively collecting relevant architecture information from
the main sources. The goal of this phase is to extract and identify information that belongs to
the architecture, and once consolidated, will become part of the architecture knowledge.

Information Extraction Challenges

When extracting architecture information from within an organization, some of the challenges
are:

* Finding system information: As stated in Section 3.3.2, one of the major problems of
employees in product evolution is finding system information. Finding system infor-
mation in repositories and documents is difficult [Koning et al., 2002]. Finding an expert
in the field seems to be the preferred option (see Section 4.2.2), yet in large organizations
finding the right persons might be a challenge as well.

* Capturing effectively the information gathered: At meetings or discussions, people
may bring booklets or similar means to take notes and collect the insight generated.
White boards and similar means are common tools used during discussions. However
the notes and drawings generated are rarely consolidated or shared after the meeting.
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This is due to the lack of an effective and simple mechanism to capture and share those
insights. This leads to the need of more meetings and discussion in the best case and
misunderstandings in the worst case.

¢ Understanding the information: There is a lack of uniformity in the explicit knowledge.
Different disciplines use different techniques to consolidate their knowledge such as
specific languages, models, notations, etc. In addition, there are many ways in which
experts provide information (such as mathematical formulas, drawings, textual expla-
nations, etc). When gathering information from different sources, it might be not easy to
understand information, leading to communication problems (see Section 3.3.2).

For any information extraction process, all those challenges should be taken into account
in order to develop an effective and efficient way to avoid or minimize these effects.

Information Extraction Strategies

There are mainly two strategies to extract information; human-based and technology-based
strategies. As an enormous amount of information exists only in natural language form (e.g.
text documents), an area of research focuses on how to automate the information extraction
from documents by filtering information from large volumes of text. Among those techniques
we can find the automated retrieval of documents from collections, the tagging of particular
terms in text, algorithms to structure and analyze data, etc. An overview of those techniques
can be found in [Grishman, 1997].

While technology-based strategies are useful, they do not deal with how to extract
implicit information stored in people’s heads. In addition, those approaches are usually
difficult to use. From Section 4.1.2, we learned that architects want simple and smart ways
to extract this information, and that they do not like technology-based solutions that hide the
information (non-transparent). To collect information that should be included as part of the
architecture knowledge a simple and transparent process is desired.

Information Extraction Process

From the experiences in collecting architecture information (see Chapter 6), we have distilled
the following steps to extract architecture information:

1. Stakeholder selection: A large amount of architecture knowledge is implicit. Therefore,
extracting information from stakeholders is essential. To conduct a series of interviews
and keep them manageable and productive, it is necessary to first identify a set of
representative experts about the specific topic under study. Not all stakeholders can
provide architecture knowledge or value it.

On occasions, required information may be spread over the life-cycle of the system, it
may be necessary to identify the life-cycle of the topic under study (e.g. from business
need to disposal). Once the life-cycle is identified, key representatives of each phase of
the life-cycle can be identified. Then, taking into account the relevance of each phase and
the time available for the information extraction process, a selection of key stakeholders
should be made. A meeting with a senior architect or project manager can be held to
validate those key representatives.
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2. Preparation: To take advantage of the expert’s knowledge, it is important to become
familiar with the topic under discussion. Relevant documentation should be found, re-
viewed and analyzed, architecture information extracted, and key questions annotated.

A draft architecture overview (see Section 7.2.3) with the information extracted from
documents or similar means should be created to consolidate and communicate the find-
ings. In order to know whether information should be part of the architecture overview,
the information type should be part of the information required for architecture know-
ledge; that is to say: architecture structure, design decisions and rationale, functionality,
problem and solution, and important stakeholder’s concerns.

Prior to an interview, information gathered -in the form of an architecture overview-
should be sent to the interviewees explaining the reason of the interview. This allows
interviewees to prepare themselves.

3. Questioning: During an interview key questions are asked. Specific questions collected
in the preparation step should be asked. The architecture overview can be used during
this step as an artifact to guide the expert and extracting the desired information. For
example, the question generator proposed in [Muller, 2004] can be used to generate key
questions by using the architecture overview:

How about the <characteristic> of the <component>, when performing <function>?

The architecture overview not only enables guiding in the questioning, it also enables
reviewing the architecture information gathered; it is much easier for an expert to
modify a wrong view in the architecture overview than creating a new one from scratch.

Questioning should end by asking the expert for relevant additional sources of informa-
tion such as documents or further contacts.

4. Update and validate: The information collected should be reviewed and incorporated
in the architecture overview when needed.

When possible validation of the outcome should be made, either by e.g. measurements
to the system, review by a senior architect or key stakeholders, etc. Feedback is neces-
sary to validate the information, to clear up inconsistencies, and to create trust in the
description. If several senior architects have approved of the overview, it will probably
be trusted by many engineers.

The information extraction process can be implemented in many different ways, such
as in face-to-face meetings, emails, remote collaboration, workshops, etc. According to [Daft
and Lengel, 1984], face-to-face communication is the richest form of communication as it
provides instant feedback, the capacity to transmit multiple cues such as body language, voice
and inflection, and because face-to-face communication uses natural language. Face-to-face
communication was the preferred option in the projects performed during this Thesis (see
Chapters 6, 10).

It should be noticed that the process of information extraction has two implicit parts.
First the individual facts from the sources are extracted. Second those facts are integrated,
producing higher level facts or new facts through inference. This means that the reverse
architecting process not only enables to recover existing knowledge but also to create new
knowledge by inference.
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7.2.2 ABSTRACTION

To abstract consists of filtering and grouping extracted information to obtain a manageable set
of relevant information. This is an essential step to prevent information overload (see Section
5.1.2). As stated in [Eppler and Mengis, 2003] “the essential mechanisms to fight information
overload are to assure that it is of high value, that it is visualized, compressed and aggregated”. Tt
is to say, the main challenge of this phase is to know what information to keep (high value)
and how to compress and to display it without losing essential information in the process. The
goal of this phase is to extract the relevant information and to compress it in an appropriate
format.

Abstraction Challenges

When abstracting a set of architecture information, some of the challenges are:

¢ Surfacing key ideas: It is not easy to identify which are the key ideas (or facts) from
the information gathered. In most documentation there is a lack of stress laid on key
information [Roche, 1979]. This means that the reader needs to do extra processing to
extract key ideas from the documentation.

¢ Aggregating information: Individual ideas need to be related to a whole in a way that
produces a harmonious whole, in order to produce larger information (e.g. through in-
ference). Individual facts convey very little, but when pieces are fitted together properly,
the picture becomes clearer. Without an idea of the whole, readers may have trouble un-
derstanding the parts.

¢ Unstructured information: The lack of a comprehensive structure, not the amount, is
an important reason for inability to find relevant information [Koniger and Janowitz,
1995]. For example, within a document, we can find different types of information,
such as architecture, design, implementation, rationale, etc, making hard to separate
the information types. This also leads to outdated information, as documents need to be
updated even when only part of the information changes, yet other information type is
still valid (e.g. architecture).

For any abstraction process, all those challenges should be taken into account in order to
develop an effective way to produce good overview in a reasonable amount of time.

Abstraction Strategies

Finding ways of abstracting information is common in Systems Engineering. Due to the large-
scale and multidisciplinary nature of complex systems, it is necessary to develop some form
of abstraction in order to be able to describe and grasp essential aspects of the system. Using
visual representations in the form of models is a common way to abstract information. The
design community has a long tradition of building models to represent a diverse set of systems
[Bonnema and Houten, 2006]. Different research communities are intensively developing new
graphical representations to best abstract and present their specific needs for information
[Spence, 2001].

To support the creation of good visual representation, many researchers refer to the work
of Edward R. Tufte. In his first book, “The Visual Display of Quantitative Information” [Tufte,
1990] Tufte focuses on charts and graphs to effectively display numerical information. His
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second book, “Envisioning Information” [Tufte, 1997], explores similar territory but with an
emphasis on maps and cartography. His third book, "Visual Explanations” [Tufte, 2001] centers
on dynamic data; information that changes over time. Tufte has described the three books as
being about, respectively, “pictures of numbers, pictures of nouns, and pictures of verbs”. Those
resources can be used to create effective visual representations to abstract any large amount
of information.

Abstraction Process

From the experiences abstracting architecture information (See Chapters 6, 10), we have
distilled the following steps to abstract the architecture information:

1. Limit the amount of information: The smaller the amount of unnecessary information
a stakeholder must consult, the better this information is [Koning and Vliet, 2006]. An
optimal way to ensure that the stakeholder will only have to consult a small amount of
information is by limiting the amount of information that will be provided to them. By
forcing a limit in the amount of information, like in the A3 reports (see Section 5.2.2),
brevity and synthesis are encouraged. Nonessential information must be removed until
only relevant information remains.

2. Filter information: A criteria to decide what to keep from the information extracted
must be developed. The value of information is not in the amount of information, but
in the key insight it brings to the specific stakeholder [Simpson and Prusak, 1995]. Only
what is relevant for the stakeholder about the information gathered should be kept.
According to [Roche, 1979], key ideas in a text document can be identified by:

e it starts with a statement about a situation,

* it continues with a comment about the situation that narrows the range of implica-
tions, and

* it concludes with a statement about the implications of the comment.

3. Group information: Filtered information should be labeled according to their type
in order to group related information together and being able to create larger facts
through inference. For this, a classification of information should be made, and filtered
information assigned to one (or more) of those classes. There are two ways of grouping;
as members of a class (grouping facts as if they were objects) and as a steps in a process
(grouping facts as events). To create a proper grouping:

* Define a class of information to be grouped.
* Make clear what differentiate this group from the others.
* Determine what is relevant for the information to belong to this group.

4. Provide visual representations: As stated before, an effective abstraction strategy is by
using visual representations. The value of diagrams in communication very often ex-
pressed by the saying “a diagram is worth ten thousand words”, because they aid in rec-
ognizing complex relationships between many elements [Larkin and Simon, 1987] (ex-
amples shown in Figure 8.6). If possible, a group of information should be represented
visually, in a way that is compact and easy to understand.
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The abstraction phase results in interrelated pieces of key architecture information,
represented in an compact way. For the abstracted information to provide an overview, those
pieces of information should be presented together in a structured format that provides
overview.

7.2.3 PRESENTATION

Presenting consists of choosing the appropriate format and style to deliver the information to
the appropriate audience. The way information is presented can influence, to a large extent,
the message that is understood by the reader (see Section 5.1.1). An explicit presentation of
information is paramount as it delivers better insight, and leads to a more complete design
Koning and Vliet [2006]. The goal of this phase is to display architecture information in a
format that is compact, accurate, adequate for the purpose, and easy to understand.

Presentation Challenges

When presenting architecture information, some of the challenges are:

¢ Choosing text or model representations: When presenting information it is necessary
to decide whether the architecture knowledge is presented in a model or in text.
Architecture standards encourage the use of models, and in our survey we found that
this is also preferred by most disciplines (see Appendix A). However, even when model
approaches provide clear benefits over pure textual descriptions, this does not mean
that an architecture representation should provide just models. Both text and models
are needed in any architecture representation. Text can be very strong in suggesting the
proper interpretations and associations in the views [Koning et al., 2002]. The challenge
is then how to combine visual and textual representations.

¢ Using an adequate language: A challenge when presenting architecture information is
what "language” should be used in the architecture representation; natural language,
domain languages, or formal languages such as SysML (see Section 5.2.1). The audience
of the architecture information is usually diverse, therefore domain or formal languages
may be hard to understand by people which are not familiar with them. For that
reason, natural language, even when more ambiguous, should be used when presenting
architecture information.

¢ Selecting architecture view(s): It is difficult to determine which views to use to present
architecture information. It is not without reason that there are so many architecture
frameworks and representations(see Section 4.1.1). In addition to the many ways in
which an architecture view can be represented, selecting the appropriate view and
characteristics (size, complexity, etc) for the intended audience is also a challenge.

For any presentation process, all those challenges should be taken into account in order
to develop an effective presentation strategy.
Presentation Process

From the experiences presenting architecture information (see Chapters 6, 10), we have
distilled the following steps to present the architecture information:
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1. Select appropriate architecture view: An appropriate view from the architecture
overview (see Section 7.1.1) to represent the abstracted information must be selected,
as well as an appropriate representation for that view; visual, textual, or a combination
of both. Other aspects, such as the size of the view, the room available to display it, etc,
should also be taken into account in this step.

2. Complete information: As there may be some important facts not captured by the
architecture view, it is necessary to record those and find an appropriate way to include
them in the architecture representation.

3. Place outcome in the architecture overview template: In order for the reader to easily
find the information he is looking for, the view needs to be allocated to a predefined
place in the architecture overview template (e.g. a document, a software tool, or an
A3 Architecture Overview), so the reader can become familiar with the structure of
information.

Once a process is available to collect, abstract and present architecture knowledge, what it
is needed is a tool that captures the implicit architecture knowledge generated in a format that
best supports effective communication [Koltay and Istvan, 2009]. In the next chapter, a tool
designed for effective communication of architecture knowledge in an industrial environment,
the A3 Architecture Overview, will be presented.

7.3 Conclusions

Main architecture knowledge is implicit in expert’s minds, and only part of that is docu-
mented. Some of this knowledge may be lost, due to experts leaving the company, design
decisions not documented, etc. This means that architecture knowledge has to be, largely at
least, recovered and made explicit. Doing this is called reverse architecting.

Reverse architecting is a flavor of reverse engineering that concerns all activities for mak-
ing existing architectures explicit. Architecture knowledge, once consolidated in an architec-
ture representation plays a pivotal role, guiding development and evolution. For that, an ar-
chitecture overview is proposed as a way to represent architecture knowledge in a way that
enables effective communication. In an architecture overview, only relevant architecture in-
formation needed to support evolution is present.

Useful architecture representations have different views of the systems, but not too
many. A small set of representative views should be selected. The most common view in any
architecture representation is a physical view describing building blocks and connectors. For
complex systems, other views such as a functional view are also needed. A quantification
view, providing relevant numbers to grasp the relevance of the issue at hand, is also needed.
As not all architecture knowledge can be captured with those views alone, an architecture
representation needs to provide room for additional information such as design decisions and
rationale. An architecture overview should then have, a physical view, a functional view, a
quantification view, and room for additional information.

The reverse architecting process consist of three iterative steps; information extrac-
tion, abstraction and presentation. The iterative process enables one to produce architecture
overviews that can be refined by repeating the steps. At the end of the process an architecture
overview should be available to communicate the architecture knowledge to all interested
stakeholders.



Chapter 8

A3 Architecture Overviews

In this chapter the A3 Architecture Overview is designed. The goal is to design a tool to
support effective communication of architecture knowledge. Requirements and lessons
learned in previous chapters are used to ensure that the design enables the architect
to share and to effectively communicate architecture knowledge. Different aspects
of its design and their rationale are presented. Finally, how to create a repository of
architecture knowledge with A3 Architecture Overviews is discussed.

An A3 Architecture Overview, as shown in Figure 8.1, is a tool designed for know-
ledge sharing and effective communication of architecture knowledge. An A3 Architecture
Overview provides a framework in which key architecture information obtained during the
reverse architecting process is consolidated in order to share architecture knowledge!.

Figure 8.1: A3 Architecture Overview Example. Left: A3 Summary; Right: A3 Model

As shown in Figure 8.1, an A3 Architecture Overview uses two sides of an standard A3?
paper size. One side displays a structured model (A3 Model), composed of several intercon-
nected views, while the other side displays structured textual information (A3 Summary). The
A3 Architecture Overview integrates multiple pieces of architecture information from differ-
ent sources into a predefined structure to provide the reader a coherent picture of a system
aspect.

The goal of the A3 Architecture Overview is to enable sharing of architecture knowledge
by using a format that encourages its use, and to enable effective communication by providing
an architecture overview in a fashion that can be understood by a wide variety of stakehol-
ders.

To design an effective communication tool to support product evolution in an industrial
environment, human and organizational factors as well as experiences in the use of other tools

1The A3 Architecture Overview and experiences from its application in industry are published in paper written by the
author in the proceedings of the 20th Annual Symposium of the International Council of Systems Engineering (INCOSE'10),
2010. See [Borches and Bonnema, 2010a]

2A3 is an international paper size standard of 297 x 420 mm (American metric equivalent of 11 x 17 inches)
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have been taken into account. The aim of an A3 Architecture Overview is not to be complete,
formal or executable; an A3 Architecture Overview is meant as an artifact to communicate
and share architecture knowledge.

In this chapter, we introduce the A3 Architecture Overview, and we provide the require-
ments and lessons learned in previous chapters so its design enables one to share and to effec-
tively communicate architecture knowledge.

8.1 A3 Architecture Overview Objectives

The main goal of an A3 Architecture Overview is to consolidate architecture knowledge
in a format that enables sharing it in a fashion that supports effective communication. By
providing this tool, we aim to support architects in their activities during product evolution,
and during the design process in general. To meet that goal, an A3 Architecture Overview has
to meet the following objectives:

Aid in Product Evolution

By focusing the contents of the A3 Architecture Overview at the architecture level (see Section
3.4.2) the A3 Architecture Overview aims to capture key knowledge that is essential and that
can be (re)used to develop new products or product evolutions.

To support evolution of complex systems, in which multidisciplinary teams are involved,
the contents of the A3 Architecture Overview will be the architecture knowledge that diverse
disciplines require for their work (see Section 4.2.1).

Provide a System Viewpoint

As discussed in Section 3.1.1, product evolution requires to make changes to an existing sys-
tem. The ability of a company to understand the impact that changes have on the system de-
termine their ability to cope with product evolution. For that, maintaining a system viewpoint
is important in order to see how parts fit into the larger picture and to estimate the impact that
a change may have in the system.

Successful companies are more likely to look at the system as a whole (see Section 3.3.1).
Neglecting a system’s viewpoint may cause that a problem solved locally causes another
problem elsewhere. For that, by providing a system viewpoint, an A3 Architecture Overview
aims to enable better understanding of the system as a whole, and to provide a way for the
architect to foresee and communicate the consequences of potential changes.

Support the Architecting Process

The A3 Architecture Overview aims to support the architects during the architecting process.
For that, the A3 Architecture Overview has to be tailored to the architecting process (see
Section 4.2.4). In addition, the A3 Architecture Overview aims to meet architects needs (see
Section 4.1.2) so the tool can be used by architects while architecting new products or product
evolutions.

Encourage Knowledge Sharing

The A3 Architecture Overview focuses on practical aspects rather than technology capabilities
or other complicate means to ensure easy deliver of knowledge to the stakeholders. It does
not aim to use state-of-the-art technology but what works in practice. The A3 Architecture
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Overview will not provide a solution to architecture knowledge sharing from a technology
perspective to avoid dependencies to software tools.

Finally, to encourage the consolidation of knowledge, the A3 Architecture Overview
aims to provide a simple an easy solution to the (apparently) hard task of consolidating
implicit architecture knowledge (see Section 5.1.2), rather than to provide an automated or
complicated solution.

Enable Effective Communication

The A3 Architecture Overview aims to provide a shared model that takes into account the
human and organizational factors that produce architecture noise in order to avoid major
communication barriers. For that, the A3 Architecture Overview aims to deliver the right
information in a fashion that can be understood by a wide variety of stakeholders.

To support understanding, the A3 Architecture Overview will not force the use of
architecture standards or modeling languages but will rather focus on providing visual
representations and simple notations that are easy to understand.

8.2 A3 Architecture Overview Design

In order to provide a tool to achieve the previous objectives, we will design a tool to meet
the requirements identified in Part I of this Thesis (see Section 6.3). In this section, those
requirements are grouped and allocated to different aspects of the design, such as physical
design, elements and visualization, structure, and inner design, and provide a design solution
to meet them.

8.2.1 A3 ARCHITECTURE OVERVIEW: PHYSICAL DESIGN

In order to meet the tool objectives, as shown in Table 8.1, the physical design requirements
that the tool should meet are presented.

Table 8.1: Physical Design Requirements

Physical Design Requirements

Require small overhead

Do not depend on custom-made software tools

Easy to use

Provide limited amount of information

Use an appropriate size to display complex information
Maintain a consistent way of communication

Improve existing written mechanisms

Encourage the dissemination of knowledge

Deliver the right information to the stakeholders while keeping the irrelevant part of information low
Support communication across disciplines and departments

To meet those physical design requirements based on our experiences with other tools
(see Chapter 6), we chose a standard A3 paper size for the physical design of the tool, as shown
in Figure 8.2. By designing the tool based on an A3 paper size, we meet our requirements

by:
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Figure 8.2: Communication Tool Physical Design

We force a predefined paper size that limits the maximum amount of information that
the tool can provide. Smaller sizes such as an A4 also meet the requirement, however
they are usually too restrictive in the amount of information the tool can display. An A3
enables delivering more information without overloading the user (see Section 10.1.4).

We provide an appropriate size to display complex information. An A3 fits well within
the field of view, even when the field of view is reduced in the presence of complex
information.

We use a standard size, which will ensure the use of a consistent way of communication
(always an A3 sheet of paper).

We improve an existing written mechanism, by choosing an standard paper size to
display information(although distribution can be electronic).

We only require from the architect (or other A3 Architecture Overview creator) to create
an A3, instead of a long document, so the overhead is expected to be at least smaller
than writing a document.

We provide an easy to use tool, that does not depend on software tools, that can be easily
taken to meetings, etc.

We encourage the dissemination of knowledge by requiring only to create/read one A3
rather than long documents or large diagrams.

The tool does not depend on custom-made software tools as it is a paper-based ap-
proach.

We support delivering the right information to the stakeholders while keeping the
irrelevant part low, as the A3 forces brevity and synthesis of knowledge.

We support communication by avoiding information overload as we provide just an A3.

As shown in Figure 8.2, the A3 Architecture Overview physical design separates text

and model. Physical separation of text and model enables the A3 Architecture Overview to
be used both individually and as a collaboration tool. For communication (e.g. at meetings)
mostly visual representations are needed, as textual descriptions are usually not useful during
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discussions (see Section 10.2). By allocating text and model in different sides of the same A3
sheet, users focus either on the model or the text. This way, the model can then be used at
discussions without being disturbed by text. The text is important to complement the model
with additional information and to enable individual use of the A3 Architecture Overview.
In addition, it makes the A3 Architecture Overview an independent piece of information that
does not need to be embedded anywhere else (e.g. in a document, see Section 6.1.1).

As shown in Figure 8.2, the physical orientation of the sheet is landscape. Landscape
orientation is more convenient for human visualization as it fits better in the average field
of view (this preference to display visual information in landscape orientation can also be
observed in TVs, monitors, etc).

8.2.2 A3 ARCHITECTURE OVERVIEW: ELEMENTS AND VISUALIZATION

Once the physical design has been chosen, in order to meet the tool objectives, we gather the
requirements that the elements and visualization provided by the tool should meet.

Table 8.2: Elements and Visualization Requirements

Elements Requirements

Provide limited amount of information

Provide a shared view

Deliver the right information to the stakeholders while keeping the irrelevant part of information low
Visualization Requirements

Use visual representations

Keep the notation simple

Limit the amount of visual attributes and ensures differences among them
Do not depend on custom-made software tools

Understood by a wide variety of stakeholders

Ensure that the information is conveyed and interpreted correctly

Prevent the lack of system overview

Support communication across disciplines and departments

Elements

To meet the tool objectives, the tool will focus on architectures in order to support product
evolution. For that, the A3 will provide architecture knowledge. Therefore, the elements
chosen to be part of the tool are the different types of information that belongs to the
architecture knowledge (see Section 4.2.1). An appropriate visualization is chosen for each
type of information. The format chosen to display that information is an architecture overview
as described in Section 7.1.1. It is to say, the elements to be included in the A3 will be presented
in the form of an architecture overview. This means that architecture knowledge will be
presented by using three views; functional, physical and quantification, and by text and visual
representations for the additional information.

