

Defining Execution Viewpoints for a

 Large and Complex Software-Intensive System

Trosky B. Callo Arias1, Pierre America2, and Paris Avgeriou1
1Department of Mathematics and Computing Science - University of Groningen

2Philips Research and Embedded Systems Institute
The Netherlands

trosky@cs.rug.nl, pierre.america@philips.com, paris@cs.rug.nl

Abstract

An execution view is an important asset for develop-

ing large and complex systems. An execution view
helps practitioners to describe, analyze, and communi-
cate what a software system does at runtime and how it
does it. In this paper, we present an approach to define
execution viewpoints for an existing large and complex
software-intensive system. This definition approach
enables the customization and extension of a set of
predefined viewpoints to address the requirements of a
specific development organization. The application of
this approach has helped us to identify a set of execu-
tion viewpoints that we are currently using to construct
execution views of an MRI system, a large software-
intensive system in the healthcare domain.

1. Introduction

The usage of multiple views is a common practice
to construct and document the architecture of large
software-intensive systems [4, 8]. The ISO/IEC 42010
standard provides a widely accepted conceptual defini-
tion of architectural views, viewpoints and models [8]:
- An architectural view is a representation of a set of

system elements and relations associated with them,
conforming to a specific viewpoint.

- An architectural viewpoint addresses particular con-
cerns of the system stakeholders and consists of the
conventions for the construction, interpretation, and
use of an architectural view.

- A view may consist of one or more architectural mod-
els. Each such architectural model is developed using
the conventions and methods established by its associ-

ated viewpoint. An architectural model may partici-
pate in more than one view.

In this paper, we focus on the stakeholder concerns
related to system evolvability and the corresponding
views that can address them. As part of our research on
the evolvability of large software-intensive systems
[16], we observed that suitable architectural views are
important assets to facilitate system evolution [11, 12].
Such views help practitioners to understand the existing
system, to plan and evaluate intended changes, and to
communicate them to others.

In particular, we are interested in execution views,
which consist of a set of models that describe and
document what a software system does at runtime and
how it does it. The term runtime refers to the actual
time that the software system is functioning (during
testing or in the field). Obviously, it is very important
to understand this runtime behavior of the software, but
in practice documenting it often does not receive
enough attention. Thus, our particular focus is to sup-
port practitioners in how to construct execution views
for large and complex software-intensive systems. Such
systems often have a heterogeneous implementation
and consist of multiple processes, each with multiple
threads, deployed across several computers.

In our initial work, we constructed an execution
view of an existing large software system [2], which
addressed specific stakeholder concerns. However, a
development organization of such a large and complex
system has several stakeholders with numerous con-
cerns. Therefore, the organization needs to be able to
define a number of execution viewpoints addressing the
needs and matching the characteristics of its particular
system. To achieve this, an organization may either

reuse the predefined viewpoints available in the litera-
ture (e.g. [3, 5, 11, 14]) or define new ones.

In this paper, we present an approach to define
execution viewpoints to address the requirements of a
specific organization developing a large and complex
software-intensive system. This approach includes the
identification of the organization’s requirements (in
terms of concerns related to system evolvability and
development activities) and the definition of a set of
specific execution viewpoints. The organization’s re-
quirements are derived from interviews with key practi-
tioners. The specific execution viewpoints are defined
(including the customization and extension of some
predefined viewpoints) to address the derived require-
ments.

We have applied this approach as part of the
documentation of the execution architecture of a Mag-
netic Resonance Imaging (MRI) system. This system is
a representative large and complex software-intensive
system, developed by Philips Healthcare [1]. This ap-
plication has helped us to identify how to use (custom-
ize and extend) predefined viewpoints and to extend
our approach to construct execution views, supporting
more practitioners by extending our initial set of mod-
els. We expect that other organizations and researchers
can reuse our definition approach as well as some of
the execution viewpoints we define here.

The organization of the rest of this paper is as fol-
lows. In Section 2, we summarize how we identified
some predefined viewpoints from the literature. In Sec-
tion 3, we describe the interviews to identify the re-
quirements of a particular development organization.
Section 4 summarizes the identified concepts and con-
cerns to define execution viewpoints. In Section 5, we
present a set of specific viewpoints resulting from the
application of this approach. Finally, in Section 6, we
provide some conclusions and future work.

2. Predefined execution viewpoints

In this section we describe our motivation to search
for predefined viewpoints and the result of our search.

