Defining Execution Viewpoints for a
Large and Complex Software-Intensive System

Trosky B. Callo Aria$ Pierre Americg and Paris Avgeridu
!Department of Mathematics and Computing Scienceivdysity of Groningen
“Philips Research and Embedded Systems Institute
The Netherlands
trosky@cs.rug.nl, pierre.america@philips.com, p@iss.rug.nl

Abstract ated viewpoint. An architectural model may partici-
pate in more than one view.
An execution view is an important asset for develop In this paper, we focus on the stakeholder concerns

ing large and complex systems. An execution viewrelated to system evolvability and the correspogdin
helps practitioners to describe, analyze, and conmimu Views that can address them. As part of our rebeamc
cate what a software system does at runtime anditiow the evolvability of large software-intensive system
does it. In this paper, we present an approachﬁﬁrﬂ [16], we observed that suitable architectural viens
execution viewpoints for an existing large and ctemp ~ important assets to facilitate system evolution [114].
software-intensive system. This definition approach Such views help practitioners to understand thstiexj
enables the customization and extension of a set ofystem, to plan and evaluate intended changestcand
predefined viewpoints to address the requiremehts o communicate them to others.
specific development organization. The applicatidn In particular, we are interested éxecution views
this approach has helped us to identify a set ecex Which consist of a set of models that describe and
tion viewpoints that we are currently using to const documentwhat a software system does at runtime and
execution views of an MRI system, a |arge Software_hOW it does it The term runtime refers to the actual
intensive system in the healthcare domain. time that the software system is functioning (dgrin
testing or in the field). Obviously, it is very imgant
to understand this runtime behavior of the softwhtg
in practice documenting it often does not receive
enough attention. Thus, our particular focus isup-
e Port practitioners in how to construct executioews
for large and complex software-intensive systemshS
systems often have a heterogeneous implementation
and consist of multiple processes, each with meltip
threads, deployed across several computers.

1. Introduction

The usage of multiple views is a common practic
to construct and document the architecture of large
software-intensive systems [4, 8]. The ISO/IEC 4201
standard provides a widely accepted conceptuahidefi

tion of architectural views, viewpoints and mod&k - .
In our initial work, we constructed an execution

- An architectural viewis a representation of a set of . ¢ isting | f ¢ o1 i
system elements and relations associated with them}";;’v 0 a; exis !fr]g ?rgl:](ehs? q are system L]’ N
conforming to a specific viewpoint. addressed specific stakeholder concerns. However, a

- An architectural viewpointddresses particular con- development organization of such a large and cample

cerns of the system stakeholders and consistseof th system has several stakehpldgrs with numerous con-
conventions for the construction, interpretationd a cems. Therefore, the organization needs to be table

use of an architectural view. deﬂge a néjmb?rr?f ext?]cuuﬁn wetwpotl_nts afdf:resma_g
- A view may consist of one or moagchitectural mod- neet S anT ma ﬁ N9 th('e charac erls_lcst.o ! Sm'th
els. Each such architectural model is developed usingsyS em. 1o achieve this, an organization may either

the conventions and methods established by itcasso

reuse the predefined viewpoints available in therdr describes the definition of specific viewpoints tton-
ture (e.g. [3, 5, 11, 14]) or define new ones. cepts of viewpoints, views and models with respect
In this paper, we present an approach to defineexecution. According to this model an executionwie
execution viewpoints to address the requirementa of point can cite a predefined viewpoint, in the setise
specific organization developing a large and comple the former can be defined reusing (customizing>er e
software-intensive system. This approach includtkes t tending) the latter.
identification of the organization’s requirements (
terms of concerns related to system evolvabilitd an Execution |Conforms to

Execution
development activities) and the definition of a eét Viewpoint 1 View
specific execution viewpoints. The organizationés r
quirements are derived from interviews with keygira . ?

b Cites| 0..1 1.n 1..n
tioners. The specific execution viewpoints are rosdi . Sanctions :
(including the customization and extension of some | Predefined Exag‘été?”
predefined viewpoints) to address the derived requi viewpoint

ments.

We have applied this approach as part of the
documentation of the execution architecture of ggMa
netic Resonance Imaging (MRI) system. This system i
a representative large and complex software-intensi
system, developed by Philips Healthcare [1]. This a
plication has helped us to identify how to use {@ums
ize and extend) predefined viewpoints and to extend
our approach to construct execution views, supporti
more practitioners by extending our initial setnedd-
els. We expect that other organizations and releesc
can reuse our definition approach as well as sofme o
the execution viewpoints we define here.

