
7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

Supporting Evolving Product Families

Piërre van de Laar

Embedded Systems Institute, The Netherlands, pierre.van.de.laar@esi.nl

Abstract

The goal of this article is to draw attention to the challenging problems associated with supporting evolving product families.

After a general problem description, we focus on a single detail of supporting evolving product families. We propose and

evaluate using industrial experts a method to measure the similarity between products.

Key words – product family, evolution, evolvability, service, upgrade, test, installed base.

1 Introduction

Customers not only want more and more personalized

products, they also want to keep their products more and

more up-to-date. For example, when buying a car,

customers will select the features they like from the feature

list, containing, for example, car radio, navigation system,

DVD player, and cruise control. Later, customers want to

listen to the music on their iPod in the car; have the latest

maps for their navigation system; watch blue ray disks next

to DVDs; have adaptive cruise control; and add both a hold-

your-line and a parking assistant.

The requirement of more and more personalized products is

addressed extensively by product families [4][15][18][20].

The requirement of keeping these products up-to-date has

received only very limited attention [14]. We see two

reasons for this limited attention:

• Supporting product families is even more complex

than developing them, since whereas development

only addresses the products on sale in the next

period, support also addresses all products sold.

• The relevance of support depends on the kind of

product. Many consumer devices, like electronic

toys, mobile phones and televisions, are

considered throw-away devices. These devices are

typically not serviced and not upgraded: they are

simply replaced.

With respect to the last reason, we see a change currently

taking place: Consumer devices are becoming more and

more upgradeable. For example, the latest mobile phones

can be personalized using ring tones, skins, and even

applications; and the newest televisions are made

upgradeable to mitigate the increase in risks associated with

going from a stand-alone device to a node in the network.

Product families realise mass customisation [17] by

balancing the variety in products with the costs involved.

This balance will be discussed more thoroughly in

section 2. In section 3, we focus on a number of questions

that typically must be addressed while supporting evolving

product families. From these questions, we extract our

research question that addresses a single detail of

supporting evolving product families. In section 4, we

discuss related work. In section 5, we describe the solution

direction we investigated. We end in sections 6, 7, and 8,

with a summary, a discussion, and the road ahead of us.

2 Product families and similarity

Product family development focuses on multiple products.

Trade-offs are made in the context of these products. The

commonalities between product variations and/or product

generations are exploited. Products are composed out of

smaller parts, possibly in multiple steps. These parts are

developed for usage in different products. Multiple products

are constructed using the same parts. The products in a

product family developed by an organisation are dependent

on each other.

Customers want mass customisation: a large variety of

products for a reasonable price. Product families realise

mass customisation [17] by balancing the variety in

products with the costs involved. The costs are related to

development, testing, upgrading, maintenance, servicing,

and bill of materials:

• The larger the differences between products in a product

family, the more complex the development and testing

becomes. When complexity increases, the costs and

time to market increases as well.

• The more products are similar in the installed base, the

easier it becomes to make upgrades for the installed

base. Furthermore, the same upgrade will address a

larger potential customer base.

• The more products are similar in the installed base, the

cheaper their maintenance and servicing. For

maintenance, not only fewer different spare parts are

needed but also more products depend on the remaining

spare parts. When the amount of requests for a spare

part increases, these requests become better predictable

due to the law of large numbers. As a consequence, the

number of items on stock can be optimized even better.

In addition, service engineers not only need less

education, there is also less need for specialization,

which makes assigning service engineers to the products

needing service easier.

• The more similar products are, the more they profit

from the economy of scale of their constituent parts.

To make the right trade-off in the variety supported by a

product family, we need to balance the value of the

differences between products with the costs to realize them.

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

3 Supporting evolving product families

To understand the issues of supporting evolving product

families, we first describe the support of a product instance

during its lifecycle. Second, we look at the reasons why

product families evolve. Third, we focus on a few questions

that must be answered while supporting evolving product

families. From these questions, we extract our research

question.