2.1. Motivation

To define specific execution viewpoints, we

searched the literature for predefined viewpoints that
address somehow what a system does at runtime and
how it does. In doing so we conform with the concep-
tual model from the ISO/IEC 42010 standard [8]. Fig-
ure 1 illustrates the part of the conceptual model that

describes the definition of specific viewpoints, the con-
cepts of viewpoints, views and models with respect to
execution. According to this model an execution view-
point can cite a predefined viewpoint, in the sense that
the former can be defined reusing (customizing or ex-
tending) the latter.

Predefined
viewpoint

Execution
View

Execution
Viewpoint 1

Conforms to

1

0..1Cites 0..1
Execution

Model

1..n1..n1..n
Sanctions

1..n

Figure 1. Reuse of predefined viewpoints for

an execution viewpoint

2.2. Identified predefined viewpoints

Our search of predefined viewpoints resulted in the
identification of five candidates, which are the most
comprehensive and elaborated available predefined
viewpoints that can be reused to define specific execu-
tion viewpoints. Table 1 lists these predefined view-
points along with their names, as presented in the litera-
ture, and the set of concerns and system elements that
their execution models describe. These predefined
viewpoints can be classified into two groups based on
their concerns:
The first group includes:
- The concurrency viewpoint of [14], which describes
the concurrency structure of the system, mapping func-
tional elements to concurrency units to clearly identify
the parts of the system that can execute concurrently
- The behavior description of [3], which proposes a
language-independent way to document behavioral
aspects of the interactions among system elements
The second group includes:
- The deployment viewpoint of [14], which addresses
how to describe the environment into which the system
will be deployed including the dependencies the system
has with its runtime environment
- The deployment style of [3], which also addresses
how to describe the allocation of components and con-
nectors to execution platforms
In addition, another predefined viewpoint is the execu-
tion architecture of [5], which spans the two groups,
describing the mapping of functionality to physical
resources and the runtime characteristics of the system.

Table 1. Predefined viewpoints for execution views
Viewpoint What it describes (concern) System elements

Concurrency
[14]

- Task structure and mapping of functional elements to tasks
- Inter-process communication and state management
- Synchronization and integrity
- Startup, shutdown, task failure, and reentrancy

Processes, process groups,
threads, inter-process
communication

Behavior
description
[3]

- Types of communication
- Constraints on ordering
- Clock-triggered stimulation

Use cases, structural
elements, processes, states,
applications, and objects.

Deployment
[14]

- Hardware required (specification and quantity)
- Third-party software requirements and technology compatibility
- Network requirements and capacity and physical constrains

Processing and client nodes,
network links, hardware
components, and processes.

Deployment
style [3]

- Allocation, migration, and copy relations between software ele-
ments and computing hardware.
- Properties of computing hardware, e.g., bandwidth, and resource
consumption.

Software elements
(processes) and computing
hardware (processor,
memory, disk, etc.)

Execution
architecture
[5]

- Execution configuration and its mapping to hardware devices
- Dynamic behavior of configuration
- Communication protocol
- Description of runtime entities and their instances

Processes, tasks, threads,
clients, servers, buffers,
message queues, and classes

3. Identifying the organization’s require-
ments for execution views

Asking stakeholders for their concerns should be a
common practice, especially for choosing views [3]
and identifying which views to recover from an existing
system [17]. In order to identify the requirements for
execution views, we conducted a series of interviews
with key experts of our industrial partner using specific
questionnaires. In this section, we summarize the key
aspects of the questionnaire design and interviews.

3.1. Questionnaire design

The main goal of the specific questionnaires was to

collect information on which execution views to create,
what to describe in a particular model, how to choose
the abstraction level, and how it should be described.
Often, asking these broad questions to practitioners
does not provide precise or useful answers. To over-
come this, we designed two types of questionnaires
(overview and model-specific). To design them, we
summarized predefined viewpoints in the literature and
our own research observations, and applied guidelines
on reviewing software architecture descriptions [13].

Overview questionnaires help us to estimate the
value of an execution viewpoint and get an insight on
how a given interviewee may use it. To focus the ques-
tionnaire, we centered the questions on a set of existing
documents containing some execution models that were
authored or often used by the interviewee.

Model-specific questionnaires help us to assess
how a specific execution model created or often used
by the interviewee aligned to descriptions of similar
models of predefined viewpoints. Thus, with each
model-specific questionnaire we attached at least two
models: the one used or created by the interviewee and
a related example from the literature. Table 2 summa-
rizes the group of questions for both types of question-
naires, overview and model-specific. For an example of
a full questionnaire, see appendix I.