The organization of the rest of this paper is &s fo
lows. In Section 2, we summarize how we identified
some predefined viewpoints from the literatureSkt-
tion 3, we describe the interviews to identify ttee
quirements of a particular development organization
Section 4 summarizes the identified concepts amd co
cerns to define execution viewpoints. In Sections,
present a set of specific viewpoints resulting frthra
application of this approach. Finally, in Sectionws
provide some conclusions and future work.

Figure 1. Reuse of predefined viewpoints for
an execution viewpoint

2.2. Identified predefined viewpoints

Our search of predefined viewpoints resulted in the
identification of five candidates, which are the sno
comprehensive and elaborated available predefined
viewpoints that can be reused to define specifecax
tion viewpoints. Table 1 lists these predefinedwvie
points along with their names, as presented initéra-
ture, and the set of concerns and system elemsats t
their execution models describe. These predefined
viewpoints can be classified into two groups based
their concerns:

The first group includes:

- The concurrency viewpoinof [14], which describes

the concurrency structure of the system, mapping-fu

tional elements to concurrency units to clearlyntifg

the parts of the system that can execute conciyrent

- The behavior descriptiorof [3], which proposes a

language-independent way to document behavioral

aspects of the interactions among system elements

. . . . The second group includes:

2. Predefined execution viewpoints - The deployment viewpoinbf [14], which addresses
how to describe the environment into which the esyst

In this section we describe our motivation to skarc il be deployed including the dependencies théesys

for predefined viewpoints and the result of ourrska has with its runtime environment
o - The deployment stylef [3], which also addresses
2.1.Motivation how to describe the allocation of components and co

nectors to execution platforms
To define specific execution viewpoints, we In addition, another predefined viewpoint is theax
searched the literature for predefined viewpoitistt tion architecture of [5], which spans the two greup
address somehow what a system does at runtime andescribing the mapping of functionality to physical
how it does. In doing so we conform with the corcep resources and the runtime characteristics of teesy,
tual model from the ISO/IEC 42010 standard [8].-Fig
ure 1 illustrates the part of the conceptual mdtat

Table 1. Predefined viewpoints for execution views

Viewpoint What it describes (concern) System elemén
Concurrency| - Task structure and mapping of functional elemémtasks Processes, process groups
[14] - Inter-process communication and state management threads, inter-process

- Synchronization and integrity communication

- Startup, shutdown, task failure, and reentrancy
Behavior - Types of communication Use cases, structural
description | - Constraints on ordering elements, processes, states,
[3] - Clock-triggered stimulation applications, and objects.
Deployment | - Hardware required (specification and quantity) Processing and client nodes,
[14] - Third-party software requirements and technologmpatibility | network links, hardware

- Network requirements and capacity and physicastains components, and processes.
Deployment | - Allocation, migration, and copy relations betwessrftware ele- | Software elements
style [3] ments and computing hardware. (processes) and computing

- Properties of computing hardware, e.g., bandwialtld resource| hardware (processor,

consumption. memory, disk, etc.)
Execution - Execution configuration and its mapping to harcwaevices Processes, tasks, threads,
architecture | - Dynamic behavior of configuration clients, servers, buffers,
[5] - Communication protocol message queues, and classes

- Description of runtime entities and their instasc

3. Identifying the organization’s require- Model-specific questionnaires help us to assess
ments for execution views how a specific execution model created or ofterduse

by the interviewee aligned to descriptions of simil
models of predefined viewpoints. Thus, with each
model-specific questionnaire we attached at least t
models: the one used or created by the interviemee

a related example from the literature. Table 2 samm
rizes the group of questions for both types of tjoes
naires, overview and model-specific. For an exarople
a full questionnaire, see appendix I.

Asking stakeholders for their concerns should be a
common practice, especially for choosing views [3]
and identifying which views to recover from an ¢ixig
system [17]. In order to identify the requiremefus
execution views, we conducted a series of intersiew
with key experts of our industrial partner usingafic
guestionnaires. In this section, we summarize te k

aspects of the questionnaire design and interviews. : :
Table 2. Questionnaires structure

3.1. Questionnaire design Group of questions Overview Mode_zl-

specific
The main goal of the specific questionnaires was t¢ L Authqrs and cont.rlbutors X X

collect information on which execution views to afes 2. Creation and maintenance X X

what to describe in a particular model, how to afeoo | -3- ntended and actual users X X

the abstraction level, and how it should be desdib |4 Usage in daily activities X X

