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Abstract—Software architects regularly have to identify
weaknesses in the structure of software systems. Groups of
software entities which frequently changed together in the
past are one way to help find such structural weaknesses.
However, there may be many such groups. Not all of them
point to structural weaknesses and even fewer indicate severe
issues. In this paper we discuss how a multi-dimensional
characterization of evolutionary clusters can help identify
severe structural weaknesses. In addressing this question we
describe (1) properties used for characterizing evolutionary
clusters, (2) scenarios characterizing severe structural issues,
and (3) the mapping of such scenarios to queries on a set
of evolutionary clusters, resulting in a subset denoting severe
structural issues according to that scenario. We apply the
proposed characterization to the case of a large embedded
software system having a development history of more than a
decade.

I. INTRODUCTION

In [1], several researchers give their opinion about the

future of mining software archives. One of them, Michael

Godfrey, is of the opinion that ”the future of mining software

repositories (MSR) lies in tying software development to the

kind of sensemaking that managers and software developers

perform daily, right now mostly on the basis of a ‘gut

feeling.’” And Martin Robillard states ”Software developers

and other stakeholders spend a lot of time searching for

information to solve problems ...”. This article fits both

these characterizations. We deal with an issue that software

architects regularly are faced with: identifying weaknesses

in the structure of the software system.

As pointed out by Gall et al. in [2], software entities which

changed together in the past can help find such structural

weaknesses. Supplementing this observation, Antoniol et

al. [3] described how to detect groups of software entities

changing together. For instance, software entities from sub-

systems that one would like to evolve independently, and are

yet often changed together, might identify such a weakness.

The number of such groups, however, may be very large. Not

all of them need to point to structural weaknesses, and even

fewer indicate severe issues. It can therefore be difficult and

time consuming to find the few groups of software entities

which point to severe structural issues.

When we refer in this article to groups of files changing

together, we will use the phrase evolutionary cluster to stay

consistent with our previous work [4]. The identification of

evolutionary clusters is based on the concept of change sets.

Change sets contain modifications of software entities, like

files or modules, which are related to the same motivation.

Such a motivation can be the modification of a feature

or the resolution of a problem report. As change sets are

not always captured, they often have to be approximated

from the available historical information, like check-ins in

version management systems. Previous work [3], [5]–[9]

describe these approximation techniques. The approximated

change sets are then used to derive the evolutionary clusters.

In [4] we used a hierarchical clustering algorithm to identify

evolutionary clusters. Other known algorithms are using

dynamic time warping [3], concept analysis [10] and a visual

approach [9] to identify evolutionary clusters.

A common property of the algorithms above is that they

all tend to identify a large number of evolutionary clusters.

Unless the relevant attributes of these evolutionary clusters

are captured and presented, it is difficult to select the

evolutionary clusters which indicate high severity structural

issues. As for the identification of structural weaknesses,

current approaches [9], [11], [12] suggest to look at the

clusters which (1) contain software entities from different

subsystems and where (2) the entities where modified many

times in the recent past. These two criteria seem to be

somewhat simplistic. First of all, those two criteria need

not fully capture an architect’s notion of severity. Second,

previous work does not take into account the fact that dif-

ferent architects may have different concerns and therefore

consider different weaknesses to be severe.

Furthermore, once we identified evolutionary clusters, it is

expedient to carefully categorize those clusters, and to retain

this categorization. The knowledge of evolutionary cluster

characterization can then be reused when a new state of the

software system is to be assessed.

In this paper we present how a carefully prepared char-

acterization of evolutionary clusters can help identify severe

structural weaknesses. To address this question we elaborate

on (1) which properties of evolutionary clusters could be

used for an initial characterization, (2) what architects con-

sider to be a severe structural issue and how this knowledge



can be accessed, (3) how descriptions of severe structural

weaknesses can be translated to queries on the evolutionary

clusters characterized.

The remainder of this paper is organized as follows.

Section II describes the study environment from which we

take our examples and experience. Section III elaborates

on why it is relevant to characterize evolutionary clusters.

Section IV describes the properties used for characteriza-

tion. Section V briefly describes the concept of evolution

anti-scenarios, which capture the knowledge of software

architects about what has to be considered as a severe

structural issue. Section VI goes through the characterization

properties and justifies why they should be used in the

characterization. Section VII provides two examples of how

the characterization can be used in a real-life situation.

Section VIII presents related work. Section IX concludes

this paper.