Table 2. Questionnaires structure
Group of questions Overview Model-

specific
1. Authors and contributors X X
2. Creation and maintenance X X
3. Intended and actual users X X
4. Usage in daily activities
(predefined viewpoint)

X X

5. Usage in other activities
(observations & experience)

 X

6. Description of concerns
(predefined viewpoint)

 X

7. Representation language
and level of detail

 X

3.2. Interviews

To conduct the series of interviews, and keep them
manageable and productive, it is necessary to identify a
set of representative practitioners. We initially involved

two stakeholders of the development organization who
are actual consumers and producers of execution views.
First, a senior designer who documented an execution
view in the past using as a main reference the 4+1
View Model [10] aiming to support the analysis of the
system performance. Second, an architect in charge of
architecting and designing software interfaces for sys-
tem-specific hardware devices. Later, we selected addi-
tional stakeholders who were mentioned as major con-
tributors or actual users of the chosen document for the
interview, e.g., other software architects, designers,
platform support engineers, and managers. After con-
ducting an interview, we validated the collected infor-
mation sending the questionnaire (with answers and
comments) to the interviewee who corrected and some-
times extended the captured information.

4. Identified concepts and concerns

Functional
Mapping

Concurrency Resource
Usage

Deployment

Source of
Information

Construction
Technique

1..n
Use
1..n

Stakeholder Development
Activity1..n

Involves
1..n

Execution
Viewpoint

1..n
Requires

1..nConcern

1..n
Holds

1..n

Metamodel

Execution
Model

1..n
Support
1..n

1..n
Sanctions
1..n

1..n
Frames
1..n

1

1..n

Instantiates
1

1..n

Execution View

1
Conforms to

1

1..n
As Is

1..n 1..n
To Be

1..n

Figure 2. Conceptual model to define execu-

tion views and viewpoint

Through the series of interviews, we identified a

set of concepts and relationships between them. Figure
2 illustrates the concepts and their relationships. This
conceptual model is based on the model presented by
the standard [8], but here we limit ourselves to execu-
tion views, models, and viewpoints instead of general
architectural views, models, and viewpoints from the
standard. The functional mapping, deployment, concur-
rency, and resource usage viewpoints are specific view-
points that we will describe in Section 5. In addition,
we include concepts such as development activity,
metamodel, and construction technique to illustrate
how execution views and viewpoints fit within the de-
velopment organization based on the identified re-
quirements. In the rest of this section, we focus on the
descriptions of the main concepts (execution model and
metamodel) and the identified major concerns related
to system evolvability within development activities.

Construction techniques and sources of information are
presented in our previous work [2].

4.1. Execution models

From the results (answers and comments) of ques-
tions in groups 1-4, we identified that a development
organization often needs to construct ‘As Is’ and ‘To
Be’ execution models to build an execution view. The
concept of ‘As Is’ and To Be’ are also applicable to
models of other architectural views, but to keep the
focus of this paper, we describe these concepts for
models of an execution view.

’As Is’ models describe the execution of the cur-
rent system. These models are often created to support
the acquisition of knowledge about key execution sce-
narios or the interactions between key system compo-
nents. A ‘To Be’ model describes the execution of a
system that does not yet exist. Such models are typi-
cally created to design and evaluate one or more alter-
natives for a future system and to communicate the
chosen alternative to the implementers. After imple-
mentation, a new ‘As Is’ model can be created and
compared to the chosen ‘To Be’ model. Since nowa-
days a system is rarely ever designed from scratch but
is typically based on existing systems (i.e. Brownfield
site [6]), it is often a good idea to construct a ‘To Be’
model by modifying or taking as a reference an existing
‘As Is’ model.

4.2. Metamodel of system execution elements

When identifying the information needs of the
practitioners, we found it very useful to describe the
various elements that play a role in system execution in
a metamodel, which defines a number of concepts that
occur in the execution models. Figure 3 shows such a
metamodel with system execution elements and rela-
tionships between them. We developed this in our ear-
lier work [2] and validated and refined it during the
interviews. Most predefined viewpoints (see Table 1)
also use several of these elements, e.g., processes and
threads, to create execution models. Our metamodel
extends the concepts of the predefined viewpoints, in-
cluding elements and relationships to address the or-
ganization’s requirements that we identified to con-
struct execution views of a large software system. The
particular extensions that we introduce are elements
such as execution scenario, task, software component,
and activity. These extensions are meant to cope with
three major issues: complexity and size of the system,
explicit links with other system views, and analysis of
resource usage. In section 5, we describe these exten-
sions in more detail in the discussion of the identified

viewpoints. We also provide a detailed description of
the elements and relationships of this conceptual model
in [2].