Often, asking these broad questions to practitoner| (Predefined viewpoint)

does not provide precise or useful answers. To-over 2- Usage in other activities X

come this, we designed two types of questionnaires(Cbservations & experience

(overview and model-specific). To design them, we| 6 Description of concerns X

summarized predefined viewpoints in the literatamel | (Predefined viewpoint)

our own research observations, and applied guietelin | 7- Representation language X

on reviewing software architecture descriptiong[13 and level of detail

Overview questionnaires help us to estimate the
value of an execution viewpoint and get an insight 3.2. Interviews
how a given interviewee may use it. To focus thesgu
tionnaire, we centered the questions on a setisfirgy To conduct the series of interviews, and keep them
documents containing some execution models that wer manageable and productive, it is necessary toifgient
authored or often used by the interviewee. set of representative practitioners. We initiaflydlved

two stakeholders of the development organization wh Construction techniques and sources of informadien

are actual consumers and producers of executiovsvie presented in our previous work [2].

First, a senior designer who documented an exetutio

view in the past using as a main reference the 4+14.1. Execution models

View Model [10] aiming to support the analysis bét

system performance. Second, an architect in chafrge From the results (answers and comments) of ques-
architecting and designing software interfacessfgs- tions in groups 1-4, we identified that a developme
tem-specific hardware devices. Later, we selectigliFa organization often needs to construss‘ls’ and ‘To
tional stakeholders who were mentioned as majofr con Be’ execution models to build an execution view. The
tributors or actual users of the chosen documerthio concept of‘As Is’ and To Be’ are also applicable to
interview, e.g., other software architects, designe models of other architectural views, but to keep th
platform support engineers, and managers. After con focus of this paper, we describe these concepts for
ducting an interview, we validated the collectefbin models of an execution view.

mation sending the questionnaire (with answers and 'As Is’ models describe the execution of the cur-
comments) to the interviewee who corrected and some rent system. These models are often created taosupp

times extended the captured information. the acquisition of knowledge about key executioe- sc
narios or the interactions between key system cempo
4. ldentified concepts and concerns nents. A‘To Be’ model describes the execution of a

system that does not yet exist. Such models aiie typ

’m‘ Deployment Concurrency ‘ Resource cally created to design and evaluate one or madee-al
Mapl‘)ing | | UST‘Q‘* natives for a future system and to communicate the
chosen alternative to the implementers. After imple
Metamode mentation, a newAs Is’ model can be created and
S o <? - Conformal | compared to the chosefio Be’ model. Since nowa-
1 T in E/T:vcvl;t(;?:t _days a system is rarely ever designed f_rom sc_rlam:h
in is typically based on existing systems (i.e. Braelof
@ Execution 'sanctions Requires site [6]), it is often a good idea to construciTa Be’
o frames oce] Ln anstruiction model by modifying or taking as a reference antags
n echpique ‘As |s’ model.
T
Stakeholder |_Involves Sourke of 4.2. Metamodel of system execution elements
l.n Information
Figure 2. Conceptual model to define execu- When identifying the information needs of the
tion views and viewpoint practitioners, we found it very useful to describe

_ _ _ _ y various elements that play a role in system exeuntiti
Through the series of interviews, we identified a a metamodel, which defines a number of concepts tha
set of concepts and relationships between thenur€ig occur in the execution models. Figure 3 shows such

2 illustrates the concepts and their relationshifis ~ metamodel with system execution elements and rela-
conceptual model is based on the model presented byionships between them. We developed this in ow ea
the standard [8], but here we limit ourselves tecex lier work [2] and validated and refined it duringet

tion views, models, and viewpoints instead of gaher interviews. Most predefined viewpoints (see Tabje 1
architectural views, models, and viewpoints frdrle t also use several of these elements, e.g., procasses
standard. The functional mapping, deployment, concu threads, to create execution models. Our metamodel
rency, and resource usage viewpoints are sped#i-v extends the concepts of the predefined viewpoints,
points that we will describe in Section 5. In adttit cluding elements and relationships to address the o
we include concepts such as development activity, ganization’s requirements that we identified to con
metamodel, and construction technique to illustrate struct execution views of a large software systéhe
how execution views and viewpoints fit within the-d particular extensions that we introduce are element
velopment organization based on the identified re- such as execution scenario, task, software componen
quirements. In the rest of this section, we focndh® and activity. These extensions are meant to cope wi
descriptions of the main concepts (execution meaddl three major issues: complexity and size of theesgst
metamodel) and the identified major concerns rdlate explicit links with other system views, and anadyef
to system evolvability within development activitie resource usage. In section 5, we describe thesm-ext
sions in more detail in the discussion of the idweuat

viewpoints. We also provide a detailed descriptidn
the elements and relationships of this conceptualah
in [2].