By choosing an architecture overview as an architecture representation to capture archi-
tecture knowledge, we meet some of the above requirements by:

¢ We provide a limited amount of information by using a limited number of views to
capture architecture knowledge.

¢ We provide a shared model (an architecture overview) that can be used by a wide variety
of stakeholders instead of providing different views for different stakeholders.



8. A3 Architecture Overviews

We provide the right information to the stakeholders while keeping the irrelevant part
of information low by providing only essential information.

Visualization

To visualize the architecture overview, we chose a convenient representation for each architec-
ture knowledge element (see Section 4.2.1) that must be present in the architecture overview.
To chose a convenient representation, we use the experiences obtained in different projects
to know what works and what does not work in an industrial environment (see Chapter 6).
Based on those, the architecture knowledge elements will be visualized as:

Functionality, captured in the functional view of the architecture overview, will be
visualized as a functional flow, as shown in the examples provided in Figure 8.3.

Architecture structure (connectors and interfaces), captured in the physical view of
the architecture overview, will be visualized as a building block view, as shown in the
examples provided in Figure 8.4.

Quantification, captured in the quantification view of the architecture overview, will be
visualized either in textual form, as shown in Figure 8.5(a), or through tables as shown
in Figure 8.5(b). Tables are a useful way to organize and communicate a complex set of
ideas or data effectively.

Problem and solution and design decisions and rational, captured in the additional
information view of the architecture overview, will be visualized by using both text and
visual aids, as shown in Figure 8.6.

Important stakeholder’s concerns, captured in the additional information view of the
architecture overview, will be visualized by using a visual representation, in which
system concerns are represented by keywords and classified using a 4-column view,
as shown in Figure 8.7.

Those visualizations, in order to meet the tool objective of providing a system view, will

be visualized from a system perspective. That in practice means, as that a top level system
view will be used as a baseline to create the detailed views (see Section 9.3). By choosing
those visualizations for the architecture knowledge elements, we meet the visualization
requirements by:

We use visual representations to visualize architecture knowledge elements, in a simple
and compact way that can (hopefully) be understood by a wide variety of stakeholders.

We keep the notation simple, and the guidelines to create those visualizations (see
Section 9.5) limit the amount of visual attributes and ensures differences among them.

The tool does not depend on custom-made software tools or modeling languages to
create the visualizations.

We ensure (to some extent) that the information is conveyed and interpreted correctly
by using visual representations, supported with textual explanations when needed.

We provide a system overview by providing the essential information in the form of an
architecture overview, in which the views are visualized form a system perspective.
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¢ We support communication across disciplines and departments by providing a shared
view that uses simple, easy to understand notation, instead of standards, domain

languages, etc.
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8.2.3 A3 ARCHITECTURE OVERVIEW: STRUCTURE

In previous sections we have chosen the physical design, the elements and how they are visu-
alized. In order to meet the tool objectives, as shown in Table 8.3, we gather the requirements
that the tool structure should meet.

The structure of the A3 Architecture Overview aims to ensure the integration of the
individual elements in one physical place. With a good structure stakeholders can rapidly find
the information that is relevant for them, and they can process that information more easily.
Providing structure to an A3 improves readability and comprehension. For that, the allocation
of views and text into a predefined structure will be based on the reader visual flow; from top
to bottom, left to right®, as shown in Figure 8.8.

3Western readers
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Table 8.3: Structure Requirements

Structure Requirements

Maintain a consistent means of communication
Improve existing written mechanisms

Easy to use

Help finding the required system information

In the A3 Model, as shown in Figure 8.8, views will be arranged left to right from more
stable to less stable over time. The functional view is more likely to remain unchanged over
time, for that reason will be the backbone of the A3 Model and the first view the reader should
look at. Then, visual aids are placed next to the functional view to support understanding and
creating the correct mental model. Then quantification and physical views (quantification and
physical view can exchange position in the structure), which are more likely to change over
time are provided. Annotations are placed in the available white space left in the A3 Model
(see Figure 8.8).

( Legend ) [Title & Running Til'le)

1 1 1
Reader Visual Flow l>

Quantification View

Qﬁeader Visual Flow

Functional View

(Flow) Visual Aids

Physical View

(Design)
Annotations

Figure 8.8: A3 Model Structure

In the A3 Summary, as shown in Figure 8.9, the different sections will be arranged in a
way that support the reader to obtain a coherent story. Sections are boxed in the A3 Summary
to enable the reader to locate the information easily and to structure the text.

By choosing the previous structure for the architecture overview, we meet the above
requirements by:

* We improve existing written mechanism by supporting readability. By placing individ-
ual elements in a pattern that is easily recognizable, the structure helps in discerning and
remembering which elements there are and which relationships are relevant to consider.

* We make it easy to use by supporting the processing of information. A clear pattern
makes it easy for the eye to come back to objects that were already perceived, and thus
supports processing [Koning, 2008].

* We keep a consistent way of communication by providing a predefined structure. The
structure guarantees the consistent integration of the partial views from the architecture
overview, and consistency across different architecture overviews.



8.2 A3 Architecture Overview Design 95

Definition : 2 : Document
(Abbrevia.tiur/ls) (TL:IE &R 8 Tiﬂej Information ]
Reader Visual Flow _|I>
Introduction System Canccrn Design Decisions
(Problem & (enant , & Rationale,
Background) Sakohaliors Design Issues, etc
é Concerns) 7
-
3
ki
& Quantification of Ruag:nap
Top Level View Key Parameters Ref.
y eferences
(System View) .&' (Additional
Requirements Talosmation
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¢ We provide a common structure that helps the reader to identify easier whether or not
the architecture overview is of any interest to him, and to quickly find where specific
(system) information is.

¢ We enable finding the system information in an easy way by providing structuring
in a consistent way (across A3 Architecture Overview) that enable readers to become
familiar with the ordering principle of the architecture information contained. The
structure also trains the reader into a specific patter, enabling finding the information
easily in A3s with the same pattern.

8.2.4 A3 ARCHITECTURE OVERVIEW: INNER DESIGN

In order to meet the tool objectives, there are some additional aspects of the design that need
to be incorporated into the tool. These requirements are shown in Table 8.4.

Table 8.4: Inner Design Requirements

Inner Design Requirements

Keep the notation simple

Enable a flexible way to share knowledge
Appealing

Support the creativity of architects
Prevent the lack of system overview
Support to estimate the impact of change

Additional Elements

As shown in Figures 8.12, 8.13, some additional elements are needed to enable the tool to meet
all the objectives; a Legend, Document Information, and Definitions/Abbreviations.

A Legend is needed to clarify the reader the notation used in a particular A3 Architecture
Overview. As shown in Figure 8.10, a Legend describes the notation used in the specific A3



96 8. A3 Architecture Overviews

Model such as color coding, shapes, icons, and any other elements used in the views, in order
to help the reader understand the information provided.
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(b) Legend for A3 Model: MRI Generation of Control Words

Figure 8.10: Legend Examples

The Document Information element is needed to identify the A3 Architecture Overview
within the documentation system of a specific company. It provides the specific information
that any document should have, such as author, document identifier, version, date, etc. Finally,
the Definitions/ Abbreviations element id needed to clarify any abbreviation or new concept
that has been used in the A3 Summary, in order to support reader in understanding the text
provided.

Relation among Views

To take advantage of having different views within the same A3 Model, those views are
explicitly mapped to each other as much as possible. As represented by arrows in the Figure
8.12, views within the A3 Model are not isolated from each other. The specific mapping among
views within the A3 Model are:

* Main functions allocated into physical elements, as shown in Figure 8.11.
* Quantification data mapped to other views, as shown in Figure 8.12.
* Visual aids mapped to functions, as shown in Figure 8.12.

* (Design) annotations mapped to physical, functional and/or quantification elements, as
shown in Figure 8.12 (represented by star icons).

Links across views (e.g. by using numbers, icons, etc) enable to map one view to another.
This linking method is chosen for the A3 Architecture Overview as dedicated connectors
(e.g. lines) usually make the diagram look messy or overcrowded, and are not always easy
to follow in a model.
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Flexibility

To incorporate flexibility in the tool design, the A3 Architecture Overview author can choose
his preferred style to represent views by using his own notation, preferred font, color coding,
icons, etc (see Figures 10.9, 10.12, 10.11, 10.12 for different styles).

Flexibility is also provided in the tool by allowing the A3 Architecture Overview author
to change the size of the section boxes as well as by adding more sections when needed, etc.
For example the box size in Figure 8.13 is variable. This means that if more room is needed for
one element in the A3 Architecture Overview, that section can be expanded, or a new section
created, as shown in Figure 8.13. However it should be noticed that as the A3 size is limited,
resizing and adding more sections implies that there is less room for other sections.

By providing additional elements, relation among views, and flexibility to the A3 Archi-
tecture Overview we meet the additional requirements by:

¢ We support keeping the notation simple to understand by providing a legend that
clarifies the notation to the reader.

¢ We enable a flexible way of representing architecture knowledge as different styles can
be applied to the A3 Architecture Overview, and the elements allow different ways of
visualization.

¢ We provide an appealing way to share architecture knowledge in the sense that it is
compact, visual, and easy to use.

¢ We provide a system overview by encouraging that each view is represented from a
system perspective, and by providing explicit relation among the views to support the
overview.

¢ We support to better estimate the impact of change by providing explicit relation among
different views, as well as a system perspective.
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8.3 A3 Architecture Overviews as a Repository of Architecture Knowledge

A3 Architecture Overviews are linked to other A3 Architecture Overviews in several ways
(described in the References section of the A3 Summary). As shown in Figure 8.14, there are
three ways in which A3 Architecture Overviews can be linked;

¢ direct link to another A3 Architecture Overview as shown in Figure 8.14(a);

¢ hierarchy link to parent or child A3 Architecture Overviews as shown in Figure 8.14(a);

¢ and related system aspect link as shown in Figure 8.14(b).

4 System Aspect A System Aspect B System Aspect C

+R4.‘f

System Aspect N N

=rj
(a) A3 Architecture Overview Hierarchy and Direct Link

A3 Architecture Overview Hierarchy

AT s

A3 Architecture Overview Direct Link Ref Ref Ref

(b) A3 Architecture Overview System Aspect Relation

Figure 8.14: A3 Architecture Overviews as a repository of architecture knowledge

Those links are likely to relate all A3 Architecture Overviews used collectively to de-
scribe a system. It is unlikely that an A3 Architecture Overview is not linked to another A3
Architecture Overview. A set of A3 Architecture Overviews forms a repository of architecture
knowledge.
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From the requirements identified in Part I of this Thesis (see Section 6.3), we observe that
some of those are related to the repository of architecture knowledge.

Table 8.5: Architecture Knowledge Repository Requirements
Architecture Knowledge Repository Requirements
Record changes in the architecture knowledge repository

Enable reusing knowledge from previous experiences and products in current developments
Help keeping a structured overview of what has been communicated with a stakeholder

By having the architecture knowledge repository in the form of A3 Architecture
Overviews, we meet the above requirements by:

* We enable to record changes in the architecture knowledge repository by identifying the
A3 Architecture Overviews that are affected by a change.

* We enable the reuse of knowledge by having the architecture knowledge explicit in a
manageable set.

* We help keeping a structured overview of what has been communicated with a stake-
holder by knowing which A3 Architecture Overviews have been shared with the stake-
holder.

8.4 Conclusions

An A3 Architecture Overview is a tool designed for knowledge sharing and effective commu-
nication of architecture knowledge. An A3 Architecture Overview provides a framework in
which key architecture information obtained during the reverse architecting process is con-
solidated in order to share architecture knowledge.

The A3 Architecture Overview aims to support architects in their activities during prod-
uct evolution. For that, the tool has to meet the following objectives; aid in product evolution,
provide a system viewpoint, support the architecting process, encourage knowledge sharing,
and enable effective communication.

To design the tool, requirements from previous chapters have been collected and allo-
cated to different aspects of the design, such as the physical design, the elements and their
visualization, the structure, and the inner design. For the physical design, an A3 paper size
has been chosen. Both sides are used to display text and model respectively, in landscape
orientation. The elements that the A3 paper display will be those related to an architecture
overview. Those elements will be visualized with a functional flow, a building block view,
quantification through text or tables, and text and visualizations for the additional informa-
tion. For the structure, the reader’s flow of view is used to allocate the different visualizations
in a consistent pattern. For the inner design, a legend to clarify the notation is needed, explicit
mapping among views and flexibility.

Finally, as A3 Architecture Overviews are linked to other A3 Architecture Overviews in
different ways. A set of linked A3 Architecture Overviews forms a repository of architecture
knowledge. By having architecture knowledge repository in the form of A3 Architecture
Overviews, users can use A3 Architecture Overviews individually or collectively depending
on their needs for architecture knowledge.



Chapter 9

Creation of A3 Architecture Overviews

This chapter provides a step-by-step guide to consolidate architecture knowledge in the
form of A3 Architecture Overviews through the reverse architecting process. Skills
desired to create readable A3 Architecture Ouverviews are discussed. Guidelines on
form and style, self-evaluation checklists, and some guidance to avoid problems when
creating A3 Architecture Overviews are provided. Finally, other A3 Architecture
Owerviews styles and common mistakes when creating A3 Architecture Overviews are
discussed.

In previous chapters a reverse architecting process to consolidate implicit architecture
knowledge (see Chapter 7), and the A3 Architecture Overview as a tool to capture that know-
ledge (see Chapter 8) have been introduced. This chapter brings those two together, provid-
ing a step-wise guide to consolidate architecture knowledge in A3 Architecture Overviews
through the proposed reverse architecting process. To support the creation of A3 Architec-
ture Overviews, guidelines on form and style are also provided. As an aid to self-evaluate
the quality of an A3 Architecture Overview, criteria in the form of checklists are included. In
addition, some guidance is provided to avoid common mistakes when creating A3 Architec-
ture Overviews. Finally, other A3 Architecture Overviews styles and common mistakes when
creating A3 Architecture Overviews are discussed.

9.1 Skills Required

Although the guide aims to support the architect in the creation of A3 Architecture Overviews,
in practice, other stakeholders may also want to create an A3 Architecture Overview. Differ-
ent stakeholders, however, have different ways of representing their knowledge (e.g. mathe-
matical formulas), which may be difficult to understand by other stakeholders. Therefore, it
should be taken into account that creating readable A3 Architecture Overviews may require
some skills. To create good A3 Architecture Overviews the following skills are desired:

¢ filtered reading and listening, to be able to extract valuable and relevant pieces of
information from the large amount available;

* ability to describe and synthesize, to be able to present the information in an easy to
understand way;

¢ ability to grasp new concepts quickly, to be able to acquire knowledge from other
domains besides the own domain; and

¢ genuine interest for solving other people’s problems, to be willing to spend some effort
to consolidate the gathered knowledge in an adequate way.

To support the development of those skills to create A3 Architecture Overviews, guidance
in the creation process is needed. The following sections are aimed to provide support in the
creation of readable A3 Architecture Overviews.
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9.2 Identifying System Aspects

The first step in any communication process is to decide what to communicate (the message,
see Section 5.1.1). Then, the next step is to put the message into context. For that, system
aspects are used as the context for the knowledge to be communicated. System aspects may
be system attributes, system characteristics, distinct features of the system, etc.

As shown in the following example (see Section 10.1 for the example’s project descrip-
tion), once the message to be communicated is clear, it is necessary to identify the aspect that
the message is dealing with, it is to say, what knowledge the message wants to communicate.
Then, the knowledge that wants to be communicated must be placed in the system context.
For that, questions like the ones provided in the following example can be used.

Message (Question): What do | want to communicate?
Aspect (Question): What should the reader learn?
System Aspect (Question): Where does this knowledge fit in the system context?

Message (Answer): How control words are distributed over the digital network of the MRI
Scanner
Aspect (Answer): Distribution of control words
System Aspect (Answer): Control Scan

The system aspect is then used as the starting point for the A3 Architecture Overview. It
will become the title of the A3 Architecture Overview, and the specific aspect that wants to be
communicated will become the running title.

Allocating the message to be communicated into a system aspect is important to provide
a system view rather than a localized view, and to provide a common framework in which
other knowledge related to that system aspect can be incorporated. Once the system aspect to
model is known, the step-by-step guide presented in the next section can be applied.

9.3 Step-wise Guide to A3 Architecture Overview Creation

In this section we provide a step-by-step guide! to create A3 Architecture Overviews by
following the reverse architecting process introduced in Chapter 7. The A3 Architecture
Overview structure, as shown in Figure 9.1(b), will be used to capture and display the
knowledge.

The goal of the step-wise guide is to provide a systematic process to capture the architec-
ture knowledge gathered into different views (visual or textual), which will be mapped into a
predefined A3 template. An example of A3 template is shown in Figure 9.1(b).

As shown in Figure 9.1(a), the creation process starts by selecting a specific system aspect
to model. The goal of this process is to have key architecture knowledge of that system
aspect captured in an A3 Architecture Overview. The reverse architecting process described
in Chapter 7 will be used to consolidate the knowledge gathered in each step. For an efficient
creation process, it is important to time-box each of the steps (e.g. 1-2 hours), to prevent
spending too much time on any one step.

It should be noticed that completeness is not the goal. During the last step, the A3
Architecture Overview will evolve with the incorporation of insights and feedback obtained.
The owner of the A3 Architecture Overview should decide when the knowledge contained in

This guide has been consolidated in an A3 Architecture Overview CookBook, see Appendix D.
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Figure 9.1: Step-wise Guide

it is enough, and consequently the A3 Architecture Overview is ready to be used (although
good, still open to additional feedback). As a rule, once the steps have been completed, if
feedback provided does not require relevant changes to the A3 Architecture Overview, it is
ready to be used as a communication tool.

At the end of the process, an A3 Architecture Overview should be available to share the
architecture knowledge and to communicate the message to all interested stakeholders.

1.- Collect System Concerns

As discussed in Section 4.2.1, anything that the stakeholders may think is important belongs
to the architecture knowledge. Therefore, before diving into architecture representations,
quantification, or other relevant aspects of an architecture, it is necessary to understand and
capture what those important points are, that is to say, what are the system concerns of the
architect and the relevant stakeholders. We apply the reverse architecting process to capture
those system concerns:

- Information Extraction:

¢ Stakeholder selection: Select people who are responsible for the system aspect and its
related elements, and those affected by changes in it.
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* Preparation: From available information sources (e.g. documents) create a initial list of
system concerns. Those system concerns may be present as keywords often addressed
in those sources, words of warning, design issues, challenges, limitations, etc.

* Questioning: The initial questions to the stakeholders should aim to review the set
of system concerns gathered during the preparation phase. Once feedback on those
questions is obtained, other system concerns should be extracted by asking questions
such as:

What should we not forget when <designing / evolving> a solution to cope with
<system aspect>?
For <system aspect>, what <technological / functional / business / customer> concerns
should be taken into account?

What worries you about <system aspect>?

* Update and validate: Update the initial set of system concerns with the new information
gathered. Distribute the list to key stakeholders to validate the list of system concerns.

- Abstraction:

¢ Limit the amount of information: Limit the number of system concerns to a manageable
set (e.g. 10 - 15 system concerns).

* Filter information: Use keywords to describe a system concern (1-4 words). Remove
or rephrase those concerns which are implementation specific (e.g. “Ethernet does not
provide enough bandwidth” to “communication bandwidth”), and remove those which are
likely to be solved in a near future.

* Group information: Merge similar system concerns. Label concerns according to a
predefined category: Technology, functional, business, customer. If a concern seems to fit
in more than one category, choose one.

* Provide visual representations: You may use bullet lists, tables or other ways to visu-
alize the list of concerns. Instead of bullet list, tables, etc, we use a 4-column view (see
Figure 8.7) to display system concerns. Color coding aims to differentiate the classifica-
tion of system concerns according to their category.

- Presentation:

* Select appropriate architecture view: System concerns belong to the additional infor-
mation view from the architecture overview. There is not a specific architecture view in
the A3 Model. Text and visual representations will be used to capture and display that
information.

¢ Complete information: Clarify whether a system concern is treated in some other place
or A3 Architecture Overview and provide references. Clarify which of those system
concerns will be specifically dealt with in this A3 Architecture Overview.

* Place outcome in the architecture overview template: The system concerns view be-
longs to the A3 Summary. The visual representation as well as additional textual de-
scription will be placed in the system concern section (box) of the A3 Summary (See
Figure 9.1(b)).
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At the end of this step, we should have a clear representation of key system concerns
related to the system aspect under study. Most likely not all those concerns will be addressed
within this A3 Architecture Overview, however it is important to include them so the reader
is aware that there are more things to be considered about this system aspect than what is
described in this particular A3 Architecture Overview.

2.- Create Top Level View

The next step in the process is to create an appropriate system partition or top level view that
will be used as a starting point for the reader and for decomposing our system. A system
view should be provided (see Section 8.1), even when the system aspect seems localized. This
is necessary to help provide overview and to understand how parts fits in the whole. An
example is shown in Figure 9.2.

Console / Host

H
E
g

Figure 9.2: Top Level View Example

- Information Extraction:

¢ Stakeholder selection: Select those stakeholders that can put the system aspect into a
context (e.g. fellow system architects). Selected stakeholders should have a view of the
system as a whole.

¢ Preparation: Review existing system partitions used in architecture documentation or
architecture representations to see whether the partitioning is consistent with those.
Identify major building blocks and main functions related to this system aspect.

* Questioning: Physical building blocks and major functions need to be identified, as well
as key interfaces and the allocation of the main functions into the building blocks. For
that, questions to the stakeholders should be like:

Which major building blocks are involved in <system aspect>?
Which are the main functions that are involved in <system aspect>?7
Which are the interfaces among building block needed for <system aspect>?7

In which building block(s) are those functions performed?
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* Update and validate: Stakeholders should validate the top level view created. An
accepted top level view is necessary to keep consistency among different decomposition
views that may be created from this top level view (see Figure 9.2) to highlight different
viewpoints of the same system aspect.

- Abstraction:

* Limit the amount of information: As we only want a top level view, the view should
be small. No more than 5-8 building blocks and 5-8 functions should be part of the top
level view.

* Filter information: Only major building blocks and main functions should be kept. Only
names (or identifiers) for the building blocks are required. Functions are represented in
the form of verb+noun (e.g. send data).

* Group information: Allocate main functions to the major building blocks.

* Provide visual representations: Use blocks and arrows to represent the building blocks,
functions and interfaces identified. Make a clear difference between blocks representing
functions and blocks representing building blocks (e.g. by using different shapes, shad-
ing, etc). Arrange the functions in a functional flow in logical order. Finally, interfaces
should be made explicit in the physical view, and functions should be allocated to build-
ing blocks.

- Presentation:

* Select appropriate architecture view: The top level view belongs to the additional
information view of the architecture overview. There is not a specific architecture view
in the A3 Model. Text and visual representations will be used to capture and display
that information.

* Complete information: When describing the top level view, there may be different
aspects that may be interesting to highlight. For that, visual strategies such as color
coding, as shown in Figure 9.2, can be used. The rationale for the selected system
partition must be provided as well.

¢ Place outcome in the architecture overview template: The outcome belongs to the A3
Summary. The visual representation as well as the textual description will be placed in
the system partition box of the A3 Summary (See Figure 9.1(b)).

At the end of this step we should have a representation of the system in which physical
building blocks and main functions related to the system aspect under study are present. This
top level view will be used as a baseline for a more detailed decomposition in the following

steps.

3.- Decompose Top Level View

The goal of this step is to decompose our system in a way that enables understanding the
specifics of the system aspect under study. For that, the functional and the physical views
from the top level view will be used for a detailed decomposition.
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The purpose of the decomposition of the functional view is to highlight the WHAT; that is
to say, what actions are required to achieve the system goal related to the aspect under study.
The purpose of the decomposition of the physical view is to highlight WHERE and HOW
these actions are implemented. This view is closest to the actual system.