Note that the metamodel does not apply to an indi-
vidual execution model, but is shared among the exe-
cution models. In this way, it indicates important rela-
tionships between the models and can help to establish
consistency among the models. We expect that using a
single, shared metamodel not only in the execution
views but also across all architectural views may con-
tribute significantly to their mutual consistency.

Procedure
Call

Data
Sharing

Code
Utilization

Code

Load/Execute

Data
access

Persistent
Data

Access

Interaction

Platform
Resource

Platform
Utilization

Use

Execution
Coordination

Activity

1..n1..n

Execution
Scenario

Thread
1..n1..n

Performs

Task
1..n1..n

Process 1..n1..n

Software
Component

1..n1..n
Require

1..n1..n
Interact

1..n1..n

Processing
Node

1
Deployed in

1

Figure 3. Metamodel of system execution ele-

ments

4.3. Concerns related to system evolvability

Based on the result of questions in groups 2-5, we
found that the construction of execution models is a
goal-driven and often problem-driven activity to evolve
an existing system. This means that the concerns of the
stakeholders relate to the activities they perform within
a given development project towards specific goals.
The major stakeholder’s concerns and the development
activities that need support of execution views are
listed in Table 3 and elaborated in the following para-
graphs:

- System understanding: In addition to the result of
questions in groups 2-5, our own observations helped
us to identify two aspects of how an execution view
supports acquisition of system knowledge. On the one
hand, execution models support system-specific educa-
tion and training of new developers. Often new devel-
opers are exposed to execution models before they can
start reading and writing code. This practice helps new
developers to create a mental model of the overall sys-
tem, the system components they develop, and their
relations (dependencies) with the rest of the system

components. On the other hand, ’As is’ execution mod-
els help all practitioners to constantly refresh, validate,
and extend their mental models, in particular to support
system corrective maintenance activities that aim to
improve the existing run-time structure and manage
unpredicted system behavior.

- Project planning: Practitioners need to construct
‘To be’ execution models to support two particular
activities. On the one hand, these models are needed to
distinguish and analyze the difference between consid-
ered alternative or future architectures and designs that
aim to improve quality attributes such as reliability
[15], dependability, and safety [7]. This is important, as
it is often not obvious how the realization of the alter-
native design may affect the structure and behavior of
the system at runtime and therefore influence other
system quality attributes. On the other hand, as we de-
scribed in Section 4.1, execution models are necessary
to describe the overall system structure, its compo-
nents, and their interactions that make up the system
functionality of interest. Often system components are
mapped to development units within or outside the or-
ganization. Thus describing the involved system com-
ponents enables the identification of the involved units,
and therefore the planning and budgeting of responsi-
bilities, if possible, as a downstream process.

- Communication: Another goal of describing the
architecture of a software system is to support the
communication between system stakeholders. In par-
ticular, we identified that besides the mental models
that practitioners may have, they need explicit evidence
in a common language (i.e. diagrammatic representa-
tions of execution models) to supports three links of
communication within the development organization.
First, execution models are useful to transfer technical
knowledge of the system design and implementation.
This supports the communication of designers and de-
velopers with architects and managers. Second, execu-
tion models are needed to describe how the system uses
third-party components at runtime. These models will
enable the communication of development units (exter-
nal or internal) with customer designers, developers,
and testers. Third, execution models are needed to de-
scribe how the software system interacts with and uses
the resources of its runtime platform. These models
will enhance the communication of the design and im-
plementation units with the (internal or external) unit
supporting the system runtime platform.

- Conformance of design and implementation:
Large and complex software-intensive systems have
strict constraints on their non-functional properties
such as reliability, safety, and performance. Ideally, the
architecture and design should describe how to achieve
those requirements, but often the implementation devi-

ates from these requirements at runtime. This usually
happens when the implementation uses third party or
off-the-shelf components, facilities provided by the
implementation technology and the runtime platform,
such as dynamic loading of shared libraries, plug-in
mechanisms, and mechanisms to manage memory ac-
cess. Thus, to verify non-functional requirements and
properly test the system, it is often necessary to con-
struct ’As is’ execution models to describe changes in
the access and utilization of resources such as shared
memory, shared code libraries, communication paths,
and power consumption. Thus, ’To be’ models can be
updated, extended, and analyzed.