3.1 The lifecycle of a product

system
order

using

local

changes, e.g.
accounts

procedures

m
a

in
te

n
a
n

c
e

u
p
g

ra
d
e

using

or
de

rin
g

co
m

po
ne

nt
s

m
an

uf
ac

tu
rin

g

sh
ip
pi
ng

in
st
al
la
tio

n

sh
ip
pi
ng

in
st
al
la
tio

n

re
fu

rb
is
hi
ng

sh
ip
pi
ng

secondary

use d
is

p
o
s
e

m
a

in
te

n
a

n
c
ea
d

d
 o

p
ti
o
n

sa
le
s

Figure 1 - The lifecycle of an industrial product [10].

To illustrate the support that a product instance receives

during its lifecycle, we describe the life of an industrial

product, such as an MRI scanner, as depicted in Figure 1.

The life of a product instance starts when an order for it is

placed. The product is constructed according to the

customer’s wishes. Part of the construction happens in the

factory; part at the customer’s site. Once constructed, the

product is ready to be used. The product is configurable,

e.g., to handle accounts to ensure the privacy of patients’

data, and its configuration settings will be changed during

its lifetime. The product is kept up-to-date by options and

upgrades, which might require that the product is

temporarily shut-down. Since the performance of the

product deteriorates over time, e.g., due to wear, service at

regular points in time and occasionally, in cases of break

down, is needed. When the product does not any longer

satisfy the needs of the customer, the product can be sold to

another user, directly or indirectly via a broker. In the latter

case, the product is often refurbished to better meet

customer’s needs, before installing it at the site of the

second-hand buyer. The cycle of usage and re-selling ends

when the product is finally disposed and recycled.

3.2 Why do product families evolve over time?

Product families evolve to follow changes in technology,

environment, and stakeholder’s needs [12]. To give some

MRI scanner related examples:

• Technological advancements in the computing

infrastructure, such as faster processors, larger

memories, and 64 bits operating systems, enabled

handling of even larger clinical images. Technological

advancements in MRI lead to new clinical applications,

such as functional MRI.

• New legislation, such as the European Physical Agents

Directive, could dramatically change the working

practices of MRI personnel.

• The unsatisfied need of surgeons to know where fibres

are positioned inside the brain to prevent accidentally

cutting them during surgery, stimulated advancements

in the product’s domain leading to a new clinical

application called fibre tracking.

While evolving product families, many companies have the

strategy to make backwards compatible changes. In other

words, these companies try to ensure that products in the

installed base can be upgraded to provide the same

functionality as the products on sale. Especially when the

changes have localized impacts, backwards compatible

changes can often be realized.

3.3 Extracting our research question

Many industrial questions are raised, while supporting

evolving product families. In this section, we focus on five

of these questions, from which we will extract our research

question that addresses a single detail of supporting

evolving product families.

3.3.1 Which products to test for a replacement?

Products contain hundreds of parts. Many of these parts are

bought from an external provider. Buying parts from a

provider enables a company to focus on its own core

competencies while benefiting from the provider’s expertise

and economy of scale. However, these parts are not under

the control of the company making the complete product.

Hence, they can become obsolete, for example, when a last-

time-buy call is issued by the external provider or due to

bankruptcy of the provider. When parts are no longer

available, a replacement is needed. Typically, tests will be

performed to ensure that a replacement is indeed

compatible in form, fit, and function. Since a part can be

used
1
 in many products, many different tests are possible.

While tests reduce the risk associated with using the

replacement, costs are associated with performing them.

Therefore, companies want to perform tests on that set of

products that optimally balances the cost of performing

these tests and the risk associated with using the

replacement for the installed base. Tests are, however, not

equally effective in reducing that risk. At least, two rules

determine the effectively of a test. First, the more instances

of a product are in the installed base, the more effective a

test of that product is. Second, the more a product differs

from the products used in earlier tests, the more effective a

test with that product is. The first rule raises a relative

simple question that a company typically can answer: which

products are in the installed base? The second rule raises

another question: how can the difference between products

be measured?