Note that the metamodel does not apply to an indi-

vidual execution model, but sharedamong the exe-
cution models. In this way, it indicates importaeta-
tionships between the models and can help to ésttabl
consistency among the models. We expect that wsing

components. On the other haris is’ execution mod-
els helpall practitioners to constantly refresh, validate,
and extend their mental models, in particular jopsut
system corrective maintenance activities that aim t
improve the existing run-time structure and manage
unpredicted system behavior.

- Project planning:Practitioners need to construct
‘To be’ execution models to support two particular

single, shared metamodel not only in the executionactivities. On the one hand, these models are Ketede

views but also across all architectural views mag-c
tribute significantly to their mutual consistency.

Processing Task Executiqn
Node 1.n Scenario
Deployed in
1 1.n Data Procedure Execution
Require Sharing Call Coordination
Software 1.n ‘ ‘ ‘
Component Interact V
9 _
1.n
1.0 | thread Performs
1.n
\ [
Data Code Platform
access Utilization Utilization

\ Access Use

Load/Execute
Data Resource
Figure 3. Metamodel of system execution ele-

ments

4.3. Concerns related to system evolvability

distinguish and analyze the difference betweenidens
ered alternative or future architectures and desibat
aim to improve quality attributes such as reliapili
[15], dependability, and safety [7]. This is impont, as

it is often not obvious how the realization of diléer-
native design may affect the structure and behasfior
the system at runtime and therefore influence other
system quality attributes. On the other hand, asleve
scribed in Section 4.1, execution models are nacgss
to describe the overall system structure, its compo
nents, and their interactions that make up theesyst
functionality of interest. Often system componests
mapped to development units within or outside the o
ganization. Thus describing the involved system-com
ponents enables the identification of the involuaits,
and therefore the planning and budgeting of respons
bilities, if possible, as a downstream process.

- Communication:Another goal of describing the
architecture of a software system is to support the
communication between system stakeholders. In par-
ticular, we identified that besides the mental ni®de
that practitioners may have, they need explicitlentce
in a common language (i.e. diagrammatic representa-
tions of execution models) to supports three lioks

Based on the result of questions in groups 2-5, We communication within the development organization.

found that the construction of execution models is
goal-driven and often problem-driven activity tcobxe
an existing system. This means that the concertiseof
stakeholders relate to the activities they perfarithin

First, execution models are useful to transfer nest

knowledge of the system design and implementation.
This supports the communication of designers and de
velopers with architects and managers. Seconduexec

a given development project towards specific goals. tion models are needed to describe how the sysses u
The major stakeholder’s concerns and the developmenthird-party components at runtime. These model$ wil
activities that need support of execution views are enaple the communication of development units (exte
listed in Table 3 and elaborated in the followirly@ gl or internal) with customer designers, develsper
graphs: and testers. Third, execution models are needei-to

- System understandingn addition to the result of s¢ribe how the software system interacts with asesu
questions in groups 2-5, our own observations ftelpe the resources of its runtime platform. These models
us to identify two aspects of how an execution view \yjj| enhance the communication of the design and im

supports acquisition of system knowledge. On the on plementation units with the (internal or externaijit
hand, execution models support system-specific aduc supporting the system runtime platform.

tion and training of new developers. Often new tleve - Conformance of design and implementation:

opers are exposed to execution models before @@y C | arge and complex software-intensive systems have
start reading and writing code. This practice hei@& strict constraints on their non-functional propesti
developers to create a mental model of the oveyal sych as reliability, safety, and performance. Iigeshe
tem, the system components they develop, and theiryrchitecture and design should describe how toeaehi
relations (dependencies) with the rest of the syste those requirements, but often the implementation-de

ates from these requirements at runtime. This lsual

ity. For a large and heterogeneous system, this-vie

happens when the implementation uses third party orpoint should show how to describe the mapping sansi

off-the-shelf components, facilities provided byeth
implementation technology and the runtime platform,
such as dynamic loading of shared libraries, pfug-i

tently and without being overwhelmed by the sizd an
complexity of the system. To achieve this, the cfet
most important execution scenarios should be chosen

mechanisms, and mechanisms to manage memory acand for each of these a functional mapping model

cess. Thus, to verify non-functional requirememsd a
properly test the system, it is often necessargaio-
struct’As is’ execution models to describe changes in
the access and utilization of resources such aedha

should be constructed. Moreover, for each such inode
the most relevant elements should be determined, so
that the others can be filtered out.

