
On the Transfer of Evolutionary Couplings to Industry1

Piërre van de Laar
Embedded Systems Institute

P.O. Box 513, 5600 MB Eindhoven
The Netherlands

pierre.van.de.laar@esi.nl

Abstract

In this paper, we describe a case study at Philips
Healthcare MRI focusing on evolutionary couplings,
i.e., a technique to infer relationships among modules
by analyzing their history of changes in the source
code archive. In this case study, we failed to transfer
CouplingViewer, a tool implementing the current
state-of-art in evolutionary couplings, to industry.
According to the industrial experts an important
industrial requirement was not met: the signal-to-noise
ratio was too low.

1. Introduction

Evolving a software product requires active
management of the couplings between the modules [1].
Low coupling between modules not only makes the
software easier to understand, but also minimizes the
paths along which changes and errors can
propagate [2]. One popular approach to reconstruct
couplings between modules is based on mining the
change history [3-17]. Like [9], we will use the term
evolutionary couplings to refer to this approach.
Evolutionary coupling analysis is based on the
conceptual model [18] that a change is made for a
specific reason and the modules changed are thus
semantically related [3]. Although evolutionary
coupling analysis has been applied on large scale
industrial and open source software, to our knowledge,
it has not been transferred to industry, i.e., being used
by multiple developers and architects without support
of a group of researchers.

In this paper, we describe a case study carried out as
part of the Darwin project [19] at Philips Healthcare
MRI. In this case study, we tried to transfer tooling for
evolutionary coupling analysis to industry. In the

industrial toolbox, many “tools” are available to detect
and visualize specific couplings, ranging from include
relations to call graphs, and from documentation to
inter-process communication monitoring. Although
each tool has its limitations, all tools together constitute
a powerful industrial toolbox. Therefore, we expected
the bar of acceptance of evolutionary couplings tooling
to be high. In the case study, we would like to get
answers to the following questions:
• What are the industrial requirements for applying

evolutionary couplings?
• Are these requirements already met by the current

state-of-art?
The paper is organized as follows. In Sections 2 and

3, we discuss the related work. Section 2 focuses on
what is a change, and where can we get information
about changes. Section 3 focuses on the visualisation of
the information about changes. In Section 4, we
describe the case study in which we attempted to
transfer evolutionary couplings to the industrial context
of Philips Healthcare MRI and the lessons learned. We
end in Sections 5 and 6 with the discussion and
conclusion.

2. Changes

The software of most systems is developed,
maintained, and evolved in many iterations. In each
iteration, the software is changed, e.g., to add a feature,
fix a bug, or improve its performance. At the end of
each iteration, the change is accepted and the software
is thus in an acceptable state. Typically, this means that
the software compiles and the acceptance tests have
been successfully executed. Iterations can be observed
at different levels of abstraction. For example, an
iteration between product releases contains many
smaller iterations. Evolutionary coupling analysis has

1 This work has been carried out as part of the DARWIN project at Philips Healthcare under the responsibility of the
Embedded Systems Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs
under the BSIK program.

been applied with iterations at different levels of
abstraction [3][4][10][11].

For evolutionary couplings, the change sets, i.e., the
set of modules modified together in a change, are
needed. This information might be captured by the
version control system, as is done by subversion [20],
or in commit mails [11]. If this information is not
captured, as is the case with the version control system
CVS, it must be approximated. Time windows are a
good approximation for restoring change sets from
CVS [11].

Often, the information contained in repositories
needs preprocessing (see e.g. [11]), since the
conceptual models [18] of these repositories do not
exactly match the conceptual model of evolutionary
couplings.

3. Visualization of changes

One way to visualize the changes to a software
archive is a module-change matrix. Each row
represents a single change and indicates which modules
were changed, i.e., which modules were part of that
change. For a successful, long-living system the
number of changes becomes so large that the module-
change matrix becomes inconvenient to be handled by
humans. This raises the question: How could this
information be effectively summarized? In the
literature, a number of different similarity measures
between the different entities, i.e., modules, have been
proposed to answer this question [3-5][12-15][21].

Summarizing the information of all changes into
change similarity values between all entities in the
system still poses a visualization issue for industrial
systems, which contain tens of thousands of files,
hundreds of components, and tens of subsystems. The
hierarchical structure in the software can be exploited
to limit the number of visible entities to a manageable
number [22], while ensuring by using navigation along
the hierarchical structure that all entities could still be
made visible.

4. Case Study at Philips Healthcare MRI

Within the repository of Philips Healthcare MRI,
the information of changes is captured in so-called
postlists. This information includes an explanation
message describing the change; and the set of files that
were modified to realize the change. A change
described in a postlist is reviewed. When the reviewers
accept the change, the printed version of the postlist of
the change is signed, as required by the Food and Drug
Administration (FDA), and submitted to the integrator.

Once per day, the integrator applies all submitted
postlists to the archive and performs the integration
tests. When the integration tests are executed
successfully, the set of postlists is accepted and made
available to all developers. Postlists thus have a
controlled commit, similar to many open source
projects, where changes are analyzed and discussed by
its project members over newsgroups, email, and mail
lists before they are committed, see, for example, [16]
and the references therein. Controlled commits reduce
the probability of incomplete changes, and of
combining unrelated changes [16].