Figure 9.3: Functional Decomposition Example

- Information Extraction:

¢ Stakeholder selection: Experts with deep knowledge of the details and those who are
related or affected by the system aspect under study.

¢ Preparation: Review existing documentation and related sources of information looking
for information about the system aspect. Identify specific functions related to this system
aspect and in which detailed building blocks those functions are performed. The top
level view is used as a baseline to decompose and create a more detailed physical and
functional view, as shown in Figures 9.3, 9.4.

* Questioning: The initial questions should aim to review the detailed views created
during preparation phase. Once feedback on those is obtained, other system concerns
should be extracted by asking questions such as:

What actions are required to achieve <main function>?
How does <function> transform <input>?

What physical elements from <main building block> perform <function>?7

¢ Update and validate: New findings should be incorporated to the detailed views. The
views should be validated against existing representations (if any) to ensure consistency.

- Abstraction:

¢ Limit the amount of information: As shown in Figure 9.3, no more than 5-8 functions
per level should be used, and no more than two levels deep. In the physical view, no
more than 5-8 physical elements should be part of the detailed view.
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Figure 9.4: Physical Decomposition Examples

* Filter information: Physical detailed elements that are important but not directly related
to the system aspect under study should be removed.

* Group information: All major elements from the top level view should be part of the
detailed views (see Figure 9.4). Then, assign detailed physical elements to a parent
building block from the top level view and group detailed functions to their parent
function. To describe elements, use general terms rather than specifics.

* Provide visual representations: To support the functional view, and to support the
creation of the correct mental model, visual aids are desired. Visual aids, such as those
presented in Figure 8.6, should be created to support the functional view.
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- Presentation:

¢ Select appropriate architecture view: The detailed functional and physical view are
part of the architecture overview. Due to the limited space in the A3 template, functions
and grouped functions should be arranged in a functional flow (see examples in Figures
10.1, 10.2, 10.3, 10.4). The length of the functional flow should be less than the height of
the A3 (297mm or 11 inches in landscape orientation) in order to fit in the template. The
physical view building block view) should not be larger than half the heigth of an A3,
which is the room allowed for the physical view in the A3 template.

¢ Complete information: Add some specific comments if needed to clarify some de-
sign decisions, choices made, etc. During the decomposition process those annotations
should be made explicit.

¢ Place outcome in the architecture overview template: The physical and functional
views belongs to the A3 Model. Visual aids should be placed next to the functional view.
Annotations, such as those presented in Figure 8.12, should be placed in the white space
available in the A3 Model (See Figure 9.1(b))).

At the end of this step, a major part of the A3 Model should be ready. Several views and
additional information should already be present in the A3 Architecture Overview.

4.- Quantify Key Parameters

Although system aspects such as “flexibility” or ”safety” may seem hard to quantify and
even harder to measure there are some ways to increase understanding and ways to provide
numbers to support those system aspects.

- Information Extraction:

¢ Stakeholder selection: Select those experts who can provide numbers (e.g. measure-
ments) related to the key parameters to quantify.

¢ Preparation: The first step to quantify a system aspect is to find out what key param-
eters are needed to provide valuable quantification about that system aspect (e.g. key
performance parameters). Once key parameters have been identified, relevant values
such as current measurements and expected future values should be found, as well as
ranges in which those parameters are used.

* Questioning: After reviewing the numbers obtained during preparation, estimations
or expected values should be obtained for those parameters whose numbers cannot be
found.

Which is the typical/best/worst value for <key parameter>? Which is the future
expected value for <key parameter>?

While experienced practitioners may feel uneasy providing numbers, they can easily
pinpoint a wrong estimation. Therefore, a questioning strategy to obtain estimations
may be to provoke the expert:
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Q: How much <power> do we need in <subsystem>7
R: | am not sure, | can't tell.
Q: Then should | put <500W> (absurd)?
R: No, that's way too much!
Q: So, should | punt then <50W>?
R: <40W> is more likely.

When using this approach, the confidence level of the values obtained should be
annotated (e.g. high confidence for a measurement, low confidence for a wild guess).

* Update and validate: For the validation of the numbers it would be desirable to test
the numbers against actual measurements to the current system. If that is not possible,
credibility levels should be added to the numbers obtained.

- Abstraction:

¢ Limit the amount of information: At most 1-3 key parameters can be described in detail
(see Figure 8.5). The rest of key parameters should just provide main values.

¢ Filter information: Choose measurements over estimations or guesses. Keep values
with similar order of magnitude, that is to say, keep values that contribute to the key
parameter and leave out small contributions (e.g. if the order of magnitude is the hour
for the key parameter, do not add elements that contribute at the nanosecond order).

* Group information: Find how individual contributions add up, so a figure of merit
can be created (see Figure 8.5). Easy to calculate approximations work better for an
architecture overview than exact mathematical approaches.

* Provide visual representations: Graphics, charts and similar diagrams may be used to
help visualize relevant values.

- Presentation:

* Select appropriate architecture view: An example of a quantification view is shown
in Figure 8.5. Another way to present quantification data is through tables. Tables, as
shown in Figure 8.5(b) are a useful way to organize and communicate a complex set of
ideas or data effectively.

* Complete information: Provide credibility estimations for the numbers provided (e.g.
by using colors to indicate whether the number provided is a measurement, an estima-
tion, or a wild guess, see Figure 8.5(a)?). If a requirement is imposed to a key parameter,
it should be made explicit.

* Place outcome in the architecture overview template: The detailed quantification view
of key parameters belongs to the A3 Model (see Figure 9.1(b)). Other key parameters,
their values and requirements (if any) belong to the A3 Summary.

At the end of this step, the major views from the architecture overview should be present
in the A3 template.

2This approach will not work for color-blind people. Other approach may be to use e.g. bold for a measurement, normal
for an estimate, and italic for a guess.
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5.- Complete the A3 Model

Once all the individual views are placed in the correct place of the A3 template, to complete
the A3 Model the following tasks are required:

¢ Make explicit links among individual views.

¢ Allocate annotations made during the process to a convenient location (available white
space).

¢ Include a legend with the notation used in this A3 Model.

Once those task are completed, some time should be spent to fine tune the A3 Model to
make it readable, appealing and to give the impression of completeness [Borchers et al., 1996].
The guidelines presented in Section 9.5 can be used for this purpose.

6.- Complete the A3 Summary

Once the A3 Model is completed, the A3 Summary needs to be completed (see Figure 9.1(b)).
For that, the following tasks are required:

¢ Add the document identification convention used at the company, as well as other
relevant information such as owner, related product, date, version, etc.

¢ Develop the introduction. Provide background information to understand the system
aspect and its importance, as well as context information. Place this in the Introduction
section box (see Figure 9.1(b))

¢ Include design decisions, design issues and their rationale. Provide those aspects of the
design that need an explanation, as well as why some decisions were taken and which
problems or limitations the current design has.

¢ Create aroadmap. Explain how was the system aspect dealt with in the past, how is dealt
with today, and whether some changes are expected in the future (see Figure 10.4 for an
example of the MRI roadmap, based on Figure 2.5). Place this in the Design Decision
section (box) (see Figure 9.1(b))

¢ Provide references. Include contact details of experts that can provide additional infor-
mation, documents or other sources of information used, system aspects that are directly
related to the one discussed in this A3 Architecture Overview, and other A3 Architec-
ture Overviews that deal with other specifics of this system aspect. Place this in the
Roadmapé&References section box (see Figure 9.1(b))

¢ Complete other sections [optional]. More sections can be added depending on whether
something important needs to be included and whether it fits on the current template
(see Figures 10.1, 10.2). Create section boxes for those other sections and place them in
the most convenient location in the A3 Summary.

As shown in Figure 8.13, each section of the A3 Summary is enclosed in a box, and has a
predefined order designed to aid the reader to find the specific information he is looking for.
Section order should help the reader to get a coherent story about the system aspect under
discussion.
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7.- Share, Adapt and Store

As the A3 Architecture Overview is drafted, the author should collect feedback and then
integrate relevant feedback into the A3 Architecture Overview. The input is important not
just to increase the quality of the A3 Architecture Overview but for considering as many
viewpoints as possible and building alignment of thinking among stakeholders.

To that end, the A3 Architecture Overview should be shared among stakeholders, mainly
those involved in the previous steps, in order to collect feedback and remove inconsistencies.
This reviewing process should be repeated as many times as necessary, until only minor
changes in the A3 Architecture Overview are required (see Section 9.4). Probably there
will always be some remarks or comments about the A3 Architecture Overview. It is the
responsibility of the author to decide whether proposed changes do or do not add value to
the A3 Architecture Overview.

For distribution and future use of architecture knowledge, the A3 Architecture Overview
should be stored in a known repository® or the place in which the company stores documen-
tation. This is necessary in order to make the A3 Architecture Overview available to all em-
ployees so it can be used like any other document. If the A3 Architecture Overview is shared
without being present in the repository (e.g. through email), there is the risk that the archi-
tecture knowledge will be lost or just available to a limited number of employees, affecting
knowledge sharing.

9.4 Reviewing A3 Architecture Overviews

Finding people capable of critical review should not be difficult in a large company. For
individuals, in this section a checklist of the most common questions asked during A3
Architecture Overview reviews is provided in Table 9.1. Authors can use these questions in
self-critique and in anticipation of a review.

Toyota’s A3 reports are always written and submitted to someone, such as a manager,
who critically evaluates the report [Sobek II and Smalley, 2008]. In other companies such
as Philips, where consensus among stakeholders is desired, A3 Architecture Overviews are
reviewed by experts related to the system aspect, as well as by at least a system architect.

The first concern when creating an A3 Architecture Overview, is how to interest the
targeted people of this knowledge. Nowadays most people are overloaded with information.
If it does not look nice, it is easily put aside. For that reason, a key question to evaluate the A3
Architecture Overview should be:

Does the first impression stimulate the reader to dive into A3 Architecture Overview and take in
the information contained in it?

The effectiveness of writing A3 Architecture Overviews increases greatly with practice,
however, there is not a single way to implement A3 Architecture Overviews. When reviewing
A3 Architecture Overviews, it should be taken into account that every implementation of an
A3 Architecture Overview is unique, and reflects the experience, background and personal
preferences of the author.

*This is not the case in the Toyota approach, in which each individual keeps his own A3 Reports. In the A3 Architecture
Overview however the goal is to share knowledge, for that A3 Architecture Overviews have to be available and easy to
access to the different stakeholders
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Table 9.1: Evaluation Questions for A3 Architecture Overviews

Self-evaluation Questions

General

Is the system aspect clear and logically depicted?

If the focus clear and reflected in the contents?

Are all architecture knowledge elements described in this A3 Architecture Overview?
Is the A3 Architecture Overview easy to understand by a wide variety of stakeholders?
A3 Model

Are all relevant functions identified?

Is the physical decomposition clear?

Are key parameters quantified?

Are values for the key parameters provided and their credibility clear?

Are there enough visual aids to support the A3 Model?

A3 Summary

Is the textual information relevant?

Is it a repetition of what's already in the A3 Model?

Are there enough references provided?

Is the A3 Summary clearly structured?

9.5 Guidelines on Form and Style

For the creation of readable A3 Architecture Overviews, in this section we provide guidelines
on form and style. Those guidelines are based on the experiences applying the approach
in real projects, as well as from the feedback collected from experts using the tool. These
guidelines are meant to assist architects or anyone interested in creating an A3 Architecture
Overview.

A3 Architecture Overviews should be clear, neat, well organized and aesthetically pleas-
ing. The form of an A3 Architecture Overview should aid the reader finding the informa-
tion rather than hindering the communication of the contents. In practice this means; making
ample use of white space, achieving good use of symmetry, lining up box edges, aligning
headings, paragraphs, etc [Sobek I and Smalley, 2008]. As readability is paramount, the same
text styles and size should be used in the whole A3 Architecture Overview, and the font size
should be big enough for comfortable reading. In addition, uncommon terminology and jar-
gon should be avoided.

The proportion of the different elements of the A3 Architecture Overview should be kept
(e.g- no awkward sizes for the boxes in the A3 Summary). When placing boxes in the A3
Summary, the reader flow; from top to bottom, left to right, should be taken into account.
The shapes used should be clear and their number limited. Clear distinction should be made
between physical and functional elements in the A3 Model.

Color is a strong visual signal (for people who are not color blinded), so it is worth paying
attention to it. Using a distinct color in a diagram for an object with a particular attribute,
programs the meaning of that color for the rest of the A3 Architecture Overview. Although
color can enlarge the appeal of the model, its use should be scarce, as it can overload the reader.
Too much color may confuse the reader to make the model look "less serious”. If assistance in
the use of colors is needed, in [Chijiiwa, 1987] many examples of color combinations that can
be used are provided.

The most salient characteristic of a good A3 Architecture Overview is its brevity. To
achieve that, there should be no repetition, superfluous information or extra wording. The
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A3 Summary should not repeat the information provided in the A3 Model. As the targeted
users of A3 Architecture Overviews are diverse, the use of jargon and unfamiliar terminology
should be avoided. Key points should be italic or bold, without overusing it.

Table 9.2: Guidelines for A3 Models

Guidelines for A3 Models

Readability

Use a font size big enough for comfortable reading (>10 ppt)

Do not use different font sizes (except headings) or styles

Provide enough white space (do not fill in information just for the sake of it)

Place title and running title in the top center of the A3

Layout

Keep the proportions of the A3 elements and boxes as equal as possible, even when one view seems more
important than other

Take into account the "reader flow” from left to right, and from top to bottom

Place annotations in the most convenient location

Objects

Be clear about what different shapes mean

Do not use more than five shapes within the same A3 Model

Avoid making objects smaller to have more room in one view, or making objects bigger to fill up a view that
otherwise looks too empty

Make a clear distinction between functions and physical elements (e.g. by using different shades for functions)
Colors

Do not use more than five colors within the same A3 Model

Be careful with color clutter (e.g. using the same color as used in other views such as System Concerns view)
Avoid colorblindness or problems when printing in black and white by using colors with different levels of
brightness/lightness

Choose colors in the following order: blue, red, green, purple, orange and yellow [Koning et al., 2002]

Avoid if possible the use of pink color

Visual Aids

Box visual aids to prevent overlapping

Label visual aids properly

Use tables to organize a complex set of data or ideas

Align of visual aids to the left

Table 9.3: Guidelines for A3 Summaries

Guidelines for A3 Summaries

Structure

Box every section clearly

Do not make a section box too large or with a awkward size

Keep order of sections across different A3 Architecture Overviews

Contents

Try to use pictures or drawings instead of large text descriptions

Do not try to fill in the A3 Summary just for the sake of it. Leave white space if possible

Use underlining and bold with caution

Style

Use a font size big enough for comfortable reading (>10 ppt)

Do not use different font sizes (but in headings) or styles

Text should be concise, there should be no repetition, superfluous information or extra wording
Do not use unfamiliar terminology or jargon

Keep company documentation style. The style of the A3 Summary should resemble

company documents as much as possible

Be clear about the ownership of the A3 Architecture Overview and provide contact details
Treat every A3 Architecture Overview as an individual and independent document (e.g. document identification)
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In the A3 Summary, each section should be clearly labeled, arranged in logical flow, and
separated from other sections by being enclosed in a box, with enough margins between
boxes. The title of the report, and the running title should be clear and in the center of the
report. The title should unambiguously indicate the system aspect under study, while the
running title should be clear about the specific focus of this A3 Architecture Overview. The
author name, date, status and other short of information should be clear and located in the
top right of the A3 Summary.

9.6 Other A3 Architecture Overview Styles

Changing the structure or changing the style does not mean changing the tool. Every person
has his own style of working and thinking, and the A3 Architecture Overview tool enables
enough flexibility to allow people to tune the A3 Architecture Overview to their preferred
style. What is important is the underlying philosophy (see Section 8.1). Some examples of
different A3 Architecture Overviews created by people with different backgrounds are shown
in Section 10.4. In those we can observe that despite the differences in form and style such as
the use of 3D models in the physical view, the use of black and white, different A3 Summary
structure, etc. Despite those differences, all of these can be easily recognized as A3 Architecture
Overviews.

9.7 Common Mistakes

During the creation of A3 Architecture Overviews some minor issues may arise. Those issues
can probably be solved in many smart ways. In this section we do not aim to provide an
extensive list of problems and their best solutions, but to describe some situations that may
arise and ways to cope with them that has proven successful in real situations.

¢ Trying to fit existing models: It is tempting to reuse existing diagrams or models and
try to make them fit into the A3. This in practice, leads to many readability problems
and requires more time than creating a new view from the existing model. Instead of
spending time trying to resize, remove, adapt and tune those views, time could be use
in extracting the essential information from those views and creating new ones.

¢ Neglecting the importance of one view: We have observed that some people focus on
one view (e.g. functional view), and spend plenty of time in that one. As a consequence,
they have a great view, but little time is spent in the other views, resulting in poor
views. This lead to an unbalanced A3 Architecture Overview which looks unfinished
or incomplete. All views are important, therefore the time allocated to views should be
time-boxed so proper views are created. During iteration, additional time can be spent
on those views that require additional effort.

¢ ”"Not everything fits”: In occasions, the amount of information collected is large and
it has not been abstracted enough. This usually leads to fitting problems when placing
the outcome in the A3. The common reaction is to create additional room in the A3
by reducing the font size, resizing the views, etc. This in the end lead to readability
problems. The A3 Architecture Overview is not meant to contain lots of information,
but essential one. If not everything fits, the reverse architecting process should be done
again in order to find out what can be left out, how to better abstract current information,
and/or a more effective way to present the information.
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* Problems creating a functional view for abstract system aspects: Some system aspects
such as “scalability” or “safety” seem not to have a clear flow. Many unrelated things
may be done to cope with that system aspect that seem to have little relation, and of
course no order or flow among them. However, from the communication perspective,
when someone has to explain (in text or verbal communication) those concepts, usually
a set of steps are used to describe how those abstract system aspects are dealt with.
Verbal communication does not allow explaining multiple things at the same time; an
order is required. That order is the one that should be used in the functional flow.

9.8 Conclusions

The creation of A3 Architecture Overviews is meant to support the architect in his duties.
In practice, other stakeholders may also be interested in the creation of A3 Architecture
Overviews. For that, is should be taken into account that creating readable A3 Architecture
Overviews some skills are desired, such as filtered reading and listening, ability to describe
and synthesize, ability to grasp new concepts quickly, and genuine interest for solving other
people’s problems.

The step-wise guide can be used to create an A3 Architecture Overview to consolidate
the architecture knowledge related to a system aspect. The goal of the guide is to provide a
systematic process to consolidate the knowledge into different views that will be mapped onto
a predefined A3 template. The process consists of seven steps that use the reverse architecting
process to collect, abstract and present the architecture knowledge in a convenient format for
the A3 Architecture Overview.

As the A3 Architecture Overview is being drafted, the author should collect feedback to
increase the quality and to remove inconsistencies. Finding people to review an A3 Architec-
ture Overview should not be difficult in a large company. For individuals, a checklist with the
most common questions asked at reviews is provided to self-critique and to anticipate for a
review.

Guidelines in form and style are provided to contribute to the creation of readable A3
Architecture Overviews. Form and style can be as important as the content; an unappealing
A3 Architecture Overview can be put aside.

To change the structure or the style does not mean changing the tool. Every person has
a different way of working and the A3 Architecture Overview enables enough flexibility to
tune the tool with the preferred style or structure.

Finally, during the creation of A3 Architecture Overviews, minor issues can arise. To
avoid common pitfalls, such as trying to fit existing models or neglecting the importance of
one view, we provide some recommendations to avoid those.
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Chapter 10

Application of A3 Architecture Overviews in
Industry

In this chapter, experiences of applying A3 Architecture Overviews in industry are
presented. Study cases in which the A3 Architecture Overview was used in real
projects are described. The outcome and lessons learned from those experiences, and a
comparison of A3 Architecture Overviews with text documents are provided. Finally,
other case studies in which the A3 Architecture Overview was applied are used to
evaluate the creation effort.

In Part I of this Thesis, popular approaches to deal with evolution of complex systems,
approaches to share architecture knowledge and some methods to provide effective commu-
nication were presented and tested in real projects at Philips Healthcare MRI. In Part II, a
reverse architecting process and a tool to consolidate architecture knowledge, in a way to sup-
port effective communication, were designed. In this Part III, we present the experiences of
applying the A3 Architecture Overview in industry, in order to evaluate the applicability of
the tool in an industrial environment.

In order to evaluate the applicability of the tool, the work presented in this Thesis had a
clear criteria: “’it has to be useful in Industry” (see Section 1.6). The research work presented
is thus not about finding the perfect solution to deal with system evolution, but to provide a
tool that is actually useful for the architect.

By the time of publication of this Thesis, the A3 Architecture Overview approach has
already been incorporated into the Philips Healthcare MRI development process. From this
fact we can conclude that the tool is applicable in an industrial context. The applicability of the
tool is not limited to Philips Healthcare or MRI; other companies such as ASML, Océ, Daimler
and FEI are testing the approach to incorporate it into their development process, due to the
benefits the tool provides. We expect other companies to join in the near future.

In this chapter, we present experiences with the A3 Architecture Overview in an indus-
trial context. Firstly, study cases in which the author created A3 Architecture Overviews to be
used in real projects are presented. Lessons learned from those experiences, and the compar-
ison of A3 Architecture Overviews and text documents is provided. Finally, to evaluate the
A3 Architecture Overview creation effort, other study cases in which practitioners used an
A3 Architecture Overview cookbook to create their own A3 Architecture Overviews for their
projects are presented.

10.1 A3 Architecture Overview Study Cases

As in previous study cases (see Chapter 6), following the Industry-as-Laboratory approach (see
Section 1.6) the author actively participated in different projects at Philips Healthcare MRI.
In some of those projects, A3 Architecture Overviews were used to share and communicate
architecture knowledge. Those projects are presented in Table 6.1.
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Table 10.1: A3 Architecture Overview Study Cases
Philips MRI Projects
Control Communication Evolution (continuation)
New Style SDS (System Design Specification)
DDAS Network Architecture

In this section those projects will be described and the lessons learned from the ap-
plication of A3 Architecture Overviews presented. Feedback from users of A3 Architecture
Overviews collected from questionnaires will be used to evaluate the usage of the tool. In
these projects, reverse architecting (see Chapter 7) was the approach used to create the A3
Architecture Overviews.

10.1.1 PROJECT: CONTROL COMMUNICATION EVOLUTION (CONTINUATION)

This project is the continuation of the project presented in Section 6.1.3. As the approaches
used to capture and communicate architecture knowledge did not produce the desired results
(see Section 6.1.3), those approaches were replaced by A3 Architecture Overviews.

Goal

Support the evolution of the control communication architecture by providing the experts
with means to easily discuss alternative designs and requirements, enabling them to foresee
potential impacts of those alternatives. Provide insight regarding the impact that a redesign
in the communication architecture would have.

Qutcome

Following the creation process as described in Chapter 9, system concerns were collected and
a top level view of the control communication (from a system point of view) was developed
(see Figure 9.2). To deal with time control, the MRI architecture design is based on “control
words”. Control words are bytes that provide control information to the different physical
elements of the MRI. Therefore, from the top level view, main functions that deal with control
words were transformed into A3 Architecture Overviews.