The model in Figure 4 is sanctioned by this func-

memory, shared code libraries, communication paths,tional mapping viewpoint. It shows how the indiva

and power consumption. Thug,o be’ models can be
updated, extended, and analyzed.

Table 3. Concerns and development activities
supported by execution models

Concern Development activity

System Education and training, dependeng
understanding |analysis, and corrective maintenan

(2]
m<

Analysis of alternative and future

Project Planning architecture and design.

Between development units or teams

Communication . X
and with customers and providers

Conformance of
design and
implementation

Architecture documentation,
verification of non-functional
requirements, and testing

5. Execution viewpoints

The results of questions in groups 5-7 showed that

the predefined viewpoints listed in Table 1 arefulde
define execution views. However, they do not opti-
mally address all stakeholder concerns, in padicin
dealing with the complexity and size of the systam,
making explicit links with other system views, aimd
describing and analyzing actual resource usageeThe
fore, we defined four specific viewpoints addregsin
the requirements for the execution views. Two view-

points are based on predefined viewpoints (concur-

rency and deployment) and two are additional view-
points (functional mapping and resource usagethim
section, we describe these four viewpoints inclgdin
some of their sanctioned models.

5.1. Functional mapping

The functional mapping viewpoint addresses the

concern about the relation between the system func

tionality, system functional components, and execout
elements. Thus, it shows how to describe the mappin
of the runtime elements (including software anddhar

ware elements) to the functional system components

that interact together to deliver the system funal-

tasks in a scenario are supported by a set of amdtw
components and how the processes that belong o the
perform activities, such as data access and calimut
tion. We observed that models like this one supplbrt
concerns and development activities in Table 3. For
instance, functional mapping models are necessary t
enable practitioners that are less familiar witleax
tion elements to understand the system executien. C
tain practitioners, such as managers and architeets
typically more familiar with the functionality anthe
main components of the system. By contrast, designe
and platform support engineers are often more famil
with processes and threads. A functional mapping
model such as Figure 4 helps them to relate these c
cepts to other, less familiar ones.

Exeaute
»»»»»»»

KKKKK

Software

Code
= and
Data

coilconfigupdate.exe
Ve

Functionality

emove
of

—

Processes

DIlHost.exe

CONFIGURATION
REPOSITORY

i Activity

FSA_UR

Queryalue

q_tt_aspgen_app_nu.cxe

Figure 4. Execution model of the funct
mapping viewpoint

ional

5.2. Deployment

This viewpoint is a customization of predefined
deployment viewpoints [3, 14]. This viewpoint ad-
dresses the concern about the allocation of systemn
“cution elements to processing nodes and the enrviron
ment into which the system is deployed. Compared to
predefined deployment viewpoints, the requirements
that we identified indicate that such a deployméeitv
should show additional information on three aspects
(see Figure 5):

a) Detail of processing nodeBoxes that describe 5.3, Resource usage
processing nodes in a deployment model should de-
scribe more consistent and useful information. iRer This viewpoint addresses the concerns how to en-
stance, the predefined deployment viewpoint [3} de sure and adequate resource usage. This includes the
scribes that runtime platform and network models metrics, rules, protocols, and budgets that defing
should include information about the charactersst€ describe how the system actually accesses or uses
the processing nodes and the functional elemesidan available resources such as data, system codacéstif
them. To do this for a complex system, while kegpin (software), and runtime platform resources (haréwar
an overview, we decided to represent functionat ele and software). Describing resource usage is differe
ments with software components (groups of procgssesfrom describing required resources, which is codere
thereby reducing complexity when the number of proc by the deployment viewpoint. For instance, usual de
esses is large and details are not necessarydIticad ployment models describe network connections with
we identified that it is required to describe tlieca- the capacity of the physical network link. Instetltg
tion of important code libraries, data repositoriasd resource usage viewpoint shows how to describe the
system-specific hardware devices to processingsjode actual capacity used overtime. Thus, it enables the
making explicit distinctions between these elements analysis of the difference between the requiredigbu
and software components. eted) network capacity and the provided capacity.