Table 3. Concerns and development activities

supported by execution models
Concern Development activity

System
understanding

Education and training, dependency
analysis, and corrective maintenance

Project Planning
Analysis of alternative and future
architecture and design.

Communication
Between development units or teams
and with customers and providers

Conformance of
design and
implementation

Architecture documentation,
verification of non-functional
requirements, and testing

5. Execution viewpoints

The results of questions in groups 5-7 showed that
the predefined viewpoints listed in Table 1 are useful to
define execution views. However, they do not opti-
mally address all stakeholder concerns, in particular in
dealing with the complexity and size of the system, in
making explicit links with other system views, and in
describing and analyzing actual resource usage. There-
fore, we defined four specific viewpoints addressing
the requirements for the execution views. Two view-
points are based on predefined viewpoints (concur-
rency and deployment) and two are additional view-
points (functional mapping and resource usage). In this
section, we describe these four viewpoints including
some of their sanctioned models.

5.1. Functional mapping

The functional mapping viewpoint addresses the

concern about the relation between the system func-
tionality, system functional components, and execution
elements. Thus, it shows how to describe the mapping
of the runtime elements (including software and hard-
ware elements) to the functional system components
that interact together to deliver the system functional-

ity. For a large and heterogeneous system, this view-
point should show how to describe the mapping consis-
tently and without being overwhelmed by the size and
complexity of the system. To achieve this, the set of
most important execution scenarios should be chosen
and for each of these a functional mapping model
should be constructed. Moreover, for each such model,
the most relevant elements should be determined, so
that the others can be filtered out.

The model in Figure 4 is sanctioned by this func-
tional mapping viewpoint. It shows how the individual
tasks in a scenario are supported by a set of software
components and how the processes that belong to them
perform activities, such as data access and code utiliza-
tion. We observed that models like this one support all
concerns and development activities in Table 3. For
instance, functional mapping models are necessary to
enable practitioners that are less familiar with execu-
tion elements to understand the system execution. Cer-
tain practitioners, such as managers and architects are
typically more familiar with the functionality and the
main components of the system. By contrast, designers
and platform support engineers are often more familiar
with processes and threads. A functional mapping
model such as Figure 4 helps them to relate these con-
cepts to other, less familiar ones.

Functionality

Software
Component

Processes

Code
and
Data

Activity

Figure 4. Execution model of the functional

mapping viewpoint

5.2. Deployment

This viewpoint is a customization of predefined
deployment viewpoints [3, 14]. This viewpoint ad-
dresses the concern about the allocation of system exe-
cution elements to processing nodes and the environ-
ment into which the system is deployed. Compared to
predefined deployment viewpoints, the requirements
that we identified indicate that such a deployment view
should show additional information on three aspects
(see Figure 5):

a) Detail of processing nodes: Boxes that describe
processing nodes in a deployment model should de-
scribe more consistent and useful information. For in-
stance, the predefined deployment viewpoint [3], de-
scribes that runtime platform and network models
should include information about the characteristics of
the processing nodes and the functional elements inside
them. To do this for a complex system, while keeping
an overview, we decided to represent functional ele-
ments with software components (groups of processes)
thereby reducing complexity when the number of proc-
esses is large and details are not necessary. In addition,
we identified that it is required to describe the alloca-
tion of important code libraries, data repositories, and
system-specific hardware devices to processing nodes,
making explicit distinctions between these elements
and software components.

b) Detail of links between processing nodes: Often
deployment models use lines to describe links between
processing nodes such as network or communication
lines. However, these links often lack descriptions
about what they actually serve for at runtime. We iden-
tified that for an execution view, links should describe
at least three aspects: the function of the link, the link’s
technology characteristics, and the capacity or band-
width the system requires from the link.

c) Organization of processing nodes: We identi-
fied that the diagrammatic representation of a deploy-
ment model should resemble as much as possible the
actual physical and geographical distribution of the
system. This is particularly required to make some de-
sign decision explicit, such as safety issues and rules to
manage the influence of physical phenomena (e.g. mag-
netism) on processing nodes. For instance, the diagram
can indicate how processing nodes and the software
components they contain can be located close to user
interface elements or scanner control devices.