Three A3 Architecture Overviews were created for this project; Generation of Control Words
(see Figure 10.1), Distribution of Control Words (see Figure 10.2) and Store and Dispatch of Control
Words. The first one focuses on the creation of control words (byte stream) from the required
waveforms in the MRI exam, the second one focuses on the distribution of those control
words to the specific physical elements, and the third one on how those control words are
consumed by those physical elements. From those A3 Architecture Overviews it is worth
mentioning:

* Scan Control was identified as the system aspect that deals with control words. This
therefore became the title of the A3 Architecture Overviews. The running title is the
specific focus of each A3 Architecture Overview.

¢ Of special relevance for this system aspect is real-time control. To differentiate those
functions or physical elements that needed real-time control or not, color coding was
used (real-time control elements in orange, and non-real-time control elements in green).
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¢ It can be observed in the A3 Summary of Figures 10.1, 10.2, that as the A3 Architecture
Overviews focused on the same system aspect, the same top-level view was used.

¢ Although independent, the A3 Architecture Overviews are related as the outcome of the
A3 Architecture Overview generation of control words (a byte stream) is the input to the
A3 Architecture Overview distribution of control words.

¢ The generation of control words is implemented in software, therefore the physical view
displays the software processes that are performed, while the distribution of control words
focus on how the byte stream is distributed to the specific elements, therefore the
physical view displays a network view of the system (both views are a decomposition
of the top-level view).

* In generation of control words, in the quantification view, they key parameter presented is
number of control words (per millisecond). As there was not a clear way to calculate the
number of control words generated for a specific waveform, a figure of merit (formula)
was created. In distribution of control words, the key parameters were bandwidth and
latency. Again, a figure of merit was provided to calculate them.

¢ In the A3 Summary, additional sections were added. In generation of control words for
example, how to deal with real-time control and other kind of control was described.

¢ As not each A3 Architecture Overview deal with all concerns, those system concerns
that were not addressed in a particular A3 Architecture Overview were hatched in the
system concern model (see Figures 10.1, 10.2)

The A3 Architecture Overviews were sent to the experts that deal with control commu-
nication to verify the information within the A3 Architecture Overviews and to provide them
with the information about the expected design changes.

10.1.2 PROJECT: NEW STYLE SDS

A System Design Specification (SDS) specifies how system requirements are met (described
in a System Requirement Specification (SRS) document). This specification relates the require-
ments of the system to the requirements of actual underlying “design elements”. It was per-
ceived by the SDS owner that despite the relevance of the SDS, it was seldom used, leading to
development problems (this fact was confirmed by our survey, see Section 3.3.2).

Goal

A "New style SDS” initiative was launched to develop a new SDS, based on A3 Architecture
Overviews, to capture and to display key system knowledge in a more effective way. The
goal of the new SDS is to support MR development by providing a system overview that will
improve communication across a broad set of stakeholders.

QOutcome

Due to the relevance of the SDS within product development, and the drawbacks of the
current SDS (see Section 4.2.2), it was decided that the A3 Architecture Overview style would
be introduced as the new SDS style. A proof of concept SDS had to be developed to assess
benefits and concerns of the new style.
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After an initial discussion with main MRI system architects, 16 system aspects' were
identified as essential for the MRI system. It was estimated that each of those system aspects
may need between one and four A3s once divided into topics. Then, an initial amount of 30-50
A3 architecture overviews were estimated to describe every relevant system aspect of the MRI
system. This may look as a lot of work (previous SDS document was 200 pages long, created
mainly by a few experienced individuals), however it should be noted that A3 Architecture
Overviews describing a system aspect are created by different individuals or teams. Therefore
the creation of a new SDS should be faster (as it can be done in parallel by different teams) and
easier to update (as only A3 Architecture Overviews that change need to be updated?).

Two topics were selected for the SDS proof of concept; scan control and MRI calibrations.
These system aspects were chosen as they were complex aspects that crossed system and
organizational boundaries, resulting in interesting study cases.

* Scan control is in charge of controlling the different subsystems so they are executed in a
timely and synchronized fashion. MRI systems need to have precise timing and be syn-
chronized to the nanosecond, requiring complex solutions. The three A3 Architecture
Overviews from the previous project were reused.

* MRI calibrations are in charge of correcting imperfections and tune different parameters
for optimal image quality. Two A3 architecture overviews were created for two of the
main MRI calibrations.

The SDS proof of concept was presented to the SDS owner and key stakeholders. The
new style for the SDS was evaluated by the stakeholders through a survey (see Appendix A).
After the proof of concept SDS was accepted and validated, a workshop with system archi-
tects and experts was organized to provide the means to complete the SDS. A short training in
the creation of A3 Architecture Overviews was given, as well as some coaching by the author.
To support the creation of those A3 Architecture Overviews after the workshop, an A3 Archi-
tecture Overview Cookbook was provided (which is an A3 Architecture Overview itself, as
shown in Figure D.1). The A3 Architecture Overview Cookbook provides practitioners with
an easy to follow guide to support the creation of A3 Architecture Overviews (as described in
Chapter 9), and provides an A3 Architecture Overview example. The SDS owner is in charge
of collecting the individual A3 Architecture Overview and keeping the hierarchy and relations
among them.

10.1.3 PROJECT: DDAS NETWORK ARCHITECTURE

DDAS is the evolution of CDAS (see Figure 2.5). CDAS is based on proprietary and obsolete
backplane technology whereas DDAS introduces a network-based architecture (which will
relieve CDAS limitations such scalability and will introduce new features). CDAS technology
is reaching end-of-live limiting developments in other domains (e.g. limited number of
channels) and its architecture requires a large number of cables. The introduction of DDAS
will bring many design changes to the system at different levels.

IStretch, Centralized SW, Digital Network Architecture, Calibrations, Scan Protocols, Security, Cooling, Power Distribu-
tion, Acoustic Noise, Power Management, Interactions, Safety, Interoperability, Scan Control, Multi-nuclei, Coil Control.
2How to detect which A3 Architecture Overviews need to change remains an issue.
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Goal

To communicate the DDAS design to the variety of teams which will be involved in the
developments the new design. Present the changes that DDAS will introduce relative to the
CDAS design in order to visualize the impact of change.

Approach

The first challenge of this project was to explain the benefits of DDAS over CDAS and the
need for changing the design to get management involved. In addition, it was essential for
this project that the teams involved in the (future) DDAS development understand the DDAS
design and the impact it causes to the system.

The design of the DDAS was mainly the work of a single system architect. For that
reason, regular meeting were scheduled with him to collect, abstract and present the related
architecture knowledge. In the initial discussion, as shown in Figure 10.3, it was agreed that
the new design was meant to provide scalability of system qualities such as bandwidth. To
realize the DDAS design, it was required to cope with two main aspects; synchronization of
network devices, and discovery and autoconfiguration of network devices. For that reason, as shown
in Figure 10.3, it was decided that four A3 Architecture Overviews should be created for this

project.
Enables 1 Scalability of
A3 System Qualities

Digital Network
Axrchitecture

Requires
Synchronization Discovery & Auto-
of Network A3 configuration of Network
Devices Devices

Figure 10.3: DDAS A3 Architecture Overviews

The A3 Architecture Overview Digital Network Architecture (see Figure 10.4) described the
changes that DDAS brings to the system, as well the rationale for it, and the benefits this new
design would bring, from a management perspective. From the A3 Architecture Overviews of
this project is it worth mentioning:

¢ The A3 Architecture Overview Digital Network Architecture provides qualitative rather
than quantitative estimations of the key parameters scalability of MRI configurations
andcost savings (see Figure 10.4), while the A3 Architecture Overview scalability of system
qualities provides tables with quantitative information.

¢ Each A3 Architecture Overview in this project does not share a common top level view,
as each of them focuses on different system aspects, which are Scalability, Synchroniza-
tion, and Discovery and Autoconfiguration respectively.

After the A3 Architecture Overviews were completed, they were sent to the different
stakeholders to request feedback.
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10.1.4 LESSONS LEARNED

It was stated by users that one of the main values of the A3 Architecture Overview is that
it enables to get more insight into the system. This in itself has great value during the
architecting process as “one insight is worth a thousand analyses” [Rechtin and Maier, 2000].

At design meetings, A3 Architecture Overviews were distributed beforehand to the mem-
bers. The first reaction of those not used to an A3 was to question about the format chosen,
ie. hard to fit in the screen, problems with the printers, etc. However in the meetings we ob-
served that all participants had read and studied the A3 provided, despite the remarks, while
they did not read the equivalent text document that was also provided. This situation hap-
pened several times, leading to the conclusion that an A3 provides an amount of information
employees are willing to read to prepare for a meeting or discussion.

People attended meetings with plenty of annotations in the A3 (see Figure 10.6), trigger-
ing discussions and improving the contents. The A3 Model supported discussions while the
A3 Summary was barely used at meetings.

Figure 10.6: Capturing Architecture Insight with an A3 Architecture Overview

People from different disciplines and departments were able to use them without much
explanation. Unlike in other projects in which documents or SysML models were used (see
Section 6.1.3), discussions using A3 Architecture Overviews started right away. That is to say,
we had less waste of time through more focused and productive meetings.

From the management point of view, it was stated that this new style improved maintain-
ability and upgradeability of the design knowledge. New A3 Architecture Overviews could be
added without having to touch the ones already created, and a new SDS could reuse existing
A3 Architecture Overviews.

After the evaluation of this work, management decided to adopt this approach due to the
benefits it provides. The approach has been adopted not just for the SDS, but also for capturing
knowledge of system aspects that cross system and organizational boundaries. Currently
senior designers are encouraged to create their own A3 Architecture Overviews.
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Many users, after reading an A3 Architecture Overview, claimed that although it may
look like a “limited” amount information, the density of the information contained is probably
more than a regular document. That however did not prevent users from reading it. This
showed that by providing information in this fashion, more information can be delivered to
the reader without information overload.

10.2 Comparison of A3 Architecture Overviews with Traditional Documents

To compare A3 Architecture Overviews with traditional documents, practitioners were asked
to rate properties of existing documents they use to acquire architecture knowledge (see Table
A.10, Appendix A), as well as to rate the same properties of A3 Architecture Overviews they
have used (see Table A.15, Appendix A). A comparison of the feedback given by practitioners
is presented. From the analysis of the feedback, we can observe that, for practitioners:

¢ A3 Architecture Overviews are perceived as more readable than traditional documents,
as show in Figure 10.7(a). Unlike traditional documents, no practitioner thinks an A3
Architecture Overview to have poor readability.

¢ A3 Architecture Overviews are perceived as easier to understand than traditional docu-
ments, as show in Figure 10.7(b).

* A3 Architecture Overviews are perceived as much more usable than traditional docu-
ments, as show in Figure 10.7(c).

¢ A3 Architecture Overviews have a more adequate amount of information than tradi-
tional documents, as show in Figure 10.7(d).

Regarding preferences, most practitioners (80%) stated that they would rather read an
A3 Architecture Overview than a document. In addition, most practitioners (73%) stated
that to learn a new topic an A3 Architecture Overview is better than a document (see Table
A.13, Appendix A). From the feedback obtained through the survey, we observed that the
more experience practitioners have, the more they prefer A3 Architecture Overviews over
traditional documents.

10.3 Ewvaluation of A3 Architecture Overview Elements

A3 Architecture Overview users were asked to rate how useful different elements used in the
A3 Architecture Overview are. Based on their feedback (see Table A.12), we observed that
more than half of the users found all elements of the A3 Architecture Overview useful or very
useful.

As shown in Figure 10.8, annotations is the element of the A3 Architecture Overview that
users found the least useful. This makes sense, as the annotations are meant just to highlight
deviations from the ideal situation (e.g. due to business, technology or customer reasons),
rather than providing a different view of the system.

Some users also found the quantification view of little use. From the analysis of the survey
it was found that those users were mostly engineers. The reason for this may be, as stated
by [Rechtin and Maier, 2000], that engineers mostly deal with measurables using analytic
tools derived from mathematics or other hard sciences. Architects on the other hand, deal
largely with unmeasurables using approximations or estimations based on practical lessons
learned.
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Figure 10.8: Evaluation of A3 Architecture Overview Elements

10.4 Other A3 Architecture Overview Study Cases

In this section we present other study cases in which A3 Architecture Overview were created
by practitioners who showed interest in applying the tool in their projects. In these projects
the author did not participate in the creation of the A3 Architecture Overview. Table 10.2
shows those projects in which project members expressed their interest in applying the A3

Architecture Overview approach.

Table 10.2: Other A3 Architecture Overviews Study Cases

Project Author / Company Title
Reconstruction Overview Liere, P. (Philips MRI) System Architect
Cooling Subsystem Evolution Douglas, A. U. (Philips Research) Philips Researcher
SAR (Specific Absorption Rate) Laar, Pierre. (ESI) Fellow Researcher
Litter Collector Robot Kauw-A-Tjoe, R. G. (Twente University) Master Student

To support the creation of A3 Architecture Overviews to people not familiar with the
creation process, an A3 Architecture Overview Cookbook (see Appendix D) was provided as
well as a few examples, to guide practitioners in the development process (as described in
Chapter 9). Little additional support was provided by the author, so practitioners could create

A3 Architecture Overviews freely.
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In Figures 10.9, 10.11, 10.12, different A3 Architecture Overviews created by the practi-
tioners from Table 10.2 are presented. We can observe that those A3 Architecture Overviews
present different styles: the use of black&white, different fonts, a variety of A3 Summary lay-
outs, the use of 3D images in the physical view, etc. Despite the differences, they can all be
easily recognized as A3 Architecture Overviews.

To evaluate whether the A3 Architecture Overview could be created by people with no
industrial experience, a master student was requested to create an A3 Architecture Overview
for his final project. In Figure 10.12 the A3 Architecture Overview created by the master
student is provided. There is no apparent need of industrial expertise to be able to create
A3 Architecture Overviews.

10.4.1 EVALUATION OF A3 ARCHITECTURE OVERVIEW CREATION

To evaluate the effort required to create an A3 Architecture Overview and its value for
the practitioners who created them, we conducted a survey to collect feedback from these
practitioners (the survey details are provided in Appendix A.3).

Most of the surveyed reported that creating an A3 Architecture Overview is not difficult.
They all agree that it is easier than creating an equivalent text document, and the value
of the A3 Architecture Overview over a document is higher. For some practitioners, some
of the steps in the creation were difficult, such as creating a functional view. However, all
surveyed people agreed that the creation effort was not high for the benefits that having the
A3 Architecture Overview brings.

All surveyed found that people that used their A3 Architecture Overviews showed
interested in them, probably more than if they had provided a text document. Most of
surveyed people (75%) thought that the A3 Architecture Overview helped to communicate
better with the stakeholders. According to practitioners, none of the stakeholders who used
their A3 Architecture Overviews had trouble understanding them. They all agreed that the
information provided in the A3 Architecture Overview was enough for the stakeholders.

During the creation process none of the surveyed missed or needed the support of a
software tool. They all agreed that having a predefined structure in the A3 was of help during
the process, and they all saw the value of using an A3 layout instead of several A4s.

Most of them (75%) reported that they think that the approach is not difficult to transfer
to other practitioners, and all of them stated that they will keep using the approach in future
projects. They will also recommend the approach to other employees, as they reported that
the approach is not hard to incorporate in their daily activities.

Strong points of the tool for authors — Practitioners stated the visual and graphical nature
of the approach and the limited amount of information as strong points of the approach. The
guidance provided by the structured approach in the creation process helped to provide an
overview and to create uniform overviews across different subsystems. The approach forces
people to be brief and having an A3 Architecture Overview triggers “oh yeah, we must not
forget...” remarks. People stated that other areas besides architecture could benefit from the
approach.

Weak points of the tool for authors — Practitioners stated that the weak point of the
approach is that there is no guarantee that the creator of an A3 Architecture Overview will
create a good one, as it is dependent on the person who creates it (which may lead to a
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poor A3 Architecture Overview). Other concerns were related to some limitations of the
paper format, such as cross referencing, and how to share A3 Architecture Overviews to
the “electronic’ community. People expressed their interest in enhancing the A3 Architecture
Overviews capabilities by adding meta information such as hyperlinks and compatibility with
simulation tools®.

10.5 Discussion of the Results

To evaluate the applicability of the A3 Architecture Overview, this Thesis had a criteria: “it has
to be useful in industry” (see Section 1.6). The tool has proven to be useful in different projects
within Philips Healthcare MRI, and it has been incorporated into the daily development
activities. In addition, the fact that other companies such as ASML, Océ, and FEI are evaluating
it shows that the A3 Architecture Overview appears useful in industry.

Several study cases in which the A3 Architecture Overview has been used have been
presented. We have learned that one of the main values of the A3 Architecture Overview is
that it provides system insight, and that it provides an overview with sufficient information
that people are willing to read for e.g. a meeting.

In comparison with traditional documents the A3 Architecture Overview is perceived as
an improvement; it is more readable, easier to understand, more usable, and with more ade-
quate information. Practitioners prefer an A3 Architecture Overview over a traditional docu-
ment. Although we do not have enough representatives that have used the A3 Architecture
Overview to derive hard conclusions, the observed trends and feedback make us confident
that the A3 Architecture Overview can be used as a powerful tool at companies.

The evaluation of the individual elements of the A3 Architecture Overview shows that all
elements are perceived as relevant, especially the visual aids. Annotations on the other hand
seem to be the least useful for the users. Some views have more value for some disciplines than
others, such as the quantification view. While architect were satisfied with the quantification
provided, engineers were not.

Regarding the creation effort, the A3 Architecture Overview is perceived as easier to
create than a document and to have more value. The creation effort is not perceived as high,
and it can be easily incorporated into daily activities. Practitioners did not miss the support
of a software tool, on the contrary, just the template provided by the A3 was enough to create
A3 Architecture Overview.

3As discussed in Section 12.2, this is a topic of future research.
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Chapter 11

A3 Architecture Overviews as a Tool for Effective
Communication in Product Evolution

In this chapter, the A3 Architecture Overview is evaluated as a tool for effective

communication in product evolution. An evaluation based on a detailed analysis of

the requirements identified in Part I of this Thesis is presented. Finally, a discussion

about the work presented in this Thesis is provided.
The A3 Architecture Overview was designed as a tool to support effective communication
in product evolution. To achieve that purpose, it has to meet a set of requirements. Those
requirements were presented in Table 6.2. In this chapter, we evaluate whether the A3
Architecture Overview meets those requirements. For the evaluation, the detailed analysis
of the requirements presented in Appendix B is used. The evaluation is based on direct
experiences and observations of the use of A3 Architecture Overviews in an industrial
environment, as well as feedback from users and creators collected through surveys (see
Figure 11.1).

In Table 11.1 we present a summary of the requirements evaluation. In the evaluation, we

have used the following criteria:

¢ Good: Based on the analysis performed (see Appendix B), we have clear indications that
the A3 Architecture Overview meet the requirement.

¢ Average: Based on the analysis performed (see Appendix B), we have indications that
the A3 Architecture Overview meet the requirement, however it may not improve
existing means or there are some open issues.

¢ Poor: Based on the analysis performed (see Appendix B), we have clear indications that
the A3 Architecture Overviewdoes not meet the requirement.

¢ ?: There are not enough observations, experiences or feedback to support the evaluation
of the requirement, and the evaluation is based on some assumptions.

11.1 Requirements Evaluation

Practical Industrial Requirements of Communication Tools

From Table 11.1, we can conclude that the A3 Architecture Overview meets most of the
practical industrial requirements that communication tools should have; it requires a small
overhead, it does not depend on custom-made software tools, it works even with incomplete
input, it is easy to use, and it is appealing to most users.

We can observe, however, that the A3 Architecture Overview does not guarantee trusted
output. Although the A3 Architecture Overview encourages providing confidence levels (e.g.
for the quantification), provides references to experts and documents, etc, the credibility of the
information contained in the A3 Architecture Overview depends on the person who creates
it. In this sense, there is no difference with traditional documents.
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Table 11.1: Evaluation of A3 Architecture Overviews as a Tool for Effective Communication in Product Evolution

Requirements Evaluation

I Meet Practical Industrial Needs of Communication Tools Average Poor ?

Require small overhead

Do not depend on custom-made software tools

Provide trusted output

Work even with incomplete input

Easy to use

(2]
|| ><><§_

Appealing

11 Meet Desired Properties of Communication Tools G Average Poor ?

Provide limited amount of information

Use visual representations

><><><§

Use an appropriate size to display complex information

Keep the notation simple X

F

Limit the amount of visual attributes and ensures
differences among them

Keep a consistent way of communication

Provide a shared view

Enable a flexible way to share knowledge

Improve existing written mechanisms
111 Be Tailored to the Architecting Process G Average Poor ?

gxxxx

Support the creativity of architects X X

Used by a wide variety of stakeholders

Do not take too much time from architects

Encourage the dissemination of knowledge

IV Support the Needs of Architects G Average Poor ?

xg_xxx

Deliver the right information to the stakeholders while
keeping the irrelevant part of information low

Ensure that the information is conveyed and interpreted correctly X

Record changes in the architecture knowledge repository X X

Retrieve architecture knowledge stored in the heads of people

|

Enable reusing knowledge from previous experiences and
products in current developments

Help keeping a structured overview of what has been X
communicated with a stakeholder

V Mitigate Evolution Barriers Good  Average | Poor ?

Support management of system complexity X X

Prevent the lack of system overview

Deal with ineffective knowledge sharing

Help finding the required system information

Support communication across disciplines and departments
VI Deal with Observed Evolution Challenges G Average | Poor | ?

gxxxx

Support moving from incremental development to X X
top-down architecting

Reduce learning curve

Support to estimate the impact of change

| |
<

Deal with the mono-disciplinary focus of developers

Support repartitioning the system X X
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Desired Properties of Communication Tools

From Table 11.1, we can conclude that the A3 Architecture Overview meets most of the
requirements of desired properties of communication tools; it provides a limited amount of
information, it uses visual representations, it uses an appropriate size to display complex
information, it limits the amount of visual attributes and ensures differences among them,
it keeps a consistent way of communication, it provides a shared view, it enables a flexible
way to share knowledge, and it improves existing written mechanisms.

Regarding the notation, although the A3 Architecture Overview aims to keep it simple
by using simple visual attributes (e.g. blocks, arrows) and natural language, it does not satisfy
all stakeholders. Most disciplines found the notation not complicated, however half of the
architects stated it may be complicated. As architects are expected to be the main users
of the tool, this raises a concern. However, it was stated by most stakeholders, including
the architects, that A3 Architecture Overview are not difficult to understand (despite the
notation). This means that, at least for some architects, the A3 Architecture Overview notation
is not easier than other communication tools (e.g. documents).

Tailored to the Architecting Process

From Table 11.1, we can conclude that the A3 Architecture Overview is tailored to the
architecting process to a large extent, as it can be used by a wide variety of stakeholders,
it does not take too much time from architects, and it encourages the dissemination of
knowledge.

We do not have enough evidence that the A3 Architecture Overview supports the
creativity of architects, at least not in a direct way. The A3 Architecture Overview however
does not constrain it, as the A3 Architecture Overview is flexible enough to adapt to preferred
styles of capturing knowledge.

Although experiences in the creation of A3 Architecture Overviews by the author and
other practitioners (see Table 10.2) indicate that it does not require much time (less than a
traditional document) and that it can be easily incorporated into the daily activities, we do
not have enough architect representatives to ensure it does not take an excessive amount of
time. More experiences with architects are needed.

Support the Needs of Architects

From Table 11.1, we can conclude that the A3 Architecture Overview meets many of the
architects needs, but fail to meet some of them. The A3 Architecture Overview delivers the
right information to the stakeholders while keeping the irrelevant information low, it retrieves
architecture knowledge stored in the heads of people -along with the reverse architecting
process-, it enables reusing knowledge from previous experiences and products in current
developments, and helps keeping a structured overview of what has been communicated with
a stakeholder.