b) Detail of links between processing nodeen Figure 6 presents an execution model that de-
deployment models use lines to describe links betwe scribes CPU time usage. The resource usage ircéhe s
processing nodes such as network or communicationnario is described together with the activity of tiwo
lines. However, these links often lack descriptions main functions (scan and reconstruction) of theesgs
about what they actually serve for at runtime. \deni subject of our research. Resource usage can be de-
tified that for an execution view, links should delse scribed in terms of the processes or threads, iedlyec
at least three aspects: the function of the lihk,link’s when performing a top-down analysis. For instamee,
technology characteristics, and the capacity ordban constructed models like this one to analyze théedif
width the system requires from the link. ence between alternative designs of the major syste

c) Organization of processing nodéd&/e identi- functionality. There, we observed that the mairivact
fied that the diagrammatic representation of a@epl ties supported by models sanctioned by a resowsce u
ment model should resemble as much as possible theige viewpoint are analysis of alternative architess,
actual physical and geographical distribution o th conformance of design and implementation, and com-
system. This is particularly required to make saee munication (in particular between designers and- pla
sign decision explicit, such as safety issues afekto form support engineers).
manage the influence of physical phenomena (e.g- ma
netism) on processing nodes. For instance, theatiag , ALTERNATIVE DESIGN B [cruvsser —sea —reconsmucron
can indicate how processing nodes and the software w
components they contain can be located close to use °
interface elements or scanner control devices. | n

i 502
a} @] S
MIP-MPR %
Graphical & o
) User-Integfice) || |
3
control / status l ,"”’

C,
& atCom == -] ‘ 2
o) PatC = f .
g ! ! o f 1| I o
(3} £[physio o shared A
|| e cons e image -~ (Prserv HJW\D
2 g memory Execution tme min)
g e cps s/ | |Reco .
8 frex s o e Figure 6. Resource usage models to analyze
o 0 2 s alternative designs
For transmitting control/status data L.
b)| Proprietary 10MB/s link To construct resource usage mo_dels, it is expecf[ed
Maximum of 1MB/s that a system architecture and design should peovid

benchmarks and budgets for resource usage, e.y., CP
usage, but this is not often the case in curreattie.
Thus, this viewpoint should also show how to create
and describe benchmarks and budgets to steer the co
struction and analysis of resource usage modeketA

Figure 5. Customized deployment model for an
execution view

of ‘As Is’ execution models of stable execution scenar- tributed vertically. The value in each cell is theanber
ios, preferably obtained from measurements on an ac of active threads, which might be interacting drept
tual system, can serve as benchmarks for resogce u control and data flow.

age. Based on those, budgets for future designdean

expressed a%To Be’ models. Our experience is that A_ADUI 1.4 Tasks of scenario

this helps practitioners to agree on benchmarkstand — Data flow

define budgets based on specific context and actual

system information.

Nain

5.4. Concurrency v
This viewpoint is a customization of the prede- Tl L E e U

fined concurrency viewpoint [14]. For the execution
view, we identify that it is required that the maion- \ 2

cern that a concurrency model should address is the

actual control flow and data flow between software FMSTransfetPerfotmer
components. On the one hand, control flow defihes t 2/4

order of execution and synchronization between- soft

ware components to use or access the various system DataRepositoryConnection 2
resources. On the other hand, data flow describes h

data is processed and flows through software compo- \\‘ 2

nents and other system elements such as datatmeposi

ries. Together control and data flow creates tinime Fushcheduler

behavior of a system in terms of order of inteatdi \

situations of concurrency, communication channels,

and time-based interaction dependencies between pro ImageProcessor

esses, threads and other system elements, suditaas d

repositories and the runtime platform. Figure 7. Control and data flow model be-
For a large system, this viewpoint shows how to tween processes and threads

describe actual control and data flow at an overvie

level (software components) and a process anddhrea
level of detail. We identified that to describe troh View: SWComponents x Taskx Activity v
and data flow between software components, it & ne

essary to define abstractions at the level of sofw Element Types: [Treac -
components to represent the types of interactians b

tween them, such as data sharing, procedure cuall, a SE[!]tLp 02 Init Tra‘ﬁfer 04 Close
execution coordination (see Figure 3). In addition, Transfer | ST page | 1ansfer
those abstractions should be mapped to actual execu A_ADUI 2 1

tion activities performed by the corresponding proc SCu 2 5 4 2
esses or threads of the interacting software compo- Figure 8. Overview of concurrency between
nents. In this way, it is possible to constructtooirand software components

data flow models at the process and thread level of

detail. Practitioners will often decide for informal repre-

Figure 7 illustrates the control flow and dataflow sentations [5, 14], but we have identified that fmos
for a given execution scenario. In this model, omint practitioners will associate boxes and lines witht-s
flow and dataflow is described between processey (g ware components or processing nodes rather than pro
boxes) and threads (parallelograms). The contrdl an esses and threads. Therefore, when constructing dia
data flow edges between threads are labeled with nu grammatic representations of concurrency models at
bers (1 to 4), which identify the tasks of the soén the detail of processes and threads, it is requoade