II. STUDY ENVIRONMENT

To support and validate our results we identified and char-

acterized evolutionary clusters of a large and complex em-

bedded software system. The system studied contains more

than 34 000 files comprising eight million lines of code.

Hundreds of developers are engaged in the maintenance

and development of the system from three development

sites, located in different continents. The complexity of the

software system has increased over time and handling this

complexity has become a challenge.

Programming languages used to implement the system

include mainly C#, C++ and C. To identify evolutionary

clusters we used historical information on file modifications,

like check-in meta-data, from the last nine years of devel-

opment. We extracted the historical information from the

ClearCase version management system.

When evolutionary clusters were identified we had to

choose the level of abstraction for software entities. We

decided to observe the co-evolutions of building blocks

because architects were primarily interested in investigating

structural weaknesses at that abstraction level. Building

blocks are the directories representing the next level of

abstraction above individual files in the file hierarchy; see

also [13].

In the software system studied architects were interested

to know structural weaknesses related to the following types

of system decomposition:

• subsystem decomposition

• development group decomposition

• release group decomposition

• deployment group decomposition

• development site decomposition

The last four decompositions listed above are different

abstractions above the subsystem level. Development groups

are only allowed to modify the subsystems they are respon-

sible for. Release groups contain collections of subsystems

which should be released independently. Deployment groups

comprise collections of subsystems which should be de-

ployed to different pieces of hardware. Finally, subsystems

form groups based on the development site they are devel-

oped at.

The approach we have used to identify evolutionary

clusters is based on a hierarchical clustering algorithm and

is described in [4]. This specific algorithm though has no

influence on the message and results of this paper.

During our research we frequently interacted with soft-

ware architects and software engineers. We especially in-

teracted with a lead architect with whom we had formal

meetings nearly every week. That lead architect was actively

involved in nearly every step of our research, including:

the identification and justification of evolutionary cluster

properties (Sections IV, VI), the extraction of evolution

anti-scenarios (Section V), translation of those scenarios to

queries and the deeper analysis / validation of the evolution-

ary clusters selected (Section VII).

III. NEED FOR CHARACTERIZATION

Software architects have many tasks to perform [14]–

[16]. These tasks include, amongst others, the communi-

cation with stakeholders, the translation of requirements to

design decisions, and the documentation and assessment of

the software architectures developed. Making sure that the

subsystems identified can evolve as independent as possible

to enable evolvability, is one of the requirements architects

often need to consider. Architects typically are pressed for

time and have limited time available to resolve structural

weaknesses. During this limited time, architects seek to

address the most severe structural weaknesses.

To determine how severe a structural weakness is, ar-

chitects have to weigh the cost of leaving the structure

untouched against the cost of resolving the structural weak-

ness. A number of drivers influence these costs; the various

dimensions of the characterization we discuss in the re-

mainder of this article are important cost drivers considered

by the architects. In case of the observed software system,

architects collect high severity structural weaknesses into

a list. This list is used to initiate refactoring/restructuring

activities. For practical reasons, the list only contains 20

elements. This does not mean architects do not encounter

more weaknesses; they just put a threshold on the length, so

that only a few weaknesses make it to the list.

Although in practice it is only feasible to resolve a few

structural weaknesses, approaches described in the literature

typically result in hundreds or even thousands of evolution-

ary clusters [3] crossing the borders of subsystems. This is

not a surprise when we keep in mind that a large software

system contains tens of thousands of files. A need therefore

arises to filter out the evolutionary clusters which indicate

low severity structural weaknesses.



In a large software company it is customary that many

people are concerned with the structure of the software

system developed. Different architects and developers have

different responsibilities and therefore they each define the

severity of structural weaknesses in a different way. Archi-

tects need to have a global view of the software system and

they are usually interested in structural weaknesses from all

over the system. Developers on the other hand often need

to be more focused and they consider structural issues to be

severe if they are related to the subsystems they are working

on. Architects themselves are also different. One architect

may be interested in structural issues involving different

development groups. Another architect may look for fre-

quent co-evolutions between subsystems that are supposed

to be released independently. So the severity of structural

weaknesses depends on the viewpoint taken.

In order to express which evolutionary clusters are the

most important/severe ones for a specific architect or devel-

oper, we first need to characterize each of the evolutionary

clusters. Previous work [3] implicitly uses a characterization

based on the number of times files changed together and

the subsystem location of those files. This type of charac-

terization seems to be too simplistic to properly express the

level of severity. We know from our practical experience (see

also Section VII-C) that such a simple characterization will

point to structural weaknesses which are, most of the time,

not acknowledged by the architect to be of high severity.