An A3 Architecture Overview encourages the use of visual representations to ensure
that the information is conveyed and interpreted correctly, however as an A3 Architecture
Overview contains natural language, the model notation may be ambiguous (unlike modeling
languages such as SysML, see Section 5.2.1), this may lead to some interpretation problems.
This means that in this requirement the A3 Architecture Overview has not improved existing
mechanisms such as traditional documents.
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Regarding recording changes in the architecture repository, there are some issues that
makes it difficult to meet this requirement. As stated by some practitioners, cross referencing
among A3 Architecture Overviews may lead to problems when changing the repository;
a change in one A3 Architecture Overview may require to update other A3 Architecture
Overviews (e.g. the reference section), leading to some problems. As this is a manual process,
required changes may be overlooked if the responsible of the repository is not aware of
them.

Mitigate Evolution Barriers

From Table 11.1, we can conclude that the A3 Architecture Overview meets most of the
requirements to mitigate evolution barriers, such as to prevent the lack of system overview,
to deal with ineffective knowledge sharing, to help finding the system information, and to
support communication across disciplines and departments.

Regarding management of system complexity, A3 Architecture Overviews provide a
manageable set of information. By partitioning the system knowledge in small doses, the A3
Architecture Overview tries to help managing system complexity by making it easier to digest
the large amount of information to the user. System complexity, however, is complicated as
it involves many domains (see Section 2.3.1). As the A3 Architecture Overview focuses on
architectures, it does not deal with the other domains that make the system complex.

Deal with Observed Evolution Challenges

From Table 11.1, we can conclude that the A3 Architecture Overview meets some of the
requirements to deal with observed evolution challenges, such as to reduce the learning curve,
to support the estimation of the impact of change, and to deal with mono-disciplinary focus
of developers.

Although we cannot prove directly that an A3 Architecture Overview reduces the learn-
ing curve, the A3 Architecture Overview has been pointed by users as better way for learning
about a new topic than other means such as documents. It was stated by users that they prefer
to read an A3 Architecture Overview than a document, especially when learning about a new
topic. In addition, a visual representation is usually more effective for learning than plain text,
as it is retained better by the reader [Koning, 2008]. As an A3 Architecture Overview encour-
ages the use of visual representations, it is probably better suited for learning than pure text
documents. According to the users, the visual aids within the A3 Architecture Overview are
the most valuable element.

Although we have not used the A3 Architecture Overview to estimate the impact of
change in a real project, an A3 Architecture Overview provides different visual representa-
tions of the system (e.g. functionality, physical), and provides numbers to estimate the impact
to the key parameters, which can be used to estimate the impact of change. Most A3 Archi-
tecture Overview users stated that the A3 Architecture Overview can be used to estimate the
impact of change.

Finally, even when having an explicit architecture representation may support to move
from incremental development to top-down architecting or to repartition the system, it is
not clear that an A3 Architecture Overview deal with those challenges better than other
means such as traditional documents. More experiences with the use of the tool are needed to
evaluate this.
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A3 Architecture Overviews can be used to estimate and
communicate the impact of a change in the system

' Iwould like to have more A3 Architecture Overviews of other

system aspects
I rather read a document than an A3 Architecture Overview

I would use the A3 Architecture Overview as a collaboration tool

Iwould use the A3 Architecture Overview as a discussion tool

Iwould like an A3 Architecture Overview of my current work

I don't see the value of having the information within an A3
instead of on several Ad pages
To learn a new topic, a document is as good as an A3 Architecture
Overview

Ilike having different views within the same A3
The A3 size is a problem for its use
Having the same structure makes easier to read other A3

The notation used in the A3s is complicated
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(a) A3 Architecture Overview User’s Feedback (Source: Appendix A.2)
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0%

BStrongly Agree M Agree

It is difficult to create an A3 Architecture Overview

It would have been easier to write a text document...

... and the value would be similar

I will recommend the approach to other people

Some steps were hard (e.g. creating a functional view)
People find my A3 Architecture Overview more interesting..
Having a predefined structure is of help during the creation..
I think there is enough information in my A3 Architecture..
I missed the support of a SW tool during the creation process
I think it will help me to communicate better to other..

I think it is hard to transfer / teach the approach to other..
The creation effort it too high for the benefits it brings
People have probl derstanding my A3 Architecture..

It is hard to incorporate it in my regular activiti

I will keep using the approach in future projects
I see the value of using an A3 sheet instead of several A4 sheets

B Disagree M Strongly Disagree [ Don't Know
(b) A3 Architecture Overview Creator’s Feedback (Source: Appendix A.3)

Figure 11.1: Feedback from A3 Architecture Overview users and creators
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11.2 Discussion

This section will review the concept of system evolution and systems architecting, and the
need for knowledge sharing and effective communication. Several observations will be made.
We will also reflect briefly on the results obtained with the A3 Architecture Overview tool and
the experiences of its application in an industrial environment.

11.2.1 SYSTEM EVOLUTION AND SYSTEMS ARCHITECTING

In Chapter 3 we showed that current market demands are driving companies to adapt their
development and design processes to cope with e.g. shorter development schedules, product
optimization, cost reduction, etc. The strategy often chosen to cope with those demands it to
evolve existing products, so infrastructure, knowledge and experience can be reused in the
development of a new product. However, evolving a complex system is not a trivial task, as
unexpected problems may arise due to dependencies, known and hidden, in the system and
the organization. In this sense, an evolvable system, one that enables easy evolution, is vital
for the success of companies.

We found that although in other research communities such as computer science software
evolution is an active field of research, in the Systems Engineering field, system evolution is
almost an unexplored field. In this Thesis we have reviewed the concept of system evolution
and evolvability, and explored existing approaches to deal with system evolution. The first
thing we have observed is that research usually addresses the system evolution problem by
looking at the system alone and neglecting the influence of the design process; that is to say,
either the system is designed to withstand changes or not, and that determines its evolution
capability. It is therefore not surprising that most research work regarding system evolution
focuses on the creation of modular designs (as a modular design is supposed to be more
evolvable), or approaches to estimate the impact of a design change (as the less impact, the
easier to evolve a system).

We believe that the ability of a system to be easily evolved, evolvability, is not just
a property of the system’s design, but also of its design process. To support this claim,
when investigating development and evolution barriers, we found that major problems
companies face when evolving products happen during the development and evolution
process. Barriers such as managing system complexity, communication problems among
disciplines and departments, lack of a shared system view, etc, are human-related aspects
that affect the evolution process rather than problems in the system’s design. For this reason,
focus of this Thesis is not on redesigning a system to be more evolvable, but on providing
the means to support the design process so systems can be evolved more efficiently and more
effectively.

The fact that evolvability is seeing in literature as a property to withstand change, instead
of a property aimed to cope with -inevitable- change, has lead to confusion regarding its
differences with other system properties such as adaptability, changeability or extensibility.
In this Thesis, an evolvable system is not just a system designed to adapt to change, but
one in which the -multidisciplinary- team(s) in charge of the evolution process can easily
identify what aspects of the design can be reused to develop a new product, and what new
aspects need to be incorporated to meet the new demands. In an evolvable system, the team(s)
would be aware of the impact that the required design changes would have on the system, so
adequate strategies can be put in place to avoid undesired impacts.
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It is worth mentioning, that the identified evolution barriers are usually already known
development problems in any company (e.g. Philips management was aware of most of those
barriers). They are however taken as a fact of life, which is hard to change and therefore
little effort is spent on solving them. We have shown the relation between those barriers -
especially ineffective knowledge sharing- and development problems and poor decisions.
Once this relation was identified and quantified, more attention was given to the problem.
By addressing those barriers system evolution can be enhanced.

If we are not looking at the design, how can we help the people in charge to evolve
the system? As stated before, an evolvable system -or its context- provides the means for
the team(s) to easily identify what system aspects can be reused to develop a new system.
However, during the evolution process, technologies, implementations and even designs may
have changed. In this context, what can be reused? The answer lies in the architecture. By
utilizing an architecture as a framework to support multiple (successive) implementations,
one ensures that it is not likely to change. Therefore, architectures should be captured so they
can be used as a means to support the design of new generations of systems. The creation of
architectures and their consolidation in architecture representations is part of the architecting
process. The architecting process results in a series of major design decisions that shape the
system as well as the evolution process. As systems architecting plays an essential role in the
evolution of systems, this Thesis focuses on architectures and systems architecting.

11.2.2 SHARING AND COMMUNICATING ARCHITECTURE KNOWLEDGE

As we discussed in Chapter 4, architecting remains an art which is typically performed by
people who have gained experience and knowledge over the years; the architects. Architects
are responsible for the evolution process, as they make key decisions that will affect the system
and its development process. In this Thesis we have reviewed the duties of architects, and
what needs they have in order to support their work. By understanding their needs, we are
in a better position to develop means to support architects in their duties. In this Thesis we
showed that main needs of architects are related to sharing and communicating architecture
knowledge. Architects need means to support tasks such as to recover implicit architecture
knowledge spread within the company and to ensure that the architecture knowledge is
delivered and communicated effectively to the stakeholders. It is for this reason that in this
Thesis we focus in developing means to share and communicate architecture knowledge.

Sharing Architecture Knowledge

As described in literature, we have also experienced that architects prefer simple approaches
over complicated (even when more complete or apparently more useful) approaches, they do
not like to rely on tools, and have a preference for easy to use solutions. We have observed
that most research solutions aimed to support architects in their duties are developed from
a technology perspective, such as providing “intelligent advice”, automated architecting
analysis, etc. Research and our own experience has shown us that architects rather prefer
to stay in control of the architecting process. We have also observed that architects prefer to
get the facts and make their own conclusions, rather than trusting the outcome of a tool.
Once we know that we need to support sharing and communicating architecture know-
ledge, one of the challenges is to identify what types of information belong to the architec-
ture knowledge. Most approaches to capture architecture knowledge focus on the architec-
ture structure, in the sense of components and connectors. However for complex systems,
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other types of information are needed. From literature, we observed that different communi-
ties have different needs of architecture knowledge, such as functionality, design decisions,
problem domain, etc. An inspection of architecture documents, revealed that most of those
types of information are usually present, yet not clearly differentiated. We have gathered those
essential types of information that should be part of the architecture knowledge. It could be
argued that we may have left out some essential type of information, however in our defi-
nition of architecture knowledge, we have left room for information “that is important for the
stakeholders” [Fowler, 2003]. By gathering those types of information as part of the architec-
ture knowledge, we aim to cover the range of essential architecture information that most
stakeholders need.

When looking at existing approaches to share architecture knowledge, we observe that
the effort is placed on capturing and delivering as much information as possible, but little
effort is put on how this information is communicated to the stakeholders. Despite existing
contributions, current practice is that architects, for good reasons, choose their own way to
capture architecture knowledge. Traditional text documents such as design specifications still
remains as the common choice to capture this knowledge. In this Thesis we have evaluated
the effectiveness of traditional documents to share and communicate architecture knowledge,
by evaluating Philips MRI System Design Specification (SDS). We found that the document
not an effective mechanism to share architecture knowledge. These results were shared with
other companies, which stated similar problems. However, the fact that traditional documents
are not an effective means to share knowledge, does not mean that we have to move from
traditional text documents to state-of-the-art technology-based solutions. We believe that
there is still room for improving existing written mechanism, and that taking a smaller jump
from existing means that users can digest is a better approach.

Effective Communication, a Basis for Knowledge Sharing

Even if an approach enables to share architecture knowledge, that is to say, all relevant ar-
chitecture information is captured and delivered to the stakeholders, this does not mean the
approach is automatically successful. If knowledge is not effectively communicated, that is to
say, correctly understood by the stakeholders, it can render the approach ineffective. Effective
communication is essential for knowledge sharing. Effective communication in a multidisci-
plinary environment is, however, a challenge. Not surprisingly communication among disci-
plines and departments was identified as one of the main barriers for system evolution. For
effective communication is necessary to understand the -human- communication process in
order to develop effective mechanisms to share knowledge.

Although ubiquitous, the human communication process is very complex as it involves
many domains. For that, it is out of the scope of a single Thesis to cope with all those domains
in detail. To model the communication process in the systems architecting context in a way
that is easy to understand, we have used the Shannon-Weaver model. This simple model has
enabled us to identify the main elements that take part in the communication process. By using
this model, major "architecture noise” sources that affect the communication process have
been identified. Although in this Thesis we cannot cope with all kind of noise sources, we aim
however to cope with major noise sources produced by human and organizational factors. By
doing this, we aim to develop an approach to consolidate architecture knowledge in a way
that enables sharing of knowledge in a fashion that supports effective communication.

When looking at existing approaches to deal with communication in the Systems En-
gineering field, we find Model-Based Systems Engineering (MBSE). MBSE is a well-known
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strategy to support the design of systems in a way that supports communication. There are
many ways in which MBSE can be applied; from the development of simple informal models
formed of simple free-format views, to the more formal and systematic by using modeling
languages such as SysML. We have used different MBSE approaches in real projects at Philips
Healthcare, to find out what works and what does not in the system architecting context. We
found, as described in Chapter 6, that some MBSE approaches such as using functional and
physical views were useful when communicating with stakeholders, while too many views,
the use of documents, modeling languages, or automated approaches such as DSM were not
successful. Lessons learned from the application of different approaches in real projects at
Philips Healthcare MRI, as well as findings from literature were used to understand the re-
quirements that an approach meant to support product evolution should meet.

11.2.3 A3 ARCHITECTURE OVERVIEWS AND REVERSE ARCHITECTING

Architects need a way to capture and share existing architecture knowledge, in a way that
ensures that it is effectively communicated to the stakeholders. For that, a process to make
the architecture knowledge explicit and a tool to consolidate and share that knowledge in
a way that supports effective communication are needed. In this Thesis we have proposed
a reverse architecting process for recovering and making explicit the existing architecture
knowledge, and the A3 Architecture Overview as the tool to capture that knowledge in a
way that supports effective communication.

The creation of the A3 Architecture Overview is the result of applying practical expe-
riences over theories. Practical aspects have been applied rather than formal or complicated
approaches. With this tool, we do not aim to solve all the evolution problems but to provide
a useful tool that the practitioner architect can use when evolving a system. By looking at the
results of this work we believe we have succeeded in that.

For the physical design of the tool, we chose an A3 sheet size. This way we do not force
a technology solution, we limit the amount of information provided, we provide a size to
display knowledge that fits well within the average human field of view, etc. In the A3, we
have separated model and text. While the A3 Model aims to provide visual representations for
shared understanding (e.g. at meetings), the A3 Summary aims to provide the necessary text
to support the model and to make the A3 Architecture Overview an independent document.
We found that the A3 Model alone ended up embedded in text documents losing its utility.
Although the finding of the adequate size to display complex information (A3) was found
through experiments, we found later that Toyota had already reached the same conclusion to
make their reports more efficient. Although they are used for a completely different purpose,
the goal of using an A3 is the same; keeping only essential information.

The elements to display in the A3 are the different types of information that belongs
to the architecture knowledge. An appropriate representation, encouraging visual and easy
to understand representations has been chosen for each of those elements. The structure
within the A3 is aimed to support readability; by providing a consistent structure across A3
Architecture Overview, the readers can find the information more easily. The power of the
approach lies in:

¢ It forces brevity and synthesis of knowledge, providing limited amount of information
but of high quality.

¢ It is visual in nature, structured, and appealing, supporting communication between
different stakeholders.
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* It is easy to use as no domain knowledge or experience is needed, encouraging sharing
of knowledge.
* It does not depend on software tools or technologies.

To bring together the reverse architecting process and the A3 Architecture Overview,
we provide a step-wise guide to guide people to consolidate architecture knowledge in an
A3 Architecture Overview. This step-wise approach was consolidated in an A3 Architec-
ture Overview Cookbook (see Appendix D), which is an A3 Architecture Overview itself,
providing the guide as well as an A3 Architecture Overview example. This A3 Architecture
Overview Cookbook was the primary thing provided to people to enable them to create A3
Architecture Overviews themselves. It is a powerful tool to transfer the approach to other
practitioners.

11.2.4 EXPERIENCES AND RESULTS

The A3 Architecture Overview has been applied in real projects at Philips Healthcare MRI
in order to evaluate its applicability in an industrial context. Both its use and its creation
effort have been evaluated. Experiences, observations and surveys have been used for the
evaluation.

By using A3 Architecture Overviews in projects we learned that they are perceived
as a good way to get insight in the system, and they are useful as a collaboration and
communication tool. People attended the meetings in which A3 Architecture Overviews
were provided having read the A3 Architecture Overviews provided and with plenty of
annotations in them. People from different disciplines were able to use them without much
explanation.

If we compare the A3 Architecture Overviews with traditional documents, we have seen
that they are perceived by users as being more readable, easier to understand, much more
usable, and with a more adequate amount of information. This shows that the A3 Architecture
Overview has some advantages over traditional documents when dealing with architecture
knowledge.

From the experiences of practitioners in the creation of A3 Architecture Overviews, we
have learned that it is not difficult to create (except possibly some parts) and that it does
not require much time to create -less than a traditional document-. Practitioners stated that
people who used their A3 Architecture Overviews found them interesting and were able to
understand them without problems. They also stated that they will keep using the approach
in future projects and recommend it to other people. This indicates that practitioners not
only value in the use of the A3 Architecture Overview, but they also see the value in their
creation.

Regarding its applicability in an industrial context, the A3 Architecture Overview has al-
ready been incorporated into the daily activities of Philips Healthcare MRI, while several other
companies are testing it. We can conclude that it is applicable in an industrial context.

We cannot claim we have improved evolvability, as we do not have a clear way to prove
that in the time available. The improvement of evolution process may take years to evaluate,
and there is not an easy way to prove a direct relation between the application of the tool and
the success or failure of the evolution. However, by looking at the evaluation of the tool, we
see that the A3 Architecture Overview meets most of the requirements needed for a tool to
support effective communication in product evolution. This shows the potential utility of the
A3 Architecture Overview to support product evolution.
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Conclusions and Recommendations

In this final chapter the main conclusions obtained from the research carried out in
this Thesis are provided. Finally, recommendations to continue the work started in this
Thesis to trigger future research related to the A3 Architecture Overview are presented.

12.1 Conclusions

Companies need to shorten their development cycles while delivering new functionalities
and optimized products. As creating a product from scratch is time consuming and costly, the
strategy often chosen is to evolve an existing product. Yet evolving a product is also a challeng-
ing endeavor. The impact of change in the product’s design can ripple through the system’s
design leading to development problems. An evolvable product, one that facilitates evolution,
would clearly specify which aspects of the design should be passed down to and which are
new to the previous generation, and would keep the impact of change under control. Most of
those strategies are borrowed from the software field. There are only a few specific strategies
to deal with evolution at system level, which are either limited, not applicable in practice, not
adequate to complex systems, or do not fit in an industrial environment.

Complex systems such as MRI scanners introduce a new dimension to the evolution
problem, as people from multiple disciplines need to collaborate to integrate the many aspects
involved in its design and development. It is therefore not surprising that major evolution
barriers are managing system complexity, difficulties in estimating the impact of change, lack
of system overview, ineffective knowledge sharing, and communication problems. All those
barriers are mainly related to the people who creates and modifies the system rather than the
system itself. By supporting those people with the right means, we can facilitate the evolution
process, thus enhancing evolvability.

To deal with evolution, architectures are needed. During the evolution of a system, tech-
nologies, implementations and the design may have changed, it may be only the architecture
that remains from the original system. Architectures, once consolidated in an architecture rep-
resentation, capture essential knowledge that is needed for the evolution of systems. There are
many ways in which architectures can be captured, however what knowledge should be cap-
tured and how to represent it to support the evolution of complex systems is unclear. Based
on our experiences with different approaches to represent architectures in an industrial envi-
ronment, we propose an architecture overview to represent the architecture knowledge.

The creation of architectures and architecture representations is part of the architecting
process, and that responsibility lies on the architect. One of the major needs of architects is
to share architecture knowledge, and ensure that this knowledge is communicated effectively.
Existing solutions to support architects usually do not meet those needs, are not tailored to
the architecting process, or are not optimal for an industrial environment. Most solutions
are developed from a technology perspective, while architecting is mainly a human activity.
Architecting solutions need to focus more on the human side of architecting.
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Besides the need of sharing architecture knowledge to support evolution, it is necessary
to ensure that the knowledge is communicated effectively, it is to say, understood by the
stakeholders. Many approaches to share knowledge do not take into account that human
and organizational factors affect communication, and consequently, although effective in
theory, when applied in a real situation where people is involved, they are not accepted.
Knowledge sharing requires effective communication, therefore, any mechanism designed to
share knowledge should take into account communication aspects to avoid the "noise” that
may affect the communication process.

In this Thesis we have designed a tool, the A3 Architecture Overview, meant to share
architecture knowledge in a fashion that enables effective communication in an industrial
context. To that end, human and organizational factors are taken into account. The A3
Architecture Overview is not meant to be complete, formal or executable, it is meant to be
an artifact that the practitioner architect can use during his daily activities.

An A3 Architecture Overview is not meant as the perfect solution to cope with evolution,
but an improvement over traditional means to share and communicate architecture know-
ledge. Experiences of its use in real projects in a company such as Philips Healthcare MRI
has proven that it meets the requirements to become an effective communication tool during
product evolution. Proof of that is that the A3 Architecture Overview has become part of the
daily development activities within Philips Healthcare MRI, and that other companies such
as ASML, FEI, Daimler, EADS and Boeing are testing it.

The main value of an A3 Architecture Overview lies in its simplicity. It is an effective way
to capture architecture knowledge yet it does not require long hours of specialized training to
create or use it. An A3 Architecture Overview delivers the essential knowledge that is needed
in product evolution in a format that encourages sharing of knowledge and in a fashion
that can be understood by a wide variety of stakeholders. It may not be formal, complete,
executable, or supported by state-of-the-art technology, but unlike other approaches, it is not
put aside but it is used by current practitioners.

12.2 Recommendations

The A3 Architecture Overview is still in an early stage. There is much to do, the current A3
Architecture Overview has only scratched the surface of what can be done with it. Many users
and creators have stated “can we use an A3 Architecture Overview in...”, "what if we change the
A3 Architecture Overview to..”, and similar remarks. This shows that there is room for more
research regarding the A3 Architecture Overview.

During the realization of the projects in which the A3 Architecture Overviews where used
as well as during discussions at different companies or symposiums (INCOSE), the following
areas of improvement have been identified:

* Incorporation of meta-data and hyper link capabilities: When A3 Architecture
Overviews are displayed in a screen, it would be desirable that the content within
the A3 Architecture Overview enable to navigate to other content (e.g. hyper text, click-
able objects from the views, etc). For that, an A3 Architecture Overview would need to
embed meta-data and enable hyper link capabilities. This would also enable searching
capabilities within A3 Architecture Overviews contents. To this end, it is necessary to
investigate how to incorporate this meta-data and how to enable the hyper link capa-
bilities. It should be noticed that this should not require additional effort during the A3
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Architecture Overview creation process to prevent making it more complicated (e.g. by
adding the meta-data and hyper links to finished A3 Architecture Overviews).

¢ Enhanced cross-referencing: A set of A3 Architecture Overviews for a repository of
architecture knowledge. When a change in one A3 Architecture Overview is required or
anew A3 Architecture Overview is created, this may require some updating to existing
A3 Architecture Overviews from the repository (e.g. updating the reference section).
Currently this change has to be done manually. It would be desirable to investigate
how a repository (or other means) could automatically update existing A3 Architecture
Overviews affected by a change or incorporation in the repository.

¢ Application of the A3 Architecture Overview in other domains besides architecting:
The A3 Architecture Overview is designed to display architecture knowledge. The A3
Architecture Overview, however, could probably be applied to other domains as well,
such as design, engineering, etc, as the need of overview is not exclusive to architecting.
To tailor the tool to other domains, it would be necessary to research the essential
knowledge that the A3 Architecture Overview should provide for those domains, the
adequate way to visualize that knowledge, and an appropriate structure of the A3 to
display the visualization.