Some differences in the conceptual models of
postlists and evolutionary couplings exist. We dealt
with merges and changes in the file structure as is done
in literature.

4.1. CouplingViewer

We based CouplingViewer, our tool to visualize
evolutionary couplings, on postlists. Postlists are, like
commit mails, a more precise solution than
approximating change sets using time windows [11].
Figure 1 shows a screenshot of CouplingViewer.

Figure 1. Screenshot of CouplingViewer showing
the evolutionary couplings between elements in the

subsystem viewingprocessing.

We followed the literature in which all except
one [13] use symmetric similarity measurements. We
decided to use both an absolute and a relative similarity
measurement to have the best of both worlds: Absolute
measures are dependent on the way of working by the
development organization and the developers [16].
Relative measures give unreliable results for rarely
changing entities, since a large amount of data is
needed before the measure can be accurate [17]. In

file:///H:/Darwin/2008 04 Evolutionary couplings/

particular, CouplingViewer presents both the number
of co-changes and the Ochiai percentage [3][21].

Finally, we defined that a hierarchical entity changes
when any of the entities it contains changes. For a file
system, this means that, according to this definition, a
directory changes when at least one of the files or
directories contained in that directory changes. Since
changes are aggregated to all higher hierarchical
entities, guidance to navigate to often changing entities
in the complete hierarchy is automatically provided.

Figure 2: Part of the list of changes in which two
entities were changed together.

Besides the navigation within the hierarchy of the
software, we also added navigation to zoom into the
“reason” of the evolutionary couplings. Each value,
representing the number of co-changes, provides a
navigational link to the list of changes in which these
two entities were changed together, as depicted in
Figure 2. In this list, the navigational link associated
with each change, enables one to navigate to the
information of this change, for example, to read its
explanation message that elaborates on the reason of
that particular change. The information about the
reason of an evolutionary coupling is relevant from a
scientific and industrial point of view. From the
scientific point of view, the reason is needed to verify
whether the evolutionary coupling represents a real
coupling [4]. From an industrial point of view, the
reason of an undesirable coupling is needed to be able
to improve the structure of the software by removing
that coupling.

When the information of a change indicated,
according to the user, that the change was not made for
a single reason, the user could, at run-time, hide this
change in the current session, or even remove it from
the current and all future sessions, by clicking the
respective link in front of the change, as shown in
Figure 2.

4.2. Industrial validation

4.2.1. Pilot study. Approximately 20 software
developers and architects have experimented with
CouplingViewer in a pilot study. They investigated
couplings found by mining the change history that were
unexpected. Furthermore, they investigated whether
known couplings were also found by mining the change
history using CouplingViewer. Based on the
experiments, these software developers and architects
did not want to add CouplingViewer to their industrial
toolbox. According to them, an important industrial
requirement was not met: the signal-to-noise ratio was
considered too low for industrial applicability. In other
words, too many false positives and false negatives
were observed in the evolutionary couplings.

4.2.2. Quantitative experiment. To quantify the
observed signal-to-noise ratio, we set up an experiment
in which four software developers/architects had to
determine whether 20 pairs of software entities were
coupled. During the experiment, each software
developer/architect had to answer in 90 minutes the
following two questions for each of the 20 pairs of
software entities:
• According to CouplingViewer, is there a coupling

between this pair of software entities?
• Looking at the evidence, such as changes

described in postlists, source code,
documentation, experience, etc., is
CouplingViewer right about the coupling between
this pair of software entities?

The outcome of the experiment is that in 15% of all
cases in which CouplingViewer reports an evolutionary
coupling, no actual coupling exists; and in at least 6.3%
of all cases in which CouplingViewer reports no
evolutionary coupling, an actual coupling does exist.

5. Discussion

To our knowledge, previous studies [3-17] did not
report the number of false positives and false negatives
that were observed in their case studies, although
examples of false positives and false negatives were
given [11][13]. Despite the fact that we are unable to
compare performances, we believe that our
performance is comparable to the current state-of-art
performance in evolutionary coupling analysis.

6. Conclusions

In this paper, we describe a case study at Philips
Healthcare MRI focusing on evolutionary couplings,
i.e., the reconstruction of the couplings between
modules by mining the change history. In this case
study, we tried to transfer CouplingViewer, a tool
implementing the current state-of-art in evolutionary
couplings, to industry. CouplingViewer had an
accuracy of 15% false positives and at least 6.3% false
negatives in the evolutionary couplings. However,
according to the industrial experts, an important
industrial requirement was not met: the signal-to-noise
ratio was too low. In the future, we would like to
investigate what the signal-to-noise ratio should be for
industrial applicability; what the sources of noise are
and whether this noise can be prevented; and we would
like to focus on the threats of validity of the experiment
to determine whether our failure to transfer
CouplingViewer is only caused by a too low signal-to-
noise ratio.