Unless we properly characterize the evolutionary clusters we

run the risk that the added value of the evolutionary cluster

identification is deemed limited by industry.

IV. AN EVOLUTIONARY CLUSTER CHARACTERIZED

Characterization of evolutionary clusters involves iden-

tifying the properties of those clusters and measuring the

actual values for those properties. Different evolutionary

clusters can have different values for those properties. In

this section we elaborate on the characterization of one

real-life evolutionary cluster. Why exactly the properties

described below are the ones which we propose is described

in Section VI. The evolutionary cluster we characterize here

was identified using the dendrogram approach [4] with a

200s sliding window parameter [17].

A. Property 1: Cluster Size

The size of an evolutionary cluster is the number of

software entities involved. The size therefore may be an

indication of its complexity and changeability. The bigger

the size, the more entities need to be changed together and

the more complex the whole operation might be. In our case

the software entities were building blocks, which are the next

abstraction level above files. Each building block contains

50 files on average. In our example the evolutionary cluster

contained seven building blocks.

B. Property 2: Borders Crossed

Every software entity in the evolutionary cluster can

be identified using different decompositions. In our ex-

ample, every building block has its containing subsystem,

development group, deployment group, release group and

development site. A development group owns one or more

subsystems and is responsible for the modifications intro-

duced to those subsystems. A deployment group contains

subsystems which need to be deployed independently. The

independent release group consists of subsystems to be

released independent of the rest of the system. As the

observed industrial environment is multi-site, the building

blocks are developed in different parts of the world.

The observed evolutionary cluster contains building

blocks from two different subsystems and therefore the

cluster crosses the borders of subsystems. These subsystems

were part of different release groups, so the evolutionary

cluster crosses the borders of independent release groups. As

for the other decompositions, the observed cluster is located

in a single part.

C. Property 3: Support Distribution

The support between two entities, in our case building

blocks, shows how many times those entities changed to-

gether, see [18]. This property indicates, for a given system

decomposition, the distribution of the support values for all

the software entity pairs in the cluster that come from differ-

ent decomposition parts. If we are interested in subsystem

decomposition, then a decomposition part is a subsystem; if

we are interested in the development group decomposition,

then a decomposition part is the set of subsystems owned

by a development group.

In our example, we are interested in the subsystem decom-

position. The evolutionary cluster observed contains subsys-

tem crossing relationships with a relatively high support, see

Table I.

Table I
SUPPORT DISTRIBUTION

Support

MAX MIN AVG STD

107 32 66 21

D. Property 4: Confidence Distribution

If two software entities E1 and E2 changed 7 times

together and 3 times separately, then the confidence of their

relationship is 0.7, or 70%. The confidence expresses the

probability of two software entities changing together given

that one of them gets changed, see also [18]. This property

measures, for a given system decomposition, the distribution

of the confidence of software entity pairs which come from

different decomposition parts.



To analyze the distribution, we measure the maximum,

minimum, average and the standard deviation of the con-

fidences. For the subsystem decomposition the results are

depicted in Table II.

Table II
CONFIDENCE DISTRIBUTION

Confidence

MAX MIN AVG STD

24.71% 8.29% 15.42% 4.52%

E. Property 5: First Co-evolutions

We cannot only measure how many times software entities

changed together, but we can also observe when exactly they

changed together for the first time. The date of the first co-

evolution helps to understand since when the participating

software entities are related. This property captures, for a

given system decomposition, the distribution of the first co-

evolutions between software entities from different decom-

position parts. The first co-evolutions are indicated with the

letter F in Figure 1.

The actual data for the subsystem decomposition is

included in Table III, showing the maximum, minimum,

average and the standard deviation(given in days) of the

first co-evolutions. As we can see, all building blocks that

participate in the analyzed evolutionary cluster were first

changed together on the same day. This statement happens

to be true for our example; it is not always the case.

Table III
FIRST CO-EVOLUTION DISTRIBUTION

First Co-evolution

MAX MIN AVG STD

15 July 2004 15 July 2004 15 July 2004 0 days

F. Property 6: Last Co-evolutions

Similar to Property 5, this property expresses, for a

given system decomposition, the distribution of the last co-

evolutions between entities from different decomposition

parts. The last co-evolutions are indicated with the letter

L in Figure 1. Table IV shows the actual distribution values

for the subsystem crossing relationships in case of the

evolutionary cluster studied.