Figure 8 shows a matrix model that describes distinctive notations, e.g., using stereotypes MLU
situations of concurrency for the same scenariv,abu diagrams or representing threads with parallelogram
the overview level. In this matrix model, the tasKs instead of boxes (as in Figure 7).
the scenario are distributed horizontally reprasgnt
the time dimension and software components are dis-

6. Conclusions and future work

We described how to define a set of execution [1]
viewpoints to support the construction of execution
views for an existing large software-intensive syst
based on the requirements of its development argani
tion. The contribution of our approach is threedfol
First, we have shown and conceptualized how to use
(customize and extend) predefined viewpoints ircpra
tice. Second, the definition approach using preeefi
viewpoints is a valuable complement (e.g., to scope
and guide) to more general-purpose definition megho
such as [9]. Moreover our approach is repeatable in
other organizations and research groups. This afks v
dated by the key practitioners involved in the aph:
they confirmed that a similar approach could beluse
upgrade or define other viewpoints for views ofithe
specific system. Third, our set of defined spedaifie-
cution viewpoints can be reused or cited to comstru
views in other organizations, because they addiess
cific concerns that stakeholders may have.

We have shown how execution views can be con-
structed as useful sources of information that rilesc
what a software system does at runtime and howassd
it. On the one hand, such a view describes theahctu
realization of the design and implementation on the
targeted platform (infAs Is’ models). On the other
hand, the view describes the desired behaviorpafsa
sible future system at runtime (iio Be’ models). As
part of our future work, we aim at investigatingdan
reporting how such execution views can be effityent
maintained and used to support specific architgctin (9]
and design activities. Moreover, we intend to study
how execution views can be related to other archite [10]
tural views, with special emphasis on identifying o
preferably avoiding inconsistencies.

(2]

(3]

(4]

(5]
(6]

(7]

(8]

[11]
Acknowledgments

We would like to thank the Software Architecture
Team and the software designers of the MRI system i
Philips Healthcare, in particular Krelis Blom and
Danny Havenith. We also extend our gratitude to Rob [13]
van Ommering, Wim van der Linden, and our Darwin
colleagues for their feedback and joint work.

This work has been carried out as a part of the
Darwin project at Philips Healthcare under the oasp
sibility of the Embedded Systems Institute. Thisject
is partially supported by the Dutch Ministry of Eco
nomic Affairs under the BSIK program.

(14]

(15]

References

Philips Healthcare - Magnetic Resonance Imaging
http://www.healthcare.philips.com/main/products/imri
ndex.wpd, 2009, Visited February 2009

T. B. Callo Arias, P. Avgeriou, and P. Ameridema-
lyzing the Actual Execution of a Large Software-
Intensive System for Determining Dependencies, pre-
sented afl5th Working Conference on Reverse Engi-
neering 2008.

P. Clements, F. Bachmann, L. Bass, D. Garlatveis,
R. Little, R. Nord, and J. Staffordocumenting Soft-
ware Architectures. Views and Beyowrdidison
Wesley, 2002.

C. Hofmeister, P. Kruchten, R. L. Nord, H. Obkj A.
Ran, and P. America, A general model of software ar
chitecture design derived from five industrial ap-
proachesJournal of Systems and Softwavel. 80, pp.
106-126, 2007.

C. Hofmeister, R. Nord, and D. So#ipplied Software
Architecture Boston: Addison-Wesley, 1999.

R. Hopkins and K. Jenkingating the IT Elephant:
Moving from Greenfield Development to Brownfield
IBM Press, 2008.

G. Hunt, M. Aiken, P. Barham, M. Fahndrich, i@aw-
blitzel, O. Hodson, J. Larus, S. Levi, N. Murphy, B
Steensgaard, D. Tarditi, T. Wobber, and B. ZillalBey
OS processes to improve dependability and safety, p
sented a2nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systera607.
ISO/IEC-JTC1/SC7, ISO/IEC 42010 Systems and-Sof
ware Engineering - Recommended Practice for Archi-
tectural Description of Software-Intensive Systems
2007.