7. Acknowledgements

I would like to thank the software architects and
developers of Philips Healthcare MRI that participated
in evaluating CouplingViewer. Furthermore, I would
like to thank Gerrit Muller, Pierre America, Trosky
Callo, Richard Doornbos, Adam Vanya, Pieter van der
Spek, and the anonymous reviewers for useful feedback
on an earlier version of this paper.

8. References

[1] M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, and
W.M. Turski, Metrics and Laws of Software Evolution - The
Nineties View, Proceedings 4th International Symposium on
Software Metrics, 1997, pp. 20-32.
[2] W.P. Stevens, G.J. Myers, and L.L. Constantine,
Structured Design, IBM Systems Journal, Vol. 13(2), 1974,
pp. 115-139.
[3] T. Ball, J.-M. Kim, A.A. Porter, and H.P. Siy, If Your
Version Control System Could Talk …, Proceedings ICSE
Workshop on Process Modelling and Empirical Studies of
Software Engineering, 1997.
[4] H. Gall, K. Hajek, and M. Jazayeri, Detection of logical
coupling based on product release history, Proceedings
International Conference on Software Maintenance, 1998,
pp. 190-198.
[5] H. Gall, M. Jazayeri, and J. Krajewski, CVS Release
History Data for Detecting Logical Couplings, Proceedings
6th International Workshop on Principles of Software
Evolution, 2003, pp. 13-23.
[6] A.T.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-
Carroll, Predicting Source Code Changes by Mining Change

History, IEEE Transactions on Software Engineering, Vol.
30(9), 2004, pp. 574-586.
[7] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller,
Mining Version Histories to Guide Software Changes, IEEE
Transactions on Software Engineering, Vol. 31(6), 2005, pp.
429-445.
[8] A. Vanya, L. Hofland, S. Klusener, P. van de Laar, and
H. van Vliet, Assessing Software Archives with Evolutionary
Clusters, Proceedings 16th IEEE International Conference on
Program Comprehension, 2008, pp. 192-201.
[9] H. Kagdi, M.L. Collard, and J.I. Maletic, A survey and
taxonomy of approaches for mining software repositories in
the context of software evolution, Journal of Software
Maintenance and Evolution: Research and Practice, Vol. 19,
2007, pp. 77-131.
[10] M. D’Ambros, H.C. Gall, M. Lanza, and M. Pinzger,
Analysing Software Respositories to Understand Software
Evolution, Chapter 3 of T. Mens and S. Demeyer (Eds.),
Software Evolution, 2008, pp. 37-67.
[11] T. Zimmermann and P. Weißgerber, Preprocessing CVS
Data for Fine-Grained Analysis, Proceedings International
Workshop on Mining Software Repositories, 2004, pp. 2-6.
[12] G. Antoniol, V.R. Rollo, and G. Venturi, Detecting
groups of co-changing files in CVS respositories,
Proceedings 8th International Workshop on Principles of
Software Evolution (IWPSE), 2005, pp. 23-32.
[13] M. Burch, S. Diehl, and P. Weißgerber, Visual Data
Mining in Software Archives, Proceedings ACM Symposium
on Software Visualization, 2005, pp. 37-46.
[14] J. Ratzinger, M. Fisher, and H. Gall, EvoLens: Lens-
View Visualizations of Evolution Data, Proceedings 8th

International Workshop on Principles of Software Evolution
(IWPSE), 2005, pp. 103-112.
[15] O. Maqbool and H.A. Babri, Hierarchical Clustering
for Software Architecture Recovery, IEEE Transactions on
Software Engineering, Vol. 33(11), 2007, pp. 759-780.
[16] J. Kothari, T. Denton, A. Shokoufandeh, S. Mancordis,
and A.E. Hassan, Studying the Evolution of Software
Systems Using Change Clusters, Proceedings 14th IEEE
International Conference on Program Comprehension, 2006,
pp. 46-55.
[17] R. Robbes, D. Pollet, and M. Lanza, Logical Coupling
Based on Fine-Grained Change Information, Proceedings
15th Working Conference on Reverse Engineering, 2008, pp.
42-46.
[18] O.I. Lindland, G. Sindre, and A. Sølvberg,
Understanding Quality in Conceptual Modeling, IEEE
Software, 1994, pp. 42-49.
[19] P. van de Laar, P. America, J. Rutgers, S. van Loo, G.
Muller, T. Punter, and D. Watts, The Darwin Project:
Evolvability of Software-Intensive Systems, Third Workshop
on Software Evolvability, 2007, pp. 48-53.
[20] http://subversion.tigris.org/
[21] F. Esposito, D. Malerba, V. Tamma, and H.H. Bock,
Classical Resemblance Measures, Chapter 8.1 of H.H. Bock
and E. Diday (Eds.), Analysis of Symbolic Data: Exploratory
Methods for Extracting Statistical Information from
Complex Data, 2000, pp. 139-152.
[22] Baldwin, C. and K. Clark, Design Rules, Volume 1: The
Power of Modularity, 1999, ISBN 0262024667.

	1. Introduction
	2. Changes
	3. Visualization of changes
	4. Case Study at Philips Healthcare MRI
	4.1. CouplingViewer
	4.2. Industrial validation

	5. Discussion
	6. Conclusions
	7. Acknowledgements

	8. References