status
serial

control / status
~10 MB/s

proprietary

control / status
serial

raw data
BDAS 10 MB/s, CDAS 80 MB/s proprietary link

e-net

sc
an

ne
r

de
vi

ce
s

PatSup

Physio

Magnet

RF TX

Gradient

RF RX

Host

Windows XP

CDAS SBC /
BDAS BCP

VxWorks

Reconstructor

Windows XP

Graphical
User-Interface

 control
CDAS 100 Mb/s e-net

BDAS SCSI

images
1 Gb/s e-net

PatCom

DVD-Box

Windows XP

firewire

IAP

GyroView
Spectro

Autoview

Navigator

Status

Monitoring

Physio

Q manage

VT

MIP-MPR

PrServer
shared
image

memory

Interactive

DatMon
Viewer

IAP

Autoview MIP-MPR

PrServer
shared
image

memory

Figure 5. Customized deployment model for an
execution view

5.3. Resource usage

This viewpoint addresses the concerns how to en-

sure and adequate resource usage. This includes the
metrics, rules, protocols, and budgets that define and
describe how the system actually accesses or uses
available resources such as data, system code artifacts
(software), and runtime platform resources (hardware
and software). Describing resource usage is different
from describing required resources, which is covered
by the deployment viewpoint. For instance, usual de-
ployment models describe network connections with
the capacity of the physical network link. Instead, the
resource usage viewpoint shows how to describe the
actual capacity used overtime. Thus, it enables the
analysis of the difference between the required (budg-
eted) network capacity and the provided capacity.

Figure 6 presents an execution model that de-
scribes CPU time usage. The resource usage in the sce-
nario is described together with the activity of the two
main functions (scan and reconstruction) of the system
subject of our research. Resource usage can be de-
scribed in terms of the processes or threads, especially
when performing a top-down analysis. For instance, we
constructed models like this one to analyze the differ-
ence between alternative designs of the major system
functionality. There, we observed that the main activi-
ties supported by models sanctioned by a resource us-
age viewpoint are analysis of alternative architectures,
conformance of design and implementation, and com-
munication (in particular between designers and plat-
form support engineers).

Figure 6. Resource usage models to analyze

alternative designs

To construct resource usage models, it is expected
that a system architecture and design should provide
benchmarks and budgets for resource usage, e.g., CPU
usage, but this is not often the case in current practice.
Thus, this viewpoint should also show how to create
and describe benchmarks and budgets to steer the con-
struction and analysis of resource usage models. A set

of ‘As Is’ execution models of stable execution scenar-
ios, preferably obtained from measurements on an ac-
tual system, can serve as benchmarks for resource us-
age. Based on those, budgets for future designs can be
expressed as ‘To Be’ models. Our experience is that
this helps practitioners to agree on benchmarks and to
define budgets based on specific context and actual
system information.

5.4. Concurrency

This viewpoint is a customization of the prede-

fined concurrency viewpoint [14]. For the execution
view, we identify that it is required that the main con-
cern that a concurrency model should address is the
actual control flow and data flow between software
components. On the one hand, control flow defines the
order of execution and synchronization between soft-
ware components to use or access the various system
resources. On the other hand, data flow describes how
data is processed and flows through software compo-
nents and other system elements such as data reposito-
ries. Together control and data flow creates the runtime
behavior of a system in terms of order of interactions,
situations of concurrency, communication channels,
and time-based interaction dependencies between proc-
esses, threads and other system elements, such as data
repositories and the runtime platform.

For a large system, this viewpoint shows how to
describe actual control and data flow at an overview
level (software components) and a process and thread
level of detail. We identified that to describe control
and data flow between software components, it is nec-
essary to define abstractions at the level of software
components to represent the types of interactions be-
tween them, such as data sharing, procedure call, and
execution coordination (see Figure 3). In addition,
those abstractions should be mapped to actual execu-
tion activities performed by the corresponding proc-
esses or threads of the interacting software compo-
nents. In this way, it is possible to construct control and
data flow models at the process and thread level of
detail.

Figure 7 illustrates the control flow and dataflow
for a given execution scenario. In this model, control
flow and dataflow is described between processes (grey
boxes) and threads (parallelograms). The control and
data flow edges between threads are labeled with num-
bers (1 to 4), which identify the tasks of the scenario.