Table IV
LAST CO-EVOLUTION DISTRIBUTION

Last Co-evolution

MAX MIN AVG STD

30 Apr 2009 19 Aug 2008 28 Jan 2009 104 days

G. Property 7: Co-evolution Tendencies

Co-evolutions between two software entities have a

certain distribution over time. This distribution may

show different tendencies: (1) co-evolutions getting more

frequent, (2) co-evolutions getting less frequent, or (3)

co-evolutions having a more or less stable frequency of

occurrence over time.
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Figure 1. Co-evolution Tendency

Figure 1 indicates these three main types of tendency.

We determine the tendency type by mapping the period

between the first co-evolution and NOW on a [-1,1] interval,

see Figure 1, and we determine the position of every co-

evolution in this interval. The average of all the resulting

numbers is referred to as the tendency number. A tendency

number near to -1 tells us that the co-evolution frequency

decreased, a tendency number of near 1 shows that co-

evolutions getting more frequent and a 0 value indicates that

co-evolutions are evenly distributed. This property describes,

for a given system decomposition, the distribution of the

tendency numbers between software entities from different

decomposition parts. Table V shows the maximum, mini-

mum, average and the standard deviation for the tendency

values for the subsystem crossing relationships.

Table V
CO-EVOLUTION TENDENCY DISTRIBUTION

Co-evolution Tendency

MAX MIN AVG STD

-0.16 -0.30 -0.23 0.04

H. Property 8: Static Relationships

With this property we count, for a given system decom-

position, how many entity pairs from different parts are also

coupled in terms of static relationships. Static relationships

can be include relations or call relations, for instance. These

relationships can help to identify couplings between entities

by just having a look at the content of those entities. In



case of our example we found seven static relations crossing

subsystem borders.

I. Discussion

The assessment of the severity of the evolutionary cluster

studied in this section depends on one’s interests:

• The building blocks in the evolutionary cluster were

changed relatively recently. This might suggest they

will again change in the near future.

• The building blocks all come from the same develop-

ment group, so from that point of view the cluster is

not severe.

• The size of the cluster (7) is fairly large, compared to

other clusters. From the size perspective, this cluster

definitely indicates a severe issue.

V. EVOLUTION ANTI-SCENARIOS

The characterization described in Section IV can be

applied to all the evolutionary clusters. As a result, we know

for every evolutionary cluster exactly what properties they

have. For instance, we know which clusters are crossing

the borders of subsystems and which are the clusters where

the subsystem crossing relationships have a high average

support.

When evolutionary clusters indicating severe structural

weaknesses are to be selected, we have to define a query

on the properties identified. We can specify, for example,

that we are interested in evolutionary clusters (1) crossing

the borders of development groups, (2) having a high support

distribution for the relationship crossing the borders of

development groups, and (3) where the building blocks from

different development groups have co-evolved much more

frequently in the recent past than earlier in time.

To define our query to select evolutionary clusters, it

has to be clear what types of structural weaknesses are

severe (i.e. costly). What is considered severe depends

on the architects or developers and their responsibilities.

Once we know which structural weaknesses experts are

looking for, we should be able to query evolutionary clusters

that point to those weaknesses. Architects however are not

thinking explicitly in terms of evolutionary cluster properties

when severe weaknesses are described. According to our

experience, architects tend to express what they consider

severe in terms of concrete scenarios. These scenarios are

often coming from their past experience and are described

in a domain specific way. Using scenarios is a known way

to assess properties of software architectures [15]. The next

paragraph describes one such scenario.

Developer DA is a member of the development group GA.

GA owns subsystem A and is responsible for introducing

modifications to that subsystem. In a similar way, we have

developer DB from development group GB owning sub-

system B. One day, DA changes a set of files and realizes

that, as a consequence, other files from subsystem B also

need to be changed. So he calls DB at the other side of

the world and asks him to introduce some modifications. As

GB is busy implementing other functionalities, DB puts the

request onto a priority list. After 10 telephone calls from DA

and after one month of time has elapsed, the required files in

subsystem B are modified. Altogether it took 40 man-hours

to introduce the change initiated by DA. Changes which are

similar in complexity but involve only GA cost usually 4

man-hours.