¢ Link between the A3 Architecture Overview and other tools: It would be beneficial to
verify and validate the A3 Architecture Overview contents by e.g. running simulations.
From that, it would be necessary to develop a way to transform the A3 Architecture
Overview notation (which is not formal and up to the A3 Architecture Overview creator)
into another notation that can be fed into an executable tool.

¢ Creation support: Currently white boards and papers are used to draw the sketches that
will be part of the A3 Architecture Overview. There are many devices in the market
such as table PCs, Microsoft surface computers, touch screens, or smart white boards,
that could enable the creation of views, without the need of transforming the sketch into
a digital view. It would be interesting to investigate whether the use of those devices in
the creation of A3 Architecture Overviews would enhance (or diminish) the efficiency
of the creation process.

¢ Use in agile developments: Agile methods such as Scrum or Extreme Programming
break tasks into small increments with minimal planning. Iterations are short time
frames (timeboxes) that typically last from one to four weeks. Each iteration involves
a team working through a full development cycle including planning, requirements
analysis, design, coding, unit testing, and acceptance testing when a working product
is demonstrated to stakeholders. In this context the A3 Architecture Overview could be
applied. If would be interesting to investigate how the agile methods could benefit from
the incorporation of a tool like the A3 Architecture Overview.
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Appendix A

Surveys

The main purpose of the surveys is to collect insight from stakeholders. They are not meant
to collect hard evidence but to provide insight about the voice of the customer. In this context
our main customers are architects, and those stakeholders that have to communicate with
them.

Surveys gather data about different key aspects for this Thesis. Among those aspects are;
product development barriers, effectiveness of current ways to capture and share architectural
knowledge (e.g. SDS), what architects need to share architectural knowledge, challenges
to communicate architectural knowledge, effectiveness of the A3 Architecture Overviews
as a communication tool, effort to the creation of A3 Architecture Overviews, and a few
other aspects. Three dedicated surveys were developed to collect the desired data. A survey
example is shown in Figure A.1.
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Figure A.1: Survey example

As shown in Figure A.1, in most cases the surveyed were asked to fill in whether he/she
strongly agree, agree, disagree or strongly disagree with the statement presented. Statements
that were left empty were considered “don’t know” answers. In the survey, some questions
requested specific quantification. There was room in the survey to collect additional comments
and feedback. The process to collect the data was as follows:

1. Select targets: Depending on the goal of the survey, a list of employees was created.
2. Populate survey: Email was chosen as the channel to populate the surveys. Selected

employees were addressed through email, with an introductory text explaining the goal
of the survey, and the electronic survey.
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3. Collect data: Once the target filled in the survey, the survey automatically delivered the

data to a predefined email address.

4. Analyze data: After a predefined waiting time, data collected was analyzed. As shown
in Figure A.2, an Excel application was developed to analyze and present the data. As
shown in Figure A.2, job title and working experience was taken into account during

the analysis.

5. Create report: A report with the findings and data gathered was created and populated
to key stakeholders and surveyed that explicitly requested it in the survey.

: | Question / Statement

General analysis from responses. Responses that were left
empty are considered as “Don’t know” answers. General
findings are extracted from this section.

Analysis per working title. To know which group agrees/
disagrees with the question / statement, positive responses
are collected by working title (strongly agree & agree).

e Yo xpartance ™

o Yewrs c10wzperiencs | e

20 e cwrpmrienca |z

Analysis per MR experience. To know the influence of MR

experience in the responses, people have been grouped per
MR experience. Positive responses are collected by MR
experience (strongly agree & agree).

Conclusi Compilation from individual findings.

Figure A.2: Question Analysis

A.1 Survey I: Development Concerns and System Design Specification Evaluation

The goal of this survey was to understand major development challenges, effectiveness of
vital documents such as the SDS as a way to capture design knowledge, and collect feedback
from practitioners. The survey had around 40 questions divided in four different sections.

The target of this survey was the MRI development organization (approximately 250 em-
ployees). Marketing, sales and related fields were not addressed. After 4 weeks 35 employees
replied to the survey request (around 1/7 of MRI development population).
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A.1.1 INTRODUCTORY TEXT

System Design Specification (SDS) evaluation

The System Design Specification (SDS) specifies how system requirements are met. This
specification relates the requirements of the system (described in the SRS) to the requirements
of actual underlying ‘design entities’. (Current SDS document can be found in Agile as “SDS
R2.6.3” X]JS351-02762).

A 'New style SDS’ initiative has recently been launched to develop a format which
will capture and display key system information in a more effective way. The new SDS
will support MR development by providing a system overview describing the relationship
amongst design principles, budgets and design elements. This will improve communication
across a broad set of stakeholders.

The goal of this survey is to benchmark the acceptance and usability of the current SDS
and your input will then be used to shape the new format.

Instructions: Filling in the form will take around 10 minutes. There are four sections in
this form, mostly composed by statements regarding the SDS. We ask you to answer whether
you agree or disagree with the statement, and sometimes additional information to support
your answer. Should you don’t know what to answer, you can leave the question empty. When
completed please press the Submit by Email button.

A.1.2 DATA ANALYSIS

Results are provided in Tables A.1, A2, A3, A4, A5 A6, A7. Only the most relevant
questions for the goal of this Thesis are provided.

A.1.3 THREATS TO VALIDITY

We assume that we have enough representatives for each group to derive some conclusions
from the analysis. The group that may lack representation is Domain Expert. It could be
argued that this group could be aggregated to Other group. Domain Expert group was
however treated as an independent group as their input was very different from the rest of
the MRI population, deserving their own group.

Threat to validity: Only two Domain experts replied to the survey, therefore answers
are always 0%, 50% or 100%. Although Domain Experts play a key role in the development
process, there are few Domain Experts within Philips Healthcare MRI. Consequently it is
difficult to collect data from this group.

A.2  Survey II: Evaluation of A3 Architecture Overviews as Communication Tool

The goal of this survey was to evaluate whether A3 Architecture Overviews are perceived
by the users as an effective communication tool, especially in comparison with other ap-
proaches.

To that end, A3 Architecture Overviews of different system aspects were arranged
in folders, and emailed along with and introductory text to employees that should have
an interest in those system aspects. Nine A3 Architecture Overviews were provided to 52
employees. After two weeks, a survey with approximately 35 questions was sent to collect
feedback from those employees that used one or more of them in their current projects. After
4 weeks, 17 employees replied to the survey.
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A.2.1 INTRODUCTORY TEXT

Improving product development through effective communication: A3 Architecture
Overviews

Effective communication is a challenge for product development in most companies.
A study realized over 140 companies by the Aberdeen Group showed communication as
the biggest problem companies face. It also showed that 71% of the leading companies had
‘improving communication” as the primary target to improve their development process.

An internal survey at Philips Healthcare MR (see attached document) showed similar
results. The main barriers we face are: Communication across disciplines and departments
(71%), lack of knowledge sharing (61%), managing system complexity (77%), lack of system
overview (74%), and finding system information (57%). Those barriers were identified as the
root cause of many development problems and bad decisions.

To improve communication and therefore improve our development process, the ap-
proach A3 Architecture Overviews has been developed by Daniel Borches in the context of
the Darwin project. An A3 Architecture Overview provides a model view of a system aspect
on one side of an A3 sheet, while the other side displays a textual view to support and com-
plement the model view. The principle behind the A3 is to include relevant information in an
structured way to create a complete picture of the topic at hand, and eliminate everything else
until only the essentials remain.

We provide you with 4 sets of A3 Architecture Overviews to help you with some
MRI aspects: DDAS network architecture, MRI Scan Control, Functional Clusters and
Calibrations (see details below). We ask you to choose the set or sets that are most attractive
and/or interesting to you (after a short scan) and read them. Please limit the time you spend
reading the selected A3s. After two weeks, when you have had time to read them, we kindly
ask you to help us evaluate the effectiveness of the approach by filling in a short survey.

* DDAS network architecture: DDAS is the evolution of current CDAS (Control & Data
Acquisition) System. This project will bring a number of changes and opportunities to
the MRI product and the development organization.

® MRI Scan Control: The MRI System requires subsystems to be precisely synchronized
and to be able to execute actions timely. Scan Control is responsible for this.

* Functional Clusters: Recently the MRI system SW has been partitioned in so-called
functional clusters for which architecture overviews are being written. One of those
functional clusters is Reconstruction SW.

* (Calibrations: Calibrations are techniques to adjust measured imperfections in order
to ensure proper performance of specific system qualities. An important calibration is
Resonance Frequency Calibration.

A.2.2 DATA ANALYSIS

As shown in Figure A.2, feedback from users have been analyzed taking into account job
profile and working experience. Results are provided in Tables A.8, A.9, A.10, A.11, A.12, A.13,
A.14, A.15, A.16. Only the most relevant questions for the goal of this Thesis are provided.
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A.2.3 THREATS TO VALIDITY

As in the previous survey, we assume that we have enough representatives for each group to
derive some conclusions from the analysis. Again, the group that may lack representation is
Domain Expert.

Threat to validity: Only one Domain expert replied to the survey, therefore answers are
always 0% or 100%.

%clearpage

A.3  Survey III: Evaluation of A3 Architecture Overviews Creation

The goal of this survey was to evaluate the creation effort of A3 Architecture Overviews. The
target of this survey were those employees who had created A3 Architecture Overviews as
a part of their daily work for a protect in which they were already involved. 5 people were
actively involved in the research and creating and using A3 Architecture Overviews for their
own projects. They were asked to fill in a survey with 16 questions. After two weeks 4 of them
replied.

A.3.1 INTRODUCTORY TEXT

Dear A3 Architecture Overview author. In order to evaluate the effort required to create and
A3 Architecture Overview, the following survey has been developed. The goal of this survey
is to evaluate the creation effort and collect your experiences during the process.

A.3.2 DATA ANALYSIS

Feedback from creators of A3 Architecture Overviews have been analyzed. Results are pro-
vided in Table A.17.

A.3.3 THREATS TO VALIDITY

The creation of A3 Architecture Overviews by practitioners required commitment. Five people
committed to create and use A3 Architecture Overviews for their current projects. Four of
them replied to the survey, however due to the limited number of participants, there is
probably not enough representatives to derive conclusions. However, as feedback from those
participants is quite similar, it provides enough insight to provide some directions.
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Qat,

t 1: When developing the part you are responsible for, you have a system overview to support the process

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 6% | Manager/Leader 50% | <5 Years 75%
Agree 40% | Architect 80% | 5<Years<10 3%
Disagree 34% | Engineer 30% | 10 <Years<20 56%
Strongly Disagree 6% | Designer 43% | Since MR Proton 44%
Don't Know 14% | Domain Expert 100% | (> 20 Years)

Other 0%
Stat t 2: Having a system overview supports you in your development activities
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 23% | Manager/Leader 75% | <5 Years 75%
Agree 51% | Architect 100% | 5 <Years<10 7%
Disagree 9% | Engineer 70% | 10 <Years<20 78%
Strongly Disagree 0% | Designer 71% | Since MR Proton 68%
Don't Know 17% | Domain Expert 100% | (=20 Years)

Other 33%
Statement 3: You can easily find the system information you need to cope with your work
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 3% | Manager/Leader 38% | <5 Years 50%
Agree 20% | Architect 20% | 5<Years<10 38%
Disagree 49% | Engineer 30% | 10 <Years<20 0%
Strongly Disagree 9% | Designer 0% | Since MR Proton 11%
Don't Know 20% | Domain Expert 50% | (> 20 Years)

Other 0%
Statement 4: Requirements are clearly expressed and transformed into design specifications
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 0% | <5 Years 25%
Agree 17% | Architect 40% | 5<Years<10 15%
Disagree 46% | Engineer 30% | 10 <Years<20 11%
Strongly Disagree ~ 20% | Designer 0% | Since MR Proton 22%
Don't Know 17% | Domain Expert 50% | (> 20 Years)

Other 0%
Stat it 5: The interfaces between el 1ts and between subsystems are clear
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 25% | <5 Years 25%
Agree 17% | Architect 20% | 5<Years<10 8%
Disagree 49% | Engineer 10% | 10 <Years<20 22%
Strongly Disagree 6% | Designer 29% | Since MR Proton 22%
Don't Know 29% | Domain Expert 0% | (=20 Years)

Other 0%
Stat it 6: You are familiar with most design principles and techniques (e.g. calibrations)
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 11% | Manager/Leader 38% | <5 Years 25%
Agree 37% | Architect 100% | 5<Years<10 38%
Disagree 26% | Engineer 60% | 10 <Years<20 44%
Strongly Disagree 3% | Designer 14% | Since MR Proton 78%
Don't Know 23% | Domain Expert 50% | (> 20 Years)

Other 33%
Stat it 7: The relation between design principles and derived budgets is clear to you
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 3% | Manager/Leader 38% | <5 Years 25%
Agree 34% | Architect 100% | 5<Years<10 23%
Disagree 31% | Engineer 20% | 10 <Years<20 44%
Strongly Disagree 9% | Designer 14% | Since MR Proton 56%
Don't Know 23% | Domain Expert 50% | (> 20 Years)

Other 33%

Table A.1: Development Challenges I
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Stat t1: A text-based doc t is preferred to a model-based description for the system desig
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 9% | Manager/Leader 50% | <5 Years 50%
Agree 26% | Architect 20% | 5<Years<10 23%
Disagree 23% | Engineer 30% | 10 <Years< 20 44%
Strongly Disagree  14% | Designer 14% | Since MR Proton 33%
Don’t Know 29% | Domain Expert 100% | (> 20 Years)

Other 33%
Stat t 2: The size of a doc t is not an issue for its use (e.g. number of pages)
General Response Strongly AgreefAgree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 11% | Manager/Leader 25% | <5 Years 25%
Agree 40% | Architect 40% | 5<Years<10 62%
Disagree 29% | Engineer 80% | 10 <Years< 20 78%
Strongly Disagree 0% | Designer 43% | Since MR Proton 2%
Don’t Know 20% | Domain Expert 100% | (> 20 Years)

Other 33%
Statement 3: Semantics and domain-specific jargon in documents is not a problem
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 9% | Manager/Leader 50% | <5 Years 50%
Agree 43% | Architect 80% | 5<Years<10 69%
Disagree 20% | Engineer 60% | 10 <Years< 20 44%
Strongly Disagree 0% | Designer 43% | Since MR Proton 33%
Don't Know 29% | Domain Expert 50% | (> 20 Years)

Other 0%
Stat t 4: You have a way (e.g. method, "tool’) that supports you when making design decisions
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 25% | <5 Years 50%
Agree 34% | Architect 40% | 5<Years<10 31%
Disagree 34% | Engineer 30% | 10 <Years< 20 33%
Strongly Disagree 6% | Designer 57% | Since MR Proton 33%
Don't Know 26% | Domain Expert 50% | (> 20 Years)

Other 0%
Stat t 5: Communication across disciplines is a problem that affects your work
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 23% | Manager/Leader 63% | <5 Years 75%
Agree 46% | Architect 80% | 5<Years<10 62%
Disagree 14% | Engineer 70% | 10 <Years< 20 89%
Strongly Disagree ~ 0% | Designer 57% | Since MR Proton 56%
Don't Know 17% | Domain Expert 100% | (> 20 Years)

Other 67%
Stat t 6: Communication across departments is a problem that affects your work
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 29% | Manager/Leader 63% | <5 Years 75%
Agree 43% | Architect 80% | 5<Years<10 69%
Disagree 9% | Engineer 80% | 10 <Years< 20 89%
Strongly Disagree ~ 0% | Designer 57% | Since MR Proton 56%
Don't Know 20% | Domain Expert 100% | (> 20 Years)

Other 67%
Stat t 7: MR system complexity is a problem when dealing with new developments
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 14% | Manager/Leader 75% | <5 Years 75%
Agree 63% | Architect 100% | 5<Years<10 85%
Disagree 9% | Engineer 60% | 10 <Years< 20 78%
Strongly Disagree 0% | Designer 86% | Since MR Proton 67%
Don't Know 14% | Domain Expert 100% | (> 20 Years)

Other 67%

Table A.2: Development Challenges I1
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Stat t 1: You are familiar with the SDS

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 20% | Manager/Leader 63% | <5 Years 50%
Agree 29% | Architect 80% | 5<Years<10 23%
Disagree 34% | Engineer 30% | 10 <Years<20 67%
Strongly Disagree ~ 17% | Designer 14% | Since MR Proton 67%
Don't Know 0% | Domain Expert 100% | (> 20 Years)

Other 67%
Stat t 2: The purpose of the SDS is clear to you
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 34% | Manager/Leader 100% | <5 Years 100%
Agree 43% | Architect 100% | 5<Years<10 54%
Disagree 23% | Engineer 60% | 10 <Years<20 78%
Strongly Disagree 0% | Designer 57% | Since MR Proton 100%
Don't Know 0% | Domain Expert 50% | (> 20 Years)

Other 100%
Stat t 3: The utility of the SDS (when and where to use it) is clear to you
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 14% | Manager/Leader 100% | <5 Years 75%
Agree 49% | Architect 100% | 5<Years<10 46%
Disagree 34% | Engineer 50% | 10 <Years<20 67%
Strongly Disagree 0% | Designer 14% | Since MR Proton 78%
Don't Know 3% | Domain Expert 50% | (> 20 Years)

Other 67%
Stat it 4: Current SDS document is useful for your work
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 50% | <5 Years 75%
Agree 29% | Architect 40% | 5<Years<10 23%
Disagree 40% | Engineer 30% | 10 <Years<20 2%
Strongly Disagree ~ 14% | Designer 0% | Since MR Proton 22%
Don't Know 17% | Domain Expert 50% | (> 20 Years)

Other 0%
Statement 5: The SDS delivers what you expect from a system specification
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 25% | <5 Years 50%
Agree 26% | Architect 20% | 5<Years<10 31%
Disagree 49% | Engineer 40% | 10 <Years<20 11%
Strongly Disagree 6% | Designer 0% | Since MR Proton 22%
Don't Know 20% | Domain Expert 50% | (> 20 Years)

Other 33%
Stat it 6: You 1d use the SDS more if it had a different format
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 6% | Manager/Leader 38% | <5 Years 25%
Agree 40% | Architect 80% | 5<Years<10 23%
Disagree 29% | Engineer 30% | 10 <Years<20 67%
Strongly Disagree 3% | Designer 43% | Since MR Proton 67%
Don't Know 23% | Domain Expert 100% | (=20 Years)

Other 33%
Stat it 7: The SDS provides you with the overview you need
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 75% | <5 Years 50%
Agree 43% | Architect 20% | 5<Years<10 46%
Disagree 40% | Engineer 40% | 10 <Years<20 H“%
Strongly Disagree  10% | Designer 43% | Since MR Proton 33%
Don't Know 17% | Domain Expert 50% | (> 20 Years)

Other 0%

Table A.3: System Design Speciﬁmtion (SDS) Evaluation 1
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Statement 1: The SDS provides you sufficient information to estimate the impact of a change in the system
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 13% | <5 Years 8%
Agree 14% | Architect 0% | 5<Years<10 23%
Disagree 57% | Engineer 40% | 10 <Years< 20 11%
Strongly Disagree 9% | Designer 0% | Since MR Proton 0%
Don’t Know 20% | Domain Expert 0% | (=20 Years)

Other 0%
Stat t 2: The budget (e.g. power budget) you have for a system aspect and the rationale is not clear
General Response Strongly AgreefAgree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 9% | Manager/Leader 50% | <5 Years 50%
Agree 43% | Architect 80% | 5<Years<10 46%
Disagree 17% | Engineer 30% | 10 <Years< 20 56%
Strongly Disagree 0% | Designer 71% | Since MR Proton 56%
Don’t Know 31% | Domain Expert 100% | (> 20 Years)

Other 0%
Stat t 3: When looking for insight on the system, there are better alternatives than the SDS
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 13% | <5 Years 25%
Agree 40% | Architect 80% | 5<Years<10 38%
Disagree 31% | Engineer 30% | 10 <Years< 20 56%
Strongly Disagree 3% | Designer 43% | Since MR Proton 33%
Don't Know 26% | Domain Expert 100% | (> 20 Years)

Other 33%
Stat t 4: The information provided by the SDS is reliable
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 38% | <5 Years 50%
Agree 40% | Architect 40% | 5<Years<10 23%
Disagree 31% | Engineer 40% | 10 <Years< 20 56%
Strongly Disagree 3% | Designer 29% | Since MR Proton 4%
Don't Know 26% | Domain Expert 50% | (> 20 Years)

Other 67%
Stat t 5: The use of the SDS should be encouraged within the organization
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 23% | Manager/Leader 88% | <5 Years 75%
Agree 63% | Architect 100% | 5<Years<10 92%
Disagree 0% | Engineer 90% | 10 <Years< 20 89%
Strongly Disagree ~ 0% | Designer 71% | Since MR Proton 78%
Don't Know 14% | Domain Expert 100% | (> 20 Years)

Other 67%
Stat t 6: The system partition used in the SDS is appropriate to your needs
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 6% | Manager/Leader 38% | <5 Years 0%
Agree 43% | Architect 40% | 5<Years<10 69%
Disagree 26% | Engineer 60% | 10 <Years< 20 56%
Strongly Disagree ~ 0% | Designer 57% | Since MR Proton 33%
Don't Know 26% | Domain Expert 100% | (> 20 Years)

Other 0%
Statement 7: It is not easy to find the information in the SDS document
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 3% | Manager/Leader 63% | <5 Years 50%
Agree 49% | Architect 60% | 5<Years<10 46%
Disagree 23% | Engineer 40% | 10 <Years< 20 67%
Strongly Disagree 0% | Designer 57% | Since MR Proton 4%
Don't Know 26% | Domain Expert 50% | (> 20 Years)

Other 33%

Table A.4: System Design Speciﬁcation (SDS) Evaluation IT
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Stat t 1: The level of detail used in the SDS is appropriate

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 50% | <5 Years 25%
Agree 43% | Architect 40% | 5<Years<10 46%
Disagree 26% | Engineer 60% | 10 <Years<20 4%
Strongly Disagree 3% | Designer 0% | Since MR Proton 44%
Don't Know 29% | Domain Expert 100% | (> 20 Years)

Other 33%
Stat t 2: Formal notation (e.g. UML) should be used in the SDS
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 3% | Manager/Leader 0% | <5 Years 0%
Agree 26% | Architect 40% | 5<Years<10 38%
Disagree 37% | Engineer 50% | 10 <Years<20 44%
Strongly Disagree 6% | Designer 43% | Since MR Proton 11%
Don't Know 29% | Domain Expert 0% | (=20 Years)

Other 0%
Stat t 3: You do not mind a different format for the SDS (e.g. A3 instead of A4)
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 6% | Manager/Leader 50% | <5 Years 0%
Agree 43% | Architect 60% | 5<Years<10 69%
Disagree 31% | Engineer 60% | 10 <Years<20 22%
Strongly Disagree 0% | Designer 43% | Since MR Proton 67%
Don't Know 20% | Domain Expert 50% | (> 20 Years)

Other 0%

Table A.5: System Design Specg‘icafim (SDS) Evaluation I11

Please rate the readability (easy to read) of the SDS

Very bad 0% | Bad 17% | Neutral 20%
Good 40% | Very good 0% | Don‘tknow  23%
Please rate the understandability (easy to understand) of the SDS
Very bad 0% | Bad 6% | Neutral 34%
Good 37% | Very good 0% | Don‘tknow  23%
Please rate the usability (easy to use) of the SDS

Very bad 0% | Bad 43% | Neutral 20%
Good 14% | Very good 0% | Don‘tknow  23%
Please rate the accuracy of information of the SDS

Very bad 0% | Bad 11% | Neutral 40%
Good 20% | Very good 0% | Don‘tknow  29%

Table A.6: System Design Specg‘icafim (SDS) Characteristics

Question: Have you or your team had situations in which having more knowledge of a specific design
principle would have prevented a problem or helped to make a better decision?