Figure 8 shows a matrix model that describes
situations of concurrency for the same scenario, but at
the overview level. In this matrix model, the tasks of
the scenario are distributed horizontally representing
the time dimension and software components are dis-

tributed vertically. The value in each cell is the number
of active threads, which might be interacting creating
control and data flow.

Figure 7. Control and data flow model be-

tween processes and threads

Figure 8. Overview of concurrency between

software components

Practitioners will often decide for informal repre-
sentations [5, 14], but we have identified that most
practitioners will associate boxes and lines with soft-
ware components or processing nodes rather than proc-
esses and threads. Therefore, when constructing dia-
grammatic representations of concurrency models at
the detail of processes and threads, it is required to use
distinctive notations, e.g., using stereotypes in UML
diagrams or representing threads with parallelograms
instead of boxes (as in Figure 7).

6. Conclusions and future work

We described how to define a set of execution
viewpoints to support the construction of execution
views for an existing large software-intensive system
based on the requirements of its development organiza-
tion. The contribution of our approach is three-fold.
First, we have shown and conceptualized how to use
(customize and extend) predefined viewpoints in prac-
tice. Second, the definition approach using predefined
viewpoints is a valuable complement (e.g., to scope
and guide) to more general-purpose definition methods
such as [9]. Moreover our approach is repeatable in
other organizations and research groups. This was vali-
dated by the key practitioners involved in the approach:
they confirmed that a similar approach could be used to
upgrade or define other viewpoints for views of their
specific system. Third, our set of defined specific exe-
cution viewpoints can be reused or cited to construct
views in other organizations, because they address spe-
cific concerns that stakeholders may have.

We have shown how execution views can be con-
structed as useful sources of information that describe
what a software system does at runtime and how it does
it. On the one hand, such a view describes the actual
realization of the design and implementation on the
targeted platform (in ‘As Is’ models). On the other
hand, the view describes the desired behavior of a pos-
sible future system at runtime (in ‘To Be’ models). As
part of our future work, we aim at investigating and
reporting how such execution views can be efficiently
maintained and used to support specific architecting
and design activities. Moreover, we intend to study
how execution views can be related to other architec-
tural views, with special emphasis on identifying or
preferably avoiding inconsistencies.

Acknowledgments

We would like to thank the Software Architecture
Team and the software designers of the MRI system in
Philips Healthcare, in particular Krelis Blom and
Danny Havenith. We also extend our gratitude to Rob
van Ommering, Wim van der Linden, and our Darwin
colleagues for their feedback and joint work.

This work has been carried out as a part of the
Darwin project at Philips Healthcare under the respon-
sibility of the Embedded Systems Institute. This project
is partially supported by the Dutch Ministry of Eco-
nomic Affairs under the BSIK program.

References

[1] Philips Healthcare - Magnetic Resonance Imaging,

http://www.healthcare.philips.com/main/products/mri/i
ndex.wpd, 2009, Visited February 2009

[2] T. B. Callo Arias, P. Avgeriou, and P. America, Ana-
lyzing the Actual Execution of a Large Software-
Intensive System for Determining Dependencies, pre-
sented at 15th Working Conference on Reverse Engi-
neering, 2008.

[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford, Documenting Soft-
ware Architectures. Views and Beyond: Addison
Wesley, 2002.

[4] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A.
Ran, and P. America, A general model of software ar-
chitecture design derived from five industrial ap-
proaches, Journal of Systems and Software, vol. 80, pp.
106-126, 2007.

[5] C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture. Boston: Addison-Wesley, 1999.

[6] R. Hopkins and K. Jenkins, Eating the IT Elephant:
Moving from Greenfield Development to Brownfield:
IBM Press, 2008.

[7] G. Hunt, M. Aiken, P. Barham, M. Fähndrich, C. Haw-
blitzel, O. Hodson, J. Larus, S. Levi, N. Murphy, B.
Steensgaard, D. Tarditi, T. Wobber, and B. Zill, Sealing
OS processes to improve dependability and safety, pre-
sented at 2nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems, 2007.

[8] ISO/IEC-JTC1/SC7, ISO/IEC 42010 Systems and Soft-
ware Engineering - Recommended Practice for Archi-
tectural Description of Software-Intensive Systems
2007.

[9] H. Koning and H. van Vliet, A method for defining
IEEE Std 1471 viewpoints, The Journal of Systems &
Software, vol. 79, pp. 120 - 131, 2006.