The above scenario is an example of what we call an

evolution anti-scenario, analogous to the notion of design

anti-patterns [19]. Such a scenario describes what architects

do not want to happen during the evolution of the software

system. Evolution anti-scenarios are usually kept implicit in

the heads of the architects. Interviews can be used to elicit

the implicit knowledge of anti-scenarios. During these in-

terviews, documents describing which structural weaknesses

an architect resolved or plans to resolve may help to get (or

derive) the explicitly described anti-scenarios. The extracted

anti-scenarios can then be used to understand which type of

structural weaknesses the architects and developers consider

to be severe. Understanding which structural weaknesses are

severe is the result of an iterative approach rather than the

result of a one shot activity.

VI. PROPERTY JUSTIFICATION

Having the evolution anti-scenarios collected we need to

translate them to one or more queries on the collection of

evolutionary clusters. This puts an additional requirement on

the characterization. The properties (size, borders crossed,

etc.) we use to characterize clusters should allow us to query

evolutionary clusters and identify the types of structural

weaknesses described by the scenarios. In this section we

will argue, for every property described in Section IV,

that they should be included in the characterization. These

properties need not form a complete set. In this section,

we use real-life evolution anti-scenarios from the study

environment to support our arguments.

A. Property 1: Cluster Size

Let us consider the following scenario. In a large software

development company it is quite common that experienced

developers are leaving, while others with little or no domain

knowledge are entering the organization. Developer D is

such a newly employed developer. D gets involved with

his new project and his project leader assigns D the task

to modify the database schema. D modifies the database

schema and some other software entities which he thinks

are affected by the change. Being new and having a lack of

domain knowledge, however, D forgets to modify another

ten software entities from different parts of the software

structure. As a consequence, the test of the software system

fails. Such a scenario costs the company a lot of effort (in

time and money).



The lesson we can learn from the above evolution anti-

scenario is that the more software entities are involved, the

more difficult it is to maintain consistent changes. If the

project leader knows the size of evolutionary clusters, he

may assign a task to D which involves smaller evolutionary

clusters and therefore less complexity.

Huge evolutionary clusters, however, are problematic even

for experienced developers. Experts could therefore select

huge evolutionary clusters and try to reduce their size by

making the involved software entities less dependent.

On the other hand, in some cases small evolutionary

clusters are the ones which are important. For instance, if

the goal is to resolve as many structural issues as possible

from a fixed budget, then evolutionary clusters which in-

dicate cheap-to-resolve structural weaknesses are probably

the target for the resolution activities. The effort to resolve

a structural issue is likely to be influenced by the size of the

evolutionary cluster. The bigger the evolutionary cluster is,

the more entities are related and the more effort it may take

to resolve the structural weakness related.

B. Property 2: Borders Crossed

Let us reconsider the evolution anti-scenario described in

Section V. In that scenario, software entities from differ-

ent development groups and development sites had to be

changed together. Compared to the changes which are local

to development groups, these types of changes tend to be

much more costly. The increase in costs is caused by the

additional communication costs and the costs caused by the

fact that one development group has to wait for another one.

Certain architects may be responsible for reducing the

above costs by carefully assigning software entities to devel-

opment groups. In order to assess and to improve the current

structure, these architects have to know which entities from

different development groups changed together. In this case,

the architects in charge are less interested in evolutionary

clusters not crossing the borders of these groups. If an

evolutionary cluster is not crossing a border of development

groups it may still cross the borders of independent release

groups, for instance. Those evolutionary clusters in turn may

be relevant for architects responsible for the release group

structure.

C. Property 3: Support Distribution

A description of an evolution anti-scenario might be as

follows. In a software company new projects were started

last year, to develop new releases of their software product

with improved and new features. Of course, during this

period certain files were modified much more frequently

than others. We observed that one set of files FS1 from

subsystem SFS1
changed together with a set of files FS2

from subsystem SFS2
20 times during the last year. With

this number of co-evolutions, FS1 and FS2 are the file sets

which changed together most often in the last year.

In the above scenario the co-evolution of FS1 and FS2

may indicate a severe structural weakness. Even if changing

those sets of files together is not the most costly operation,

changing them together 20 times makes the underlying

structural weakness the most costly one during the last

year of development. In case development activities will

touch upon the same part of the software system next year,

architects may want to resolve structural weaknesses similar

to the one indicated by the co-evolution of FS1 and FS2.

Usually, architects look for the outliers when considering

the support distribution by adapting the organization.