Never 14% | Onceayear 37% | Onceamonth 23%

Once a week 0% | Onceaday 0% | Don’t know 26%

Table A.7: Lack of Knowledge Sharing Impact
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Stat t 1: Reading documents ide my domain of expertise is sometimes a challenge
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 20% | Manager/Leader 100% | <5 Years 100%
Agree 60% | Architect 100% | 5<Years<10 50%
Disagree 13% | Engineer 50% | 10 <Years< 20 75%
Strongly Disagree 0% | Designer 67% | Since MR Proton 100%
Don’t Know 7% | Domain Expert 0% | (> 20 Years)
Stat t2: C ication with other disciplines or departments requires a ¢ del
General Response Strongly AgreefAgree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 47% | Manager/Leader 100% | <5 Years 100%
Agree 40% | Architect 100% | 5<Years<10 100%
Disagree 7% | Engineer 100% | 10 <Years< 20 75%
Strongly Disagree 0% | Designer 33% | Since MR Proton 75%
Don’t Know 7% | Domain Expert 100%
Statement 3: For communication, an overview of a specific topic is better than plenty of information
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 60% | Manager/Leader 100% | <5 Years 100%
Agree 33% | Architect 100% | 5 <Years<10 100%
Disagree 0% | Engineer 100% | 10 <Years< 20 75%
Strongly Disagree ~ 0% | Designer 67% | Since MR Proton 100%
Don't Know 7% | Domain Expert 100% | (> 20 Years)
Stat t 4: Finding time to read available documentation about a topic is not a problem
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 0% | <5 Years 0%
Agree 7% | Architect 17% | 5<Years<10 0%
Disagree 53% | Engineer 0% | 10 <Years<20 25%
Strongly Disagree  33% | Designer 0% | Since MR Proton 0%
Don't Know 7% | Domain Expert 0% | (=20 Years)
Stat t 5: Documents are useful during discussions
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 13% | Manager/Leader 67% | <5 Years 67%
Agree 40% | Architect 50% | 5<Years<10 75%
Disagree 40% | Engineer 50% | 10 <Years< 20 25%
Strongly Disagree ~ 0% | Designer 33% | Since MR Proton 50%
Don't Know 7% | Domain Expert 100% | (> 20 Years)
Stat t 6: In my meetings there is usually a model to support the discussion
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 33% | <5 Years 33%
Agree 20% | Architect 17% | 5<Years<10 0%
Disagree 60% | Engineer 0% | 10 <Years< 20 0%
Strongly Disagree  13% | Designer 33% | Since MR Proton 50%
Don't Know 7% | Domain Expert 0% | (=20 Years)
Stat t 7: Insight obtained at meetings is captured effectively
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 0% | Manager/Leader 0% | <5 Years 0%
Agree 7% | Architect 0% | 5<Years<10 0%
Disagree 67% | Engineer 0% | 10 <Years< 20 0%
Strongly Disagree  20% | Designer 33% | Since MR Proton 25%
Don't Know 10% | Domain Expert 0% | (=20 Years)
Stat t 8: Usually I do not have the right information to make a (correct) decision
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 13% | Manager/Leader 0% | <5 Years 0%
Agree 20% | Architect 50% | 5<Years<10 25%
Disagree 53% | Engineer 50% | 10 <Years<20 50%
Strongly Disagree ~ 7% | Designer 0% | Since MR Proton 50%
Don't Know 10% | Domain Expert 100% | (> 20 Years)

Table A.8: A3 Architecture Overview: Communication Challenges I
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General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 27% | Manager/Leader 100% | <5 Years 67%
Agree 33% | Architect 67% | 5<Years<10 50%
Disagree 33% | Engineer 50% | 10 <Years<20 50%
Strongly Disagree 0% | Designer 33% | Since MR Proton 75%
Don’t Know 7% | Domain Expert 0% | (=20 Years)

Statement 2: ...yet I do not find the information I need

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 7% | Manager/Leader 100% | <5 Years 100%
Agree 60% | Architect 67% | 5<Years<10 75%
Disagree 27% | Engineer 100% | 10 <Years< 20 50%
Strongly Disagree 0% | Designer 33% | Since MR Proton 50%
Don't Know 7% | Domain Expert 0% | (>20 Years)

Stat t 3: There are not enough design review tings

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 13% | Manager/Leader 67% | <5 Years 33%
Agree 33% | Architect 67% | 5<Years<10 50%
Disagree 40% | Engineer 50% | 10 <Years<20 50%
Strongly Disagree 0% | Designer 0% | Since MR Proton 50%
Don't Know 13% | Domain Expert 0% | (=20 Years)

Stat 1t 4: It is hard to visualize the impact of a local change in the system

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience
Strongly Agree 27% | Manager/Leader 67% | <5 Years 67%
Agree 33% | Architect 83% | 5<Years<10 50%
Disagree 27% | Engineer 50% | 10 <Years<20 75%
Strongly Disagree 0% | Designer 33% | Since MR Proton 50%
Don't Know 13% | Domain Expert 0% | (=20 Years)

Table A.9: A3 Architecture Overview: Communication Challenges I1

Please rate the readability (easy to read) of current doc ts you use

Very bad 0% | Bad 27% | Neutral 40%

Good 27% | Very good 0% | Don‘tknow 7%

Please rate the und dability (easy to understand) of current documents you use
Very bad 0% | Bad 20% | Neutral 47%

Good 27% | Very good 0% | Don'tknow 7%

Please rate the usability (easy to use e.g. at meetings) of current doc ts you use
Very bad 0% | Bad 47% | Neutral 33%

Good 7% | Very good 7% | Don‘tknow 7%

Please rate the adequate amount of information of current doc ts you use

Very bad 0% | Bad 20% | Neutral 40%

Good 33% | Very good 0% | Don'tknow 7%

Table A.10: Current Documentation Used: Characteristics
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Stat t 1: The notation used in the A3s is complicated

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 0% | Manager/Leader 0% | <5 Years 0%
Agree 20% | Architect 50% | 5<Years<10 25%
Disagree 67% | Engineer 0% | 10 <Years< 20 25%
Strongly Disagree 7% | Designer 0% | Since MR Proton 25%
Don't Know 7% Domain Expert 0% (> 20 Years)

Stat t 2: Having the same layout / structure among A3 Architecture Overviews makes it easier to read other A3
General Response Strongly AgreefAgree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 20% | Manager/Leader 100% | <5 Years 75%
Agree 60% | Architect 83% | 5<Years<10 100%
Disagree 13% | Engineer 50% | 10 <Years< 20 50%
Strongly Disagree 0% | Designer 67% | Since MR Proton 75%
Don't Know 7% Domain Expert 100% (> 20 Years)

Table A.11: A3 Architecture Overview: Contents & Structure

Please, rate how useful the following elements of the A3 Architecture Overview are:

Functional View

Usel 0% Little Use 0% | Neutral 13%
Useful  53% | VeryUseful 27% | Don'tknow 7%
Visual Aids

Usel 0% Little Use 0% | Neutral 0%
Useful  60% | VeryUseful 33% | Don‘tknow 7%
Quantification View

Useless 0% | Little Use 13% | Neutral 27%
Useful  47% | Very Useful 7% | Don'tknow 7%
Physical View

Useless 0% | Little Use 7% | Neutral 7%
Useful  33% | VeryUseful 47% | Don'tknow 7%
Annotations (Design Constraints)

Useless 0% | Little Use 0% | Neutral 40%
Useful  47% | Very Useful 7% | Don'tknow 7%
Color

Useless 0% | Little Use 7% | Neutral 13%
Useful  73% | Very Useful 0% | Don'tknow 7%
Legend

Useless 0% | Little Use 0% | Neutral 27%
Useful  53% | VeryUseful 13% | Don'tknow 7%
A3 Summary (Text View)

Useless 0% | Little Use 7% | Neutral 13%
Useful  73% | Very Useful 0% | Don'tknow 7%
Links within Views (e.g. numbers)

Useless 0% | Little Use 0% | Neutral 27%
Useful  60% | Very Useful 7% | Don'tknow 7%

Table A.12: A3 Architecture Overview: Elements
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Stat t 1: The A3 size is a problem for its use

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 7% | Manager/Leader 0% | <5 Years 0%
Agree 13% | Architect 33% | 5<Years<10 0%
Disagree 80% | Engineer 0% | 10 <Years< 20 25%
Strongly Disagree 7% | Designer 0% | Since MR Proton 25%
Don’t Know 0% | Domain Expert 0% | (=20 Years)

Stat t 2: I like the idea of having different views within the same A3

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 27% | Manager/Leader 100% | <5 Years 100%
Agree 73% | Architect 100% | 5<Years<10 100%
Disagree 0% | Engineer 100% | 10 <Years<20 100%
Strongly Disagree 0% | Designer 100% | Since MR Proton 100%
Don't Know 0% | Domain Expert 100% | (> 20 Years)

Stat t 3: To learn a new topic, I think a regular doc t is as good as an A3 Architecture Overview

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 13% | Manager/Leader 0% | <5 Years 33%
Agree 13% | Architect 17% | 5<Years<10 50%
Disagree 60% | Engineer 0% | 10 <Years<20 0%
Strongly Disagree  13% | Designer 67% | Since MR Proton 25%
Don't Know 0% | Domain Expert 100% | (=20 Years)

Stat it 4: I don’t see the value of having the information within an A3 instead of on several A4 pages

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 7% | Manager/Leader 0% | <5 Years 0%
Agree 7% | Architect 33% | 5<Years<10 25%
Disagree 60% | Engineer 0% | 10 <Years<20 0%
Strongly Disagree ~ 27% | Designer 0% | Since MR Proton 25%
Don't Know 0% | Domain Expert 0% | (=20 Years)

Statement 5: I would like an A3 Architecture Overview of my current work

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 7% | Manager/Leader 33% | <5 Years 33%
Agree 73% | Architect 83% | 5<Years<10 75%
Disagree 7% | Engineer 100% | 10 <Years<20 100%
Strongly Disagree 7% | Designer 100% | Since MR Proton 100%
Don't Know 7% | Domain Expert 100% | (=20 Years)

Statement 6: I would use the A3 Architecture Overview as a discussion tool (e.g. at meetings)

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 27% | Manager/Leader 100% | <5 Years 100%
Agree 60% | Architect 100% | 5<Years<10 75%
Disagree 13% | Engineer 100% | 10 <Years<20 100%
Strongly Disagree 0% | Designer 67% | Since MR Proton 75%
Don't Know 0% | Domain Expert 0% | (=20 Years)

Statement 7: I would use the A3 Architecture Overview as a collaboration tool (e.g. share knowledge among disciplines)

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 27% | Manager/Leader 100% | <5 Years 100%
Agree 73% | Architect 100% | 5 <Years<10 100%
Disagree 0% | Engineer 100% | 10 <Years<20 100%
Strongly Disagree 0% | Designer 100% | Since MR Proton 100%
Don't Know 0% | Domain Expert 100% | (=20 Years)

Stat 1t 8: I rather read a doc t than an A3 Architecture Overview

General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 7% | Manager/Leader 0% | <5 Years 33%
Agree 13% | Architect 17% | 5<Years<10 25%
Disagree 60% | Engineer 50% | 10 <Years< 20 25%
Strongly Disagree ~ 20% | Designer 33% | Since MR Proton 0%
Don't Know 0% | Domain Expert 0% | (=20 Years)

Table A.13: A3 Architecture Overview: Communication Tool I
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Stat t 1: I would like to have more A3 Architecture Overviews of other system aspects

General Response Strongly AgreefAgree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 27% | Manager/Leader 100% | <5 Years 67%
Agree 60% | Architect 83% | 5<Years<10 75%
Disagree 13% | Engineer 100% | 10 <Years< 20 100%
Strongly Disagree 0% | Designer 67% | Since MR Proton 100%
Don't Know 0% | Domain Expert 100% | (> 20 Years)

Stat t 2: A3 Architecture Overviews can be used to estimate and ¢ icate the impact of a change in the system
General Response Strongly Agree/Agree per Job Title Strongly Agree/Agree per Experience

Strongly Agree 13% | Manager/Leader 33% | <5 Years 67%
Agree 73% | Architect 100% | 5 <Years<10 75%
Disagree 13% | Engineer 50% | 10 <Years<20 75%
Strongly Disagree 0% | Designer 100% | Since MR Proton 100%
Don’t Know 0% | Domain Expert 100% | (> 20 Years)

Table A.14: A3 Architecture Overview: Communication Tool 11

Please rate the readability (easy to read) of A3 Architecture Overviews you used

Very bad 0% | Bad 0% | Neutral 27%

Good 53% | Verygood 20% | Don‘tknow 0%

Please rate the understandability (easy to understand) of A3 Architecture Overviews you used
Very bad 0% | Bad 7% | Neutral 33%

Good 53% | Very good 7% | Don‘tknow 0%

Please rate the usability (easy to use e.g. at meetings) of A3 Architecture Overviews you used
Very bad 0% | Bad 0% | Neutral 13%

Good 73% | Verygood 13% | Don‘tknow 0%

Please rate the adequate amount of information of A3 Architecture Overviews you used

Very bad 0% | Bad 0% | Neutral 27%

Good 67% | Very good 7% | Don‘tknow 0%

Table A.15: A3 Architecture Overview: Characteristics

Strong Points for Users

- Good communication tool.
- It does indeed provide overview.

by everyone.

is the main motivation for adopting
- It is very useful in meetings.

- Gives very good insight in the impact of the system (also for managers).

- The value of the approach is expected to be strongly amplified when used

- The lack of drawings in current documentation and during meetings to communicate

this approach.

- It is useful to have a compact way to present information.

Weak Points for Users

- Still very much information.

- In occasions it requires explanation by an expert to fully understand the concept.
- There is some clutter in the overviews (e.g. color)
- The use of color is incompatible with Black&White printers.

- An A3 may not be sufficient to be a self-explanatory document.

Table A.16: A3 Architecture Overview User Evaluation
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Statement 1: It is difficult to create an A3 Architecture Overview

Strongly Agree | 0%  Agree | 25% | Disagree | 50% | Strongly Disagree | 25% |
Stat t 2: It would have been easier to write a text doc t

Strongly Agree | 0%  Agree | 0% | Disagree | 100% | Strongly Disagree | 0% |
Statement 3: ... and the value would be similar

Strongly Agree | 0%  Agree | 0% | Disagree | 75% | Strongly Disagree | 25% |
Stat t 4: T will rece d the approach to other people

Strongly Agree | 75% Agree | 25% | Disagree | 0% | Strongly Disagree | 0% |

Statement 5: Some steps were hard (e.g. creating a functional view)
Strongly Agree | 0%  Agree | 75% | Disagree | 25% | Strongly Disagree

0%

Statement 6: People find my A3 Architecture Overview more interesting than a document

Strongly Agree | 25% Agree | 75% | Disagree | 0% | Strongly Disagree | 0% |
Statement 7: Having a predefined structure is of help during the creation process

Strongly Agree | 25% Agree | 75% | Disagree | 0% | Strongly Disagree | 0% |
Stat t 8: I think there is enough information in my A3 Architecture Overview

Strongly Agree | 50% Agree | 50% | Disagree | 0% | Strongly Disagree | 0% |
Stat t 9: 1 missed the support of a SW tool during the creation process

Strongly Agree | 0%  Agree | 0% | Disagree | 0% | Strongly Disagree | 100% |
Stat t 10: I think it will help me to communicate better to other stakeholders

Strongly Agree | 25%  Agree | 50% | Disagree | 25% | Strongly Disagree | 0% |
Stat t 11: I think it is hard to transfer / teach the approach to other people

Strongly Agree | 25% Agree | 0% | Disagree | 25% | Strongly Disagree | 50% |
Statement 12: The creation effort it too high for the benefits it brings

Strongly Agree | 0%  Agree | 0% | Disagree | 25% | Strongly Disagree | 75% |
Stat t 13: People have problems understanding my A3 Architecture Overview

Strongly Agree | 0%  Agree | 0% | Disagree | 75% | Strongly Disagree | 25% |
Stat t 14: It is hard to incorporate it in my regular activities

Strongly Agree | 0%  Agree | 0% | Disagree | 75% | Strongly Disagree | 25% |
Stat t 15: I will keep using the approach in future projects

Strongly Agree | 25% Agree | 75% | Disagree | 0% | Strongly Disagree | 0% |
Stat t 16: I see the value of using an A3 sheet instead of several A4 sheets

Strongly Agree | 0%  Agree | 100% | Disagree | 0% | Strongly Disagree | 0% |

Strong Points for Creators

- Attractive, visual, limited amount of information but of high quality.

- Overview in uniform form, other subsystems look similar (layout).

- Overview triggers "“oh yeah, we must not forget ...” remarks.

- Approach is nice, could be used for more than architecture only.

- If the output of simulations can be (automatically) incorporated to the A3, the A3s could become
interactive, and then I expect will be used very heavily.

- Maybe we should have a similar approach for designs as well.

- Limited information allowed, guidance in structure and quantification.

- Forces one to be terse.

- Is graphical in nature.

‘Weak Points for Creators

- The quality of the A3 depends on the person who creates it.

- Tailored to architecture, thus many details cannot be included.

- Somehow the A3s give people the impression I know /have all the details on the topic.

- Maybe make the A3s digital (hyper linked).

- I often encounter is questions like: “what if we change ...". Basically those questions all ask for simulations.
Most people are designers and work on details. So very quickly they also ask me for details.
- No guarantee: people can make lousy A3s.

- Based on paper but the community is electronic.

- Cross referencing is a problem.

Table A.17: A3 Architecture Overview Creation Evaluation




Appendix B

Requirements Analysis

In this Appendix we evaluate whether the A3 Architecture Overview supports effective com-
munication in product evolution, and whether it is applicable in an industrial environment.
Observations and feedback from the surveys (see Appendix A), presented in Figure 11.1, are
used to evaluate whether the A3 Architecture Overview meets the requirements presented in
Table 6.2.

B.1 A3 Architecture OQverview as an Effective Communication Tool

B.1.1 PRACTICAL INDUSTRIAL REQUIREMENTS OF COMMUNICATION TOOLS

Has small overhead —  According to the creators of A3 Architecture Overviews, the cre-
ation of A3 Architecture Overviews is not difficult. All practitioners who created an A3 Archi-
tecture Overview (see Table 10.2) stated that creating an A3 Architecture Overview was easier
than creating a text document, and that the task of creating A3 Architecture Overviews can be
easily incorporated in their daily activities. In addition, the creation effort was considered not
high it for the benefits that having A3 Architecture Overview provides.

The learning process to use and to create A3 Architecture Overviews does not require
much time. Almost no guidance is required to create an A3 Architecture Overview!. People
from different disciplines started creating them with little or no training.

Does not depend on custom-made software tools — The creation, visualization, and use of
A3 Architecture Overviews do not require the use of custom-made software tools. The way
practitioners use, visualize, or create their A3 Architecture Overview is up to them. Ms Visio,
Ms Word, modeling tools, or just paper and pencil are needed to create an A3 Architecture
Overview. During the creation of A3 Architecture Overviews, none of the practitioners who
created A3 Architecture Overviews missed the support of a software tool.

Provides trusted output — The A3 Architecture Overview guidelines encourages the
creators to provide credibility estimations for their input, e.g. such as by using color-coding
to differentiate levels of confidence (see Figure 8.5(a)). An A3 Architecture Overview also
provides information about the A3 Architecture Overview author such as contact details, as
well as information regarding other experts that can be consulted to back up the information
provided by the A3 Architecture Overview. The trust on the data however, as indicated by
practitioners, depend on the person that has created the A3 Architecture Overview, which
can result in poor estimations.

Works even with incomplete input — An A3 Architecture Overview does not need to be
complete to be used. Even with incomplete information an A3 Architecture Overview can be
used to communicate knowledge; in fact, it is encouraged to use it from the very beginning to

The A3 Architecture Overview Cookbook (see Appendix D) was provided when no training was given
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gather additional information. Most A3 Architecture Overview creators stated that their A3
Architecture Overview had enough information to be used (even when the A3 Architecture
Overviews were not finished), and that the users of their A3 Architecture Overviews did not
have trouble understanding them.

It is easy to use —  As stated in Section 10.2, an A3 Architecture Overview is more usable
than a traditional document (although this does not automatically mean it is easy to use). In
theory, an A3 Architecture Overview is easy to use as it only requires to use a single sheet
of paper, which can be printed or visualized on a screen. The majority of A3 Architecture
Overview users did not perceive the sheet size as a problem for its use.

During the participation in the different projects at Philips Healthcare MRI (see Section
10.1), A3 Architecture Overviews were sent to experts to be used during meetings and or
discussions, with little or no explanation about the A3 Architecture Overview itself. Experts
attended the meetings with annotations in their A3 Architecture Overviews that triggered
discussions and increased the A3 Architecture Overview content. No explanations about the
use of A3 Architecture Overviews was needed during these meetings.

It is appealing —  All users stated that they like the idea of having different views within
the same A3. Most of them also stated that to learn a new topic, an A3 Architecture Overview
is preferred to other means such as text documents, and that reading an A3 Architecture
Overviews is preferred to reading a document. Finally, most of them stated that they would
like to have an A3 Architecture Overviews of their current work, and of other system aspects.
This shows an interest from practitioners in the tool. Those practitioners who created A3
Architecture Overviews stated that they will recommend the approach to other people, and
that they will keep using it in their future projects.

B.1.2 DESIRED PROPERTIES OF COMMUNICATION TOOLS

Provides limited amount of information — The A3 Architecture Overview physical design
uses an A3 sheet size. Forcing the A3 size limits the amount of information that can be
provided. From the feedback obtained from the A3 Architecture Overview users, we see
that they appreciate using an A3 instead of several sheets to display knowledge. We also see
that the A3 size displays an adequate amount of information for most users. Creators of A3
Architecture Overviews (see Table 10.2) stated the value of using an A3 when consolidating
their knowledge.

Uses visual representations — The A3 Architecture Overview design encourages the use
of visual representations to display architecture information. In addition, the A3 Architecture
Overview provides explicit visual aids to support the understanding of the information within
the A3 Architecture Overview. According to users, the visual aid(s) was the A3 Architecture
Overview element was most useful. Creators of A3 Architecture Overviews also stated that a
strong point of the tool is that “it is attractive, visual, and limited amount of information but of high
quality”, that “it is graphical in nature”, etc.

Uses an appropriate size to display complex information — An A3 fits well within the field
of view, even if this field is reduced in the presence of complex information. Experiences in
the use of other sizes during real projects showed that the A3 is better size to display complex
information that bigger or smaller size (this is also supported by Toyota’s A3 Reports, see
Section 5.2.2).
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Keeps the notation simple — The A3 Architecture Overview does not use standard no-
tations but a simple one to represent architecture knowledge, such as natural language and
visual representations. Most users of A3 Architecture Overviews stated that the notation used
in the A3 Architecture Overviews provided was not difficult to understand. However, half
of architects, which are also users of the A3 Architecture Overview, did not find the notation
easy.

When compared with traditional documents, an A3 Architecture Overview is easier to
understand. Creators of A3 Architecture Overviews stated that people who used their A3
Architecture Overviews did not have troubles understanding them.

Limits the amount of visual attributes and ensures differences among them —  The guidelines
to create readable A3 Architecture Overviews provided in Section 9.5 limit the amount of
visual attributes such as shapes, colors, etc, to a comfortable number. In addition, those
guidelines state the need for explicit differentiation among attributes, such as using different
shapes for functional and physical elements.