H. Koning and H. van Vliet, A method for defirg

IEEE Std 1471 viewpoint§,he Journal of Systems &
Software vol. 79, pp. 120 - 131, 2006.

P. Kruchten, The 4+1 View Model of Architectyr
IEEE Softwarevol. 12, pp. 42-50, 1995.

G. Muller, CAFCR: A Multi-view Method for Emlzk
ded Systems Architecting; Balancing Genericity and
Specificity,PhD ThesisTechnical University Delft,The
Netherlands, 2004

G. Muller, Gaudi System Architecting - A Reface
Architecture Primer,
http://www.gaudisite.nl/info/ReferenceArchitectureP
mer.info.html, 2007, Visited April 2009

H. Obbink, P. Kruchten, W. Kozaczynski, R. IHitd,

A. Ran, H. Postema, D. Lutz, R. Kazman, W. Tracz,
and E. Kahane, Report on Software Architecture Re-
view and Assessment versionl.0,
http://philippe.kruchten.com/architecture/SARAvIf,pd
Visited November 2008

N. Rozanski and E. WoodSpftware Systems Architec-
ture: working with stakeholders using viewpointsian
perspectivesAddison Wesley 2005.

H. Sozer and B. Tekinerdogan, Introducing Recyp
Style for Modeling and Analyzing System Recovery,
presented afth Working IEEE/IFIP Conference on
Software Architecture2008.

[16] P.van de Laar, P. America, J. Rutgers, S.ham G.

Muller, T. Punter, and D. Watts, The Darwin Project
Evolvability of Software-Intensive Systems, preseint
at 3rd International IEEE Workshop on Software

[17] A. van Deursen, C. Hofmeister, R. Koschke, L.

Moonen, and C. Riva, Symphony: View-Driven Soft-
ware Architecture Reconstruction, presentedtit
Working IEEE/IFIP Conference on Software Architec-

Evolvability2007. ture, 2004.

APPENDIX I. Example of a model-specific questionnae

AD Project name: Building the Execution Architecture of the MRI System Date:
Domain: | Team:

Activity: Review of Execution Architecture Documentation

Purpose of the activity:

Review Session: Runtime Structure or Concurrency Models
In this session, we review in detail the section Runtime structure of the document Execution Architecture and the concurrency or behavior viewpoints from the literature. The
review is centered in discussing in detail the concerns addressed by this section and some of the diagrams of the runtime structure of the MRI system execution.

1. Creation and maintenance overview:
- Is there any specific contributor or source of information?
- Besides the guidelines of the 4+1 model, what triggered the creation of this section?
- What was the validation of the information of this section?
- How often is this section going to change?

2. Intended audience: (roles*)
Hardware and Software designers and architects

3. Actual audience: (roles*)
* Roles within PH-MRI e.g. architect, designer, implementer, maintainer, etc.

4. Usage w.r.t. architecting and design activities
The tailoring of the list of activities is based on the overview review (previous session)

Activity Intended Actual Desired Comments and brief answers on how the activity is addressed

Communication among development units

Conformance of downstream design and development

Analysis & Design workflow

Education and training

Communication with customers and/or providers

Analysis of system quality attributes

Analysis of alternative architectures/designs

Other specific activities for an improved version of this section

Planning and creation of vision and roadmaps | [[[

5. Usage w.r.t. specific (architectural and design) concerns addressed by a concurrency viewpoint
Concems are collected from the literature, nevertheless we expect that the interviewee may add some specific concerns

Concern Intended Actual Desired Comments or brief answers on how the concern is addressed

Process/Thread Structure

Show the mapping of functional elements to
Process/Thread(s)

Describe the mapping of functional elements to Process

Explain the mapping of functional elements to Process

Inter-process communication (Which are/why)

State management (states, transitions, causes, and effects)

Synchronization and integrity (e.g. mutex and shared data)

Startup and shutdown of unit and the aggregate system

Failure (Thread level and process crash) and propagation

Reentrancy and priorities (critical sections, shared code)

Notes:

6. Description and representation of information
(in the provided runtime views: Figure 1 and Figure 2)

Question Possible alternatives Comments and brief answers

What is the abstraction level of the diagram? System Overview Detail

Do you recognize the type or class of elements described by edges and nodes?

Do you recognize interactions between elements?

Do you understand what happened due to interactions?

Do you identify the sequence of interactions

Do you recognize what is inside of the nodes?

Can you describe the reason for grouping elements inside nodes?

Can you recognize the semantic of the different edges?

Additional Comments

. Attached models (System level, Overview level, Detail level)