D. Property 4: Confidence Distribution

It is not uncommon that after a while some component

of a long-living software system needs to be replaced by

another. Usually the new component provides at least the

functionality of the replaced component, while also bring-

ing additional benefits. For instance, the development of a

component can be outsourced to fulfill extreme performance

requirements and/or to decrease development costs.

Let us consider the following, related, scenario. A de-

cision has been taken by the architect that subsystem S

needs to be outsourced and his decision is approved by

management. The decision was taken in order to reduce

development costs. Company CO takes over the develop-

ment of S. Although S is outsourced now, it is still actively

connected to the rest of the system: very often, a change

in S requires a change in the rest of the system and vice

versa. After a year of co-operation it turns out that the

communication and the increased management costs due to

the poor isolation of S exceeded the original development

costs. Consequently, a decision is taken to in-source S again.

When looking for severe structural weaknesses between

the outsourced subsystem and the rest, the relative distri-

bution of single-site changes as opposed to site-crossing

changes, i.e. the confidence distribution, may play a role.

If, relatively speaking, the number of local changes is

large (i.e. confidence is low), this may warrant keeping

the subsystem outsourced, for financial reasons, or because

of local expertise. If, on the other hand, the confidence is

high, communication and collaboration cost may become a

bottleneck, and one may decide to resolve this weakness.

E. Property 5: First Co-evolutions

The first co-evolution between two software entities de-

termines since when they were modified together. Files

evolving together since last month may indicate a less severe

structural weakness than files which evolved together during

the last four years. Four years of continuous co-evolution

tells us that the reason why they are changing together is still

not resolved. On the other hand, files which only changed

together recently may have done so, for instance, because

of the introduction of a new feature. In the software system

we observed it happens frequently that after a new feature



introduction, it takes a while before the concerns are well

separated. Co-evolution during that initial period need not

indicate a severe issue.

F. Property 6: Last Co-evolutions

During the development and maintenance of a software

system structural weaknesses are continuously resolved. As

a result we often see from the development history that files

changed together a long time ago but after a while stop doing

so. Therefore, evolutionary clusters containing files where

the last co-evolutions happened a long time ago probably

indicate (1) an already resolved structural issue or (2) stable

couplings between files with respect to evolution. Therefore,

those type of evolutionary clusters are not interesting to the

architects and need to be filtered out.

G. Property 7: Co-evolution Tendencies

Files which co-evolved a lot but the frequency of co-

evolution has become very low may not be interesting to

the architects because at present those files are less likely to

change together. On the other hand, files which have been

modified together periodically, let’s say every month, will

most probably change together in the next month if we

do not do anything against it. Therefore it is important to

measure the tendencies of co-evolution frequencies between

software entities.

H. Property 8: Static Relationships

One evolution anti-scenario runs as follows. It becomes

important to separate the evolution of subsystem S1 from

the evolution of subsystem S2. To reach that goal, evolution-

type dependencies between S1 and S2 are identified using

static relationships only. Static relationships are easy to

determine from the source code. According to our expe-

rience, static relationships are also the kind of relationships

which software developers tend to recall, and resolve, most

easily. But resolving static relationships is not enough. The

anti-scenario we are considering here concerns a situation

where we are stuck with an evolutionary cluster without any

underlying static relationships, since that is more likely to

point to an issue yet unknown.

VII. QUERYING EVOLUTIONARY CLUSTERS

In order to find evolutionary clusters which point to severe

structural weaknesses we need to create and execute a query

on the set of evolutionary clusters characterized. Such a

query has to result in evolutionary clusters where the corre-

sponding structural weaknesses are considered severe by a

specific architect or developer. To create the query, we use

as input the evolution anti-scenarios, see Section V, elicited

from the architect or developer we want to support. We now

describe two real-life cases when the elicited evolutionary

scenario(s) were translated to queries.

A. Case 1

In the first case, the architect had the task to make sure

that the development groups, owning specific parts of the

software system, depend as little as possible on each other.

Evolution anti-scenarios related to this case describe (1)

a large amount of communication between development

groups and (2) delay of work of some development groups

by that of others. Based on these scenarios we created the

query on the evolutionary clusters with the criteria described

in Table VI.