A simple way to ensure differentiation among visual attributes is by using color, which
is one of the ways in which A3 Architecture Overviews difference attributes. Users of A3
Architecture Overviews stated that the use of color was useful when reading A3 Architecture
Overviews. However, as stated by some users, color coding should be used with care, as color
clutter may happen if the colors are not chosen wisely.

Keeps a consistent way of communication — The A3 Architecture Overview uses a consis-
tent way of communication. First by having a fixed physical design (an A3), and second by
providing a predefined format to display the architecture knowledge. Users stated that the
A3 size is not a problem for its use, and that an A3 is more valuable than using several A4.
They also stated that having a predefined format in the A3 was of great help for the reader
when finding the information, making it easier to read other A3s. Creators of A3 Architecture
Overviews also stated that they saw the value in using an A3 to capture their knowledge, as
well as having a predefined structure during the creation process.

Provides a shared view —  Instead of creating different representations for different stake-
holders, the A3 Architecture Overview aims to provide a single shared multi-view of the sys-
tem that is understood by a wide variety of stakeholders. For understanding, as stated in
previous paragraphs, the notation is kept simple and the use of visual attributes encouraged.
Users of A3 Architecture Overviews stated that they would use an A3 Architecture Overview
as a collaboration tool with other disciplines, as it is easier to understand than traditional
documents, and the visual attributes help in shared understanding.

Enables a flexible way to share knowledge — A flexible knowledge sharing tool should
be easily adapted to cope with the user’s preferred ways to share knowledge. As shown
in Chapter 10, the A3 Architecture Overview was adapted to cope with different ways to
share knowledge. The A3 Architecture Overview enables creators to use their preferred
style, visualization methods (e.g. 3D model for the physical view), etc, to share architecture
knowledge.

Improves existing written mechanisms — The A3 Architecture Overview is a written
mechanism. If we consider existing written mechanism traditional documents (and not i.e.
Wikis), we showed in Section 10.2 that A3 Architecture Overviews when compared with
traditional documents they were perceived to be more readable, usable, understandable and
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with a more adequate amount of information. This means that in this context, we can consider
A3 Architecture Overviews as an improvement over existing written mechanism.

B.2 A3 Architecture Overviews Tailored to the Architecting Process

Supports the creativity of architects — As shown in the A3 Architecture Overviews ex-
amples of Section 10.4 (see Figures 10.4, 10.5, 10.9, 10.11), each practitioner applied a differ-
ent style when creating his A3 Architecture Overview. It can be observed that although all
them followed the guidelines to create A3 Architecture Overviews, they could still apply their
preferred styles. We can observe for example the use of black&white, different fonts, pre-
ferred modeling tools (e.g. 3D CAD models), etc, resulting in personalized A3 Architecture
Overviews. Although we cannot state that the A3 Architecture Overview directly supports
the creativity of architects, the A3 Architecture Overview does not constrain it by allowing
enough flexibility to represent knowledge in a flexible way.

It is used by a wide variety of stakeholders — During the projects performed at Philips
Healthcare the A3 Architecture Overview was used to share knowledge with a wide variety
of stakeholders. Different stakeholders were able to use it without problems, despite their
background or experience. It was stated by most users from different disciplines that they
would use the A3 Architecture Overview as a collaboration and communication tool with
other stakeholders.

Does not take too much time from architects — Creating an A3 Architecture Overview
is easier than creating a text document according to all practitioners who created an A3
Architecture Overview. All of them stated that having a predefined structure was of great
help during the creation process. They all stated that it is not hard to incorporate the creation
of A3 Architecture Overviews into their regular activities, and consequently they all will keep
using the approach in the future. The time required to create an A3 Architecture Overview
diminishes with practice. It may take only a few hours to create an A3 Architecture Overview
for an experienced practitioner.

Encourages the dissemination of knowledge —  As stated in Section 5.1.2, one of the main
reasons why knowledge is not shared -and consequently disseminated- is because it is
considered a hard process. The A3 Architecture Overview aims to provide a simple (yet
effective) way to consolidate knowledge. According to practitioners, creating them is not hard,
and the value they obtain from the A3 Architecture Overview is high for the effort required to
create them. They all stated that they will keep using the tool in future projects, and that they
will recommend the tool to other people. Philips Healthcare MRI management encourages
now the creation of A3 Architecture Overviews to project leaders.

On the other side, the A3 Architecture Overview aims to make the knowledge easy to
read and appealing, so the stakeholders receive the knowledge. As stated before (see Section
B.1.1), the A3 Architecture Overview is appealing to users, therefore, encouraging them to
read the knowledge provided. During the projects at Philips Healthcare MRI, people attended
the meetings having read the A3 Architecture Overviews provided. Most users stated that
they would like to have more A3 Architecture Overviews; both from their current work, and
from other system aspects.
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Delivers the right information to the stakeholders while keeping the irrelevant part low — An
A3 Architecture Overview limits the amount of information that can be delivered, encour-
aging to keep only the essential information. Focus is on delivering the right information,
while irrelevant information is excluded due to the limits imposed by the A3. Users stated
that among the strong points of the A3 Architecture Overview there is the fact that it provides
limited information but of high quality, and that forces to be specific.

Ensures that the information is conveyed and interpreted correctly — The A3 Architecture
Overview uses natural language and visual representations to avoid the need for domain or
specific modeling languages. By using visual representations, the A3 Architecture Overview
aims to remove the ambiguity that purely textual representations may have.

By using simple notation, the A3 Architecture Overview aims to make the information
contained easier to read (see Section B.1.2). Although most A3 Architecture Overview users
stated that the notation was not complicated, half of the architects stated that the notation
was sometimes complicated (no other stakeholder stated is was complicated). As the A3
Architecture Overview is targeted mainly to architects, the A3 Architecture Overview may
have not fully met this requirement?.

Records changes to the architecture knowledge repository — As Stated in Section 8.3, a
set of A3 Architecture Overviews forms a repository of architectural knowledge. By know-
ing which A3 Architecture Overviews are changed, changes to the architecture knowledge
repository can be recorded. There are however some issues that that makes difficult to meet
this requirements. As stated by some practitioners, cross referencing among A3 Architecture
Overviews may lead to problems when changing the repository; a change in one A3 Archi-
tecture Overview may require to update other A3 Architecture Overviews (e.g. the reference
section), leading to some problems when changing the architecture knowledge repository. As
this is a manual process, required changes may be overlooked if the responsible of the reposi-
tory is not aware of them.

Retrieves architectural knowledge stored in the head of people — The Reverse Architecting
process along with the A3 Architecture Overview aims to make implicit knowledge explicit.
By being easy to create, of high value, people can incorporate the task of creating A3 Archi-
tecture Overviews into their regular activities. In addition, as shown in Figure 10.6, an A3 Ar-
chitecture Overview enables to capture the knowledge produced at meetings or discussions,
enabling to capture what is stored in the head of people.

Enables reusing knowledge from previous experiences and products in current developments —
To support the evolution of complex systems is the ultimate goal of an A3 Architecture
Overview. For that, focus of the A3 Architecture Overview is on architecture knowledge
(see Section 4.2.1). By making this knowledge explicit, it can be reused in new generations
of products.

Helps keeping a structured overview of what has been communicated with a stakeholder — If
A3 Architecture Overviews are used as means of communication with the stakeholders, it
is easy to know what has been communicated to the stakeholders -the contents of the A3
Architecture Overviews used-. By knowing which A3 Architecture Overviews have been used

2This clearly supports the statement of Section 4.1.2, in which we found that architects look for -very- simple solutions.
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to communicate with the stakeholders, it is possible to keep an overview of what has been
communicated with them.

B.4 A3 Architecture Overviews Mitigate Evolution Barriers

Supports management of system complexity — A3 Architecture Overviews provide man-
ageable sets of information. The limited dose of information each A3 Architecture Overview
provides aims to prevent information overload. By partitioning the system knowledge in
small doses, the A3 Architecture Overview tries to help managing system complexity by mak-
ing it easier to digest the large amount of information to the user.

Prevents lack of system overview — An A3 Architecture Overview is designed to provide
only the essential information, it is to say, an overview of the needed information. In addition
to that, one of its goals is to maintain a system view (see Section 8.1), for that, an A3
Architecture Overview provides several views within the same sheet of paper, which is also a
way to provide overview (all the views can be visualized at a glance). Most users consider that
an A3 Architecture Overview has an adequate amount of information and all of them liked
the idea of combining several views within the same A3.

Deals with ineffective knowledge sharing —  As stated in Section 4.2.2, most approaches to
support knowledge sharing fail mainly because they do not deliver all relevant architecture
knowledge such as design decisions and rationale, and because they are developed from a
technology perspective -which is usually not the preferred way of architects- without ensuring
that the knowledge is effectively communicated to the stakeholders.

An A3 Architecture Overview delivers all the types of information that belongs to the ar-
chitecture knowledge (see Section 4.2.1), and it is structured in a fashion that ensures that all
elements of architecture knowledge have a place within the A3. In addition, an A3 Architec-
ture Overview is a written approach -therefore not developed from a technology perspective-
that takes into account human and organizational factors that affect communication and pro-
vide means to cope with them.

Helps finding the required system information — Information is hard to find because it has
no meaningful structure [Koniger and Janowitz, 1995]. An A3 Architecture Overview aims to
gather all relevant system information in one physical place. In addition, it provides a clear
structure to allocate different types of information within the A3. Most of the users valued
having the system information within the same A3 instead of having it spread within several
A4, and stated that having a predefined structure was of help while reading A3 Architecture
Overviews.

Supports communication across disciplines and departments —  As stated in Section 5.1.2, one
problem of communication is the perturbation produced by “architecture noise”. In addition
to the architecture noise, another problem of communication is the lack of a shared model of
the system. As stated before, an A3 Architecture Overview is designed to provide a shared
model, in a fashion that avoids -to some extent- architecture noise. As an A3 Architecture
Overview is meant for easy use, it can be taken to meetings and used as a tool to communicate.
Most practitioners who created an A3 Architecture Overview for their work believe that an
A3 Architecture Overview will help them to communicate better with other disciplines and
departments.
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Supports moving from incremental development to top-down architecting —  As stated in Sec-
tion 3.4.2, every system has an architecture. An architecture, once consolidated in an architec-
ture representation is a key artifact to support the architecting process. The A3 Architecture
Overview focuses on architectures, and is tailored to the architecting process. An A3 Archi-
tecture Overview is meant to assist architects in their duties, and to cover their specific needs.
Once A3 Architecture Overviews are created, they can be used as an architecting tool that
architects can use to architect new generation of systems. Having the architecture explicit en-
ables the process of moving from bottom-up development to top-down architecting.

Reduces learning curve — Reading documents outside one’s domain of expertise is a
challenge, and the time people can spend reading documents to learn about new topics is very
limited. An A3 Architecture Overview has been pointed by users as better way for learning
about a new topic than other means such as documents. It was stated by users that they prefer
to read an A3 Architecture Overview than a document, especially when learning about a new
topic. In addition, a visual representation is usually more effective for learning than plain
text, as it is retained better by the reader [Koning, 2008]. As an A3 Architecture Overview
encourages the use of visual representations, it is probably best suited for learning than purely
text documents. According to the users, the visual aids within the A3 Architecture Overview
are the most valuable element.

Supports to estimate the impact of change—  Estimate the impact of change is hard. It is also
difficult to visualize the impact of a change in the system for a large part of the practitioners.
An A3 Architecture Overview provides different views of a specific system aspect, from a sys-
tem point of view. An A3 Architecture Overview enables to foresee the impact that a change
may have on the system from different views (e.g. functionality, physical), and provides num-
bers to estimate the impact to the key parameters. As an A3 Architecture Overview is mostly
visual, it also helps visualizing the impact. Most A3 Architecture Overview users stated that
the A3 Architecture Overview can be used to estimate the impact of change.

Deals with the mono-disciplinary focus of developers — An A3 Architecture Overview
brings together the concerns of many stakeholders, with a notation that can be understood
by many disciplines. In addition, as an A3 Architecture Overview provides a system view,
forcing developers to look into other domains to get the complete picture of the issue at hand,
rather than a localized view.

Supports repartitioning the system — An A3 Architecture Overview makes architectures
explicit. By having an explicit artifact representing the architecture, the architect is able
to make better and informed decisions when repartitioning the system. The architect can
also communicate the repartitioning better, as well as to estimate the impact of that the
repartitioning may have on the system.






Appendix C

Frequently Asked Questions (FAQ)

Adopting new approaches and tools may produce some confusion at the beginning. The A3
Architecture Overview is no exception. In this appendix we provide some Frequently Asked
Questions (FAQ) rose when the A3 Architecture Overview has been introduced in a new
project or company. With this we hope to provide some insight on what reaction to expect
from people when introducing A3 Architecture Overviews.

Does the A3 Architecture Overview tool aims to replace existing documentation? No. It may
happen that as a consequence of creating A3 Architecture Overviews some documents
are no longer needed, yet the A3 Architecture Overview tool aims to support commu-
nication by capturing architectural knowledge. It provides an overview, not plenty of
detailed information. Documents are needed, and the A3 Architecture Overview tool
helps by giving just “small” doses of what is present in some of those documents and
implicit in experts” minds. Ideally, an A3 Architecture Overview will be “on the top’
of the pile of documents of a specific system aspect, to be used as a starting point for
learning, and as a way to communicate that system aspect with different stakeholders.

How to fit all architectural knowledge of a system aspect in an single A3 Architecture Overview?
You cannot. The aim is not to fit all knowledge but the essential one. The A3 size and
its structure forces the author to choose among all bits and pieces of information in
order to keep only the essential one. It may happen however that a few A3 Architecture
Overviews are needed to describe different viewpoints of the system aspect.

Who should create A3 Architecture Overviews? In theory anyone who needs to consolidate
and communicate specific knowledge. In case of the architectural knowledge architects
are expected to create most of them. However, as pointed out in Section 4.1.2, we
found that architects are great consumers of architectural knowledge but are reluctant to
consolidate theirs. However, as consumers of architectural knowledge they are usually
willing to review, modify and correct those A3 Architecture Overviews created. To
support architects to consolidate their knowledge a new role may be required (e.g. A3
Architecture Overview creator).

When do I know that my A3 Architecture Qverview is complete? It will probably be never
complete. The more the A3 Architecture Overview is used and the more it is reviewed
the more people will find things that should be changed, added, modified, etc. However
it should be good enough to be used as a communication tool after a the first iteration
(see Section 9.3). If after a few iterations the contents of the A3 Architecture Overview
barely changes and only minor modifications are required, at that point the A3 Archi-
tecture Overview is probably complete enough (for the time being).

Do I need to follow the step-wise guide and the proposed reverse architecting process? Not
necessarily. The guide and the reverse architecting process are aimed to provide a
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systematic way of creating A3 Architecture Overviews, however when practitioners
become proficient with the A3 Architecture Overview creation process, it becomes easier
to start directly modeling in an A3 template instead of by using a step-by-step process.

* Why not using a modeling language such as UML in the A3 Model? From the experiences
using modeling languages (see Chapter 6), we have experienced that when communica-
tion with different disciplines and departments, modeling languages are more a barrier
than a support. From the survey at Philips (see Appendix A), we found that the use of
modeling languages is only desirable by employees with background in software (e.g.
software engineers, software architects). As the development of complex systems such
as the MRI require multidisciplinary teams with different backgrounds, it is unlikely
that all members are familiar with a specific modeling language.



Appendix D

A3 Architecture Overview Cookbook

To support the creation of A3 Architecture Overviews, an A3 Architecture Overview Cook-
book was developed (which is an A3 Architecture Overview itself, as shown in Figure D.1).
The goal was twofold; first provide practitioners with an step-wise guide to support the cre-
ation of A3 Architecture Overviews (as described in Chapter 9), and secondly to provide an
A3 Architecture Overview example. Embedded in the cookbook (in the digital version) was
MS Visio templates created to support the process.

Figure D.1: A3 Architecture Overview Cookbook
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A3 Architecture Overview: Approach to capture and present system knowledge for shared
understanding and better decision-making.

A3 Summary: Structured text description of a specific chunk of system knowledge in an A3
sheet to support the A3 overview.

A3 Overview: Structured model-based description of a specific chunk system knowledge in
an A3 sheet.
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Physical View

- The A3 Architecture Overview (A3ao) get its name from
the paper size used to print it. It consist on two A3 sheets
(see picture), one with a text description and other with a
model description of a a specific chunk of knowledge
(e.g. system aspect).

FRONT (Summary)

- The A3 format has been chosen as it is considered the
maximum size that people will be willing to read to get
an overview. It encouraging focus, brevity and the use of
visual models. The goal is to keep the overview; readers
may focus on one part at a time, but they can always
see the whole.

- This format has been proven successful on Toyota's
lean production system [3].

- This cookbook presents a set of guidelines and the
template (the cookbook is the template itself) to map your |
mental model into an A3ao, that can be hopefully
understood by a broad set of stakeholders.

BACK (Model)

=i ==

A3 Architecture Overview Example

( Top-level View / System partition

- Here we present the system partition we will use to decompose our system. A system view,
even when the topic seems localized is encouraged.

- The baseline to create the system partition will be a functional view (WHAT is being done)
and a physical view (WHERE / HOW is being done). In this section we will explain the
rationale for our decomposition. elect Syste

. ", Knowledge to
- This system partition serves the reader as a

Model
starting point, and provides the rationale for
later budgeting.

ollect Syslem
Concemns

Create Top Level View

reate Delailed

IS ~ ~

Experts /

- When decomposing the top level view, there Stakeholdare

are different aspects that you may want to

highlight (e.g. when in the life-cycle this action icividusl Views
is done). For that, color coding can be used in RS ‘
both views to differentiate when in the life-cycle Paramelers

a specific action required is performed.

Create the A3AD

erate, Adapt and
Populate

Archive Computer

J

Cookbook Top-level View

Functional View

- In the functional view we want to highlight the WHAT. In this box you can use words to
clarify the functional model you have created in the overview.

- One question you should ask yourself is how deep should you go into the functional
decomposition. The limit is the A3 in itself, thus if you need more room means that you
probably are already using too much detail. Try removing non-relevant things.

- What is a function: a specific or discrete action that it is necessary fo achieve a given
objective. In the model view it is represented by VERB + NOUN within a box. The problem of
this definition is that it may lead to ambiguity. That’s why in the functional decomposition
some clarification in the form of pictures is usually needed (visual aid).

- The function should (when possible) be a transformation of inputs into outputs (which
should be present in the decomposition).

- The functional flow does not need to be accurate but descriptive (e.g. some actions can be
done in parallel in the implementation, but the goal is to provide a logical flow of actions).

- If you need / want to address a specific issue (e.g. an exception for system x), you can use
an annotation (e.g. star of the appropriate color) and write the annotation in the Design
Constraint/Decission section of the Overview.

- In the physical view we want to highlight the WHERE / HOW the action is implemented. This is
closest to the system. The top level view is used as a baseline to decompose and create a more
detailed physical view.

- You may want to allocate the main functions
here. Of special importance are the interfaces.
(e.g. Dotted lines indicate the interchange of
information/data among functions or subsystems)

- As in the previous section, if you need / want to
address a specific issue in a step (e.g. an
exception for system x), you can use an
annotation.

Control Words Generation (SW) Control Words Distribution (Network)

System Concerns

- When dealing with “System Aspect X", there are some concerns that should be taken into account
to make a good decision. Here they are made explicit so people is aware of them.

Technology Functional Business Customer
[System Partitioningj [ Usability j [ Portfolio j@%‘;;’r‘t:‘:gf:j -
(Accuracy neededj ( Budgeting j | ﬁ;éﬁ: || Cz::;?pal'i::::sl -
( Interfaces j ( Maintaibility j [ cCost ( Vs:ﬁ‘::" j -
( MR physics j [ Reusability j \-[ Aﬁgi:?;n J[Requiremants]

- A 4 layer model is used to capture those system concerns. Where to allocate those concerns is not
as important as to make those concerns explicit, so we do not forget any relevant concern out of this
A3.

Design strategies / Assumptions / Known Issues

- The size of the text boxes used here are not relevant, but the order is! Should you need
more room for e.g. introduction, you can expand horizontally or vertically, but be aware
that there will be less room for the rest!

= Design Strategies
Known issues -

References

Variable Box Size

- The common layout helps the reader identify at a glance where the information is, and
whether or not the report is interesting to him/her.

- You can also include images / pictures here! A picture is worth a thousand words, and as
we do not have room for many words, a picture might be what you need!

- When modeling, you have to take into account some basic rules: people will not
remember more than five colors, therefore if you need to make more distinctions use
shading, change the format, etc (and include that in the legend!). Icons (such as a star) are
also a good way to make people remember a specific thing.

- You can't put everything you know about this topic in this A3! So do not try to do it. You
may think that there is an important aspect that has been neglected. In that case, you
should think whether it belongs to other system aspect and make a explicit link to it (in
References).

, Key Parameters & Requirements

- Above concerns can be transformed into specific key parameters.

- More key parameters that we are willing to admit can be quantified. There is probable not a
straightforward way to quantify it, but we can make at least approximations that lead to the correct
figures of merit. It is better to have a rough estimation from an expert than to rely on gut feeling.

- You should decide whether the key parameter can be described or easily estimated (e.g. stretch
time 1ms), in which case it should be placed here. If you need a more complex description or
decomposition (e.g. impact on image quality) in that case you should place it on the quantification
view in the model view.

- Should there be requirements on this key parameter, this is the place to make it explicit.

Roadmap

- Present: How are we implementing this today?
- Past: How did we implemented it in the past?

- Future: Do we expect some changes in the future? Are there some issues that we need
to deal with in the future?

References
- Experts: Guru 1 (guru1@philips.com), Guru N (guruN@philips.com)

- Documents: [1] Referenced doc / model (XJS157-2555), [2] Referenced doc / model
(XJS154-0877)

- Other documents: [3] Understanding A3 Thinking, ISBN 9781563273605
- Relation with other models: Which other models complement/expand/refine this one?
Which models should be linked to get an even broader picture?

- Model hierarchy: From which other A3 architecture overview is this model derived from?
(if any)
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Design decisions / constraints

Woe use a 4 column model; Technology, Functional, Business and
Customer system concerns.

Do not forget to include the interfaces

If you need an A2,A1 virtual page to fit your models, take into account

that fonts need to be bigger to be able to visualize them in A3

To align pictures to the left improves redeability

If the value is known, use blue color, if the value is an estimation,
orange color, and if the value is unknown or a wild guess use red

So you can refer to it while is being created, discussed and reviewed.

These concerns may already be present if this A3 is an extension

related to another A3. In this case you should reuse those and strip

those not relevant for this topic.

To reduce communication barriers across disciplines and deparments.

This is the same information contained in the overview but more
textual / verbal. This view is to assist people with a different way t
absorb information.

Contact an architect to find out who to talk to.

To help the reader to find the information, a common structure for the

Overview is needed (see Readability in Quantification Section)
This time is reduced considerably when you reuse previous A3
Design Reports you've done before.

Visual Ads in this cookbook are not readable as they are meant to
show how the views might look like. Details are not relevant.

This is the same information as in the Overview (Model) in a textu
verbal format to assist people with different ways to absorb
information.
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Structure / layout
L Where to put the functional view  Left
ere to put the physical view ottom righ
L Where to put the physical view  Bottom right
Where to put the quantification view Top right
L Where to put design choices / constraints Look for room
L Where to put the visual aid MNext to the functional view
Color coding No more than 5 colors, combine with shading
30pt for title
18pt for subtitles
14pt for rest

Font

Size of model
L Virtual model in screen A3, A2, A1 in Visio {E?
L Printing model A3

Quantification
Flow
Functions into physical view

Links within the model

Labeling / Legend
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Color coding 10%
Font 10%

Size of model 40%
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