[10] P. Kruchten, The 4+1 View Model of Architecture,
IEEE Software, vol. 12, pp. 42-50, 1995.

[11] G. Muller, CAFCR: A Multi-view Method for Embed-
ded Systems Architecting; Balancing Genericity and
Specificity, PhD Thesis, Technical University Delft,The
Netherlands, 2004

[12] G. Muller, Gaudí System Architecting - A Reference
Architecture Primer,
http://www.gaudisite.nl/info/ReferenceArchitecturePri
mer.info.html, 2007, Visited April 2009

[13] H. Obbink, P. Kruchten, W. Kozaczynski, R. Hilliard,
A. Ran, H. Postema, D. Lutz, R. Kazman, W. Tracz,
and E. Kahane, Report on Software Architecture Re-
view and Assessment version1.0,
http://philippe.kruchten.com/architecture/SARAv1.pdf,
Visited November 2008

[14] N. Rozanski and E. Woods, Software Systems Architec-
ture: working with stakeholders using viewpoints and
perspectives: Addison Wesley 2005.

[15] H. Sozer and B. Tekinerdogan, Introducing Recovery
Style for Modeling and Analyzing System Recovery,
presented at 7th Working IEEE/IFIP Conference on
Software Architecture, 2008.

[16] P. van de Laar, P. America, J. Rutgers, S. van Loo, G.
Muller, T. Punter, and D. Watts, The Darwin Project:
Evolvability of Software-Intensive Systems, presented
at 3rd International IEEE Workshop on Software
Evolvability 2007.

[17] A. van Deursen, C. Hofmeister, R. Koschke, L.
Moonen, and C. Riva, Symphony: View-Driven Soft-
ware Architecture Reconstruction, presented at 4th
Working IEEE/IFIP Conference on Software Architec-
ture, 2004.

APPENDIX I. Example of a model-specific questionnaire

AD Project name: Building the Execution Architecture of the MRI System Date:

Domain: Team:

Activity: Review of Execution Architecture Documentation

Purpose of the activity:

Review Session: Runtime Structure or Concurrency Models
In this session, we review in detail the section Runtime structure of the document Execution Architecture and the concurrency or behavior viewpoints from the literature. The
review is centered in discussing in detail the concerns addressed by this section and some of the diagrams of the runtime structure of the MRI system execution.

1. Creation and maintenance overview:
- Is there any specific contributor or source of information?
- Besides the guidelines of the 4+1 model, what triggered the creation of this section?
- What was the validation of the information of this section?
- How often is this section going to change?

2. Intended audience: (roles*)
Hardware and Software designers and architects

3. Actual audience: (roles*)
 * Roles within PH-MRI e.g. architect, designer, implementer, maintainer, etc.

4. Usage w.r.t. architecting and design activities
The tailoring of the list of activities is based on the overview review (previous session)

Activity Intended Actual Desired Comments and brief answers on how the activity is addressed

Communication among development units

Conformance of downstream design and development

Analysis & Design workflow

Education and training

Communication with customers and/or providers

Analysis of system quality attributes

Analysis of alternative architectures/designs

Other specific activities for an improved version of this section

Planning and creation of vision and roadmaps

5. Usage w.r.t. specific (architectural and design) concerns addressed by a concurrency viewpoint
Concerns are collected from the literature, nevertheless we expect that the interviewee may add some specific concerns

Concern Intended Actual Desired Comments or brief answers on how the concern is addressed

Process/Thread Structure

Show the mapping of functional elements to
Process/Thread(s)

Describe the mapping of functional elements to Process

Explain the mapping of functional elements to Process

Inter-process communication (Which are/why)

State management (states, transitions, causes, and effects)

Synchronization and integrity (e.g. mutex and shared data)

Startup and shutdown of unit and the aggregate system

Failure (Thread level and process crash) and propagation

Reentrancy and priorities (critical sections, shared code)

Notes:

6. Description and representation of information
(in the provided runtime views: Figure 1 and Figure 2)

Question Possible alternatives Comments and brief answers

What is the abstraction level of the diagram? System Overview Detail

Do you recognize the type or class of elements described by edges and nodes?

Do you recognize interactions between elements?

Do you understand what happened due to interactions?

Do you identify the sequence of interactions

Do you recognize what is inside of the nodes?

Can you describe the reason for grouping elements inside nodes?

Can you recognize the semantic of the different edges?

Additional Comments

• Attached models (System level, Overview level, Detail level)