Table VI
SELECTION CRITERIA

PROPERTY CRITERION

Cluster Size ≥ 3

Borders Crossed = ”Development Groups”

Support AVG > 50

Confidence AVG < 20%

First co-evolution MIN more than 2 month ago

Last co-evolution MAX less than 2 years ago

Co-evolution tendency AVG > -0.15

Static relations –

When a change involves more than one development

group, the number software entities involved, and therefore

the complexity of the change, does have an influence on

how much communication effort is spent. Furthermore, more

files typically take more time to modify and in such cases

development groups may delay others for a longer time.

Therefore we selected evolutionary clusters where there is

more than just two entities.

It was straightforward to select the evolutionary clusters

crossing the borders of development groups since the ar-

chitect we served was interested in the weaknesses of the

development group structure and not in the weaknesses of

other structures. A support threshold was included in the

query because we wanted to identify structural weaknesses

indicating that different development groups need to commu-

nicate frequently. The more frequently development groups

need to communicate, the more frequently the effort on

communication needs to be spent. The date thresholds for

the first and last co-evolutions were set such that resulting

evolutionary clusters indicate weaknesses with the develop-

ment group structure which are not yet resolved. To give

priority to structural weaknesses which make the developers

from different groups communicate more and more often we

set a threshold for the tendency number.

As we can see, there was no filtering criterion set on

the static relations. The reason for that is that the architect

wanted to have an overview of the severe structural weak-

nesses independent from whether they are easy to identify

from the static relationships or not.



B. Case 2

In the second case we consider an architect who has the

task to make release groups more independent. The final

goal is to release new versions of every release group on

their own, without depending on one another. As a first

step, static relationships were analyzed to know at which

points release groups are coupled. This step is thought to

be relatively cheap and effective, but looking only at static

relationships does not allow us to identify all the severe

structural weaknesses. Therefore the architect is interested

in structural weaknesses where the unwanted co-evolutions

are not caused by direct static dependency. The evolution

anti-scenario in this case describes that components from

different release groups cannot be released independent

although static dependencies are removed. Based on these

scenarios we created the query on the evolutionary clusters

with the criteria described in Table VII.

Table VII
SELECTION CRITERIA

PROPERTY CRITERION

Cluster Size –

Borders Crossed = ”Release Groups”

Support AVG > 20

Confidence AVG < 20%

First co-evolution MIN more than 2 month ago

Last co-evolution MAX less than 2 years ago

Co-evolution tendency AVG > -0.15

Static relations = 0

As compared to the previous case, we had to filter the

characterized evolutionary clusters in a different way. First,

we considered only the evolutionary clusters where there

were no static relationships between the entities included.

Second, this time not the development groups but the release

groups were of interest. Third, we defined no restriction

for the cluster size and we specified a lower threshold for

the support than in the previous case. The reason is that

co-evolutions without static dependencies are much more

costly than the ones caused by static dependencies. Also,

there are much less structural weaknesses caused by static

dependencies. Consequently for the architect it is important

to know of cases even if the entities included evolved less

frequently together and even if the cluster contains fewer

entities.

C. Discussion

Executions of the queries described in the above two

cases result in subsets of the evolutionary clusters identified.

Related work considers an evolutionary cluster to indicate

a structural issue if it crosses subsystem borders and if

the related software entities changed many times together,

see [3]. This definition suggests to take only the number of

co-evolutions in an evolutionary cluster as an indication for

how severe the related structural issue is. Using this default

prioritization Table VIII indicates in both of the above cases,

at which positions the evolutionary clusters selected would

end up.

Table VIII
PRIORITY MAPPING

Case 1 Default Case 2 Default

1 1 1 4

2 2 2 9

3 9 3 19

4 34 4 22

5 36 5 29

6 37 6 37

≥7 >50 ≥7 >50

Table VIII shows that in both cases the top 50 from

the default prioritization contained only six evolutionary

clusters in which architects were actually interested. So the

characterization helped us to select evolutionary clusters

which are relevant to the architects supported. In the first

case (section 7.1) we went further and analyzed the clusters

deeper with a lead architect and a software engineer. Both

the architect and the software engineer acknowledged that all

the evolutionary clusters selected were not only interesting

because of the characterization but also because deeper

analysis reveals a severe evolution-type issue.

Again, we want to emphasize that we do not claim to

find the severe structural issues exclusively. We claim that

by using our approach architects can better handle/reduce

the huge amount of clusters which previous work generates.

Consequently, software architects may need more informa-

tion (deeper analysis) than just the result of the query to

decide upon the severity of an evolutionary cluster.

We expect that in most of the cases one will use the

MIN value for the first co-evolution, MAX value for the last

o-evolution, and the AVG values for the other properties.

However, knowing the distribution of values allows us to

detect, and possibly remove, outliers.

It is not guaranteed, however, that the initial set of

properties as defined in Section IV is complete enough

to express what architects consider to be an evolutionary

cluster pointing to a severe structural issue. Therefore, it

may be necessary to extend the set of properties used for

characterization and/or to have a deeper analysis of the

evolutionary clusters selected.

VIII. RELATED WORK

Next to the related work which we have already referred

to, there are other related contributions. In this section we

give a brief overview of these contributions and we describe

how this work is related to the contribution of this paper.



In [20] Treude and Storey describe an interactive tool

to visualize how the relevance of concerns in the software

system changed over time. Measuring how the relevance

of different concerns changed over time is used to identify

which concerns did co-occur in a specified time-frame. The

tool of Treude and Storey allows its users to define filters on

the cluster of concerns identified, somewhat similar to our

filtering of evolutionary clusters using the characterization.

Fisher and Gall [12] also identify structural weaknesses.

They first filter out the ”interesting” file pairs, where inter-

esting means that the files changed frequently together and

that those files are from different parts of the system. These

interesting file pairs form the input for a visualization to

detect anti-patterns, like god-classes. Although the visual-

ization indicates structural anti-patterns, the approach is not

addressing explicitly the prioritization of structural issues.

German in [7] characterizes different types of modifica-

tion requests, what we call change sets. The characterization

applied is used to understand the nature of the change sets.

Our work takes the characterization further to the level

of evolutionary clusters which are identified based on the

change sets.

Breu and Zimmermann [21] mine aspects from version

histories. The authors define the concepts of simple and

complex aspect candidates showing some similarity to what

we call change sets and evolutionary clusters respectively.

To identify relevant aspects Breu and Zimmermann use size,

support and compactness measures as an input for aspect

candidate prioritization.

Using visualizations is an alternative way to identify

evolution-type structural weaknesses [11], [22]. Typically,

one looks for those structural weaknesses by identifying

patterns in the visualization. Which pattern instance is

selected to be further analyzed depends on ones intuition.

Pinzger et al. [23] helps the formulation of such an intuition

by visualizing multiple evolution metrics for several releases

of the software system.

IX. CONCLUSION AND FUTURE WORK

In this paper we have described how to characterize

evolutionary clusters and how this characterization may help

architects and developers to find severe weaknesses in the

structure of a software system. We showed that a well

prepared characterization is important to support software

architects and developers. We described which properties of

evolutionary clusters are to be measured for the character-

ization. We found that, in practice, evolution anti-scenarios

are the main source of information on what is considered

to be a severe structural weakness. Furthermore, for every

property we have argued that they are important for the

characterization. Finally, we argued that the characterization

itself may evolve over time and that therefore there is a need

to keep it up-to-date.

The properties we identified are very general, and are also

found in other systems. Technically speaking, our method is

applicable to other systems as well. Whether the properties

we distinguish reflect the main cost drivers for the evolution

of other systems remains to be investigated.

Characterizing evolutionary clusters and querying them

are only the first steps towards the identification of severe

structural weaknesses. A further pruning of the set of evo-

lutionary clusters identified may be necessary, since some

of them may still point to structural weaknesses which do

not turn out to be a severe issue after all. In order to decide

whether this is the case we need to analyze the identified

clusters at a deeper level of detail. This means that there

is a need to explore the clusters to see (1) which are the

actual files or methods which changed together, (2) what is

the distribution of the properties measured between those

software entities (for instance how many times file pairs

change together), (3) what is the reason that those software

entities changed together. A good visualization supporting

the exploration of evolutionary clusters is therefore essential

not only to further analyze severity but also to investigate

what could cause a structural issue. This is a topic of future

work.

The lead architect we contacted frequently during the

characterization was positive about the usefulness of the

approach described in this paper. Thinking about character-

ization explicitly helps refining the abstract requirement of

independent evolution and to express sharper what a severe

evolution-type structural issue is.

It is a recurring task of software architects to modify

the decomposition of the software system. In those cases

structural issues do not show up immediately and are not

reported back from the developers. Architects acknowledged

that finding severe structural issues faster in the newly

defined structure is one of the major values of using charac-

terized evolutionary clusters. For instance, now it is easier

for those architects to assess the new development group

decomposition.
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