3.3.2 How to profit maximally from supporting the

installed base?

Many companies earn more money with supporting their

products than with actually selling them. Well-known

1
 A part does not have to be contained in a configuration to

be used: a part is used when it is a replacement for another,

still functioning but no longer available, part.

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

examples are game consoles and printers, where the profit

is made on the games and ink, respectively. Other sources

of revenues generated by the installed base include service

contracts and selling of upgrades. Typically, spare parts are

needed for them, i.e., to be able to replace a broken part or

to realize the upgrade. Costs are, of course, associated with

maintaining a stock of spare parts. The more different parts

are contained in the products being serviced, the higher the

costs associated with storing their spare parts. When the

products in the installed base could be made more similar,

costs would also be reduced. This can be stimulated by

pricing upgrades attractively for the most different products

in the installed base. But how can the similarity and

difference between products be measured?

3.3.3 How risky is upgrading a specific product?

Customers of a product typically want to keep it up-to-date.

Especially when the substantial investments are involved,

upgrades are a viable option to achieve this goal. To give

some car-related upgrade examples:

• A FM car radio can be replaced by a digital one

which can play CDs and mp3s as well;

• Car navigation can be added; and

• Cruise control can be built in.

The first two examples are typically done by the customer

himself. The last example is however typically done by a

service organization: the garage. An upgrade often targets

multiple products. For example, the first two upgrade

examples are typically independent of the car’s brand. The

chance that an upgrade targets multiple products is even

higher when the products are members of the same product

family. Before an upgrade is offered to customers, tests

using a subset of the targeted products are typically

performed. This subset is selected to balance the risk of

applying the upgrade and the test costs involved. Still when

an upgrade is sold to a particular customer, a risk

assessment is important, especially when the upgrade is

performed by a service organization. This service

organization needs among others to communicate the

appropriate amount of time needed to perform the upgrade,

and to assign the upgrade task to either a local service

engineer or the upgrade’s expert. The more different the

product of the customer is from the products used in the

tests (and earlier successful upgrades), the larger the risk of

applying the upgrade. But how can the difference between

products be measured?

3.3.4 Which products should be available for test

purposes?

Customers of products might experience problems. To

analyse these so called field problem reports, a duplicate of

each released product could be kept. And to analyse the

field problem reports quickly, a duplicate of each released

product should even be available, i.e., installed and fully

functional, since building a product can be quite time

consuming: building an MRI scanner takes, for example,

one week. Keeping a duplicate of each released product is

costly. Not only due to the costs associated with each

product but also due to storage costs. Having a duplicate of

each released product available increases the costs even

more, since an installed product requires more space than

its stored parts and an installed product requires

maintenance and service. To balance the costs of having

duplicates of released products available (or stored) with

the risks associated with field problem reports, one should

have duplicates of released products that are maximally

similar with the installed base, while being maximally

different with each other. But how can the similarity and

difference between products be measured?

3.3.5 How to select a pilot site?

New functionality in a product family is often introduced to

the market in steps. For example, new functionality can

initially only be offered to a limited set of customers: a few

pilot sites, or limited to a (small) country. By limiting the

number of customers also the risk is limited, while valuable

user feedback of the new functionality will still be received.

The user feedback is caused not only by the differences in

the context of usage, i.e., laboratory versus actual usage, but

also by the differences in the products used. Hence, one

criterion to select the limited set of customers is to

maximise the differences with the products used in the

laboratory tests. But how can the difference between

products be measured?

3.3.6 Research question

While supporting evolving product families, many

industrial questions are raised. Five questions, we addressed

in more details, turned out to share at least one underlying

question. In industry this question is currently answered

using experience and gut feeling. Hence, we consider

research to improve this way-of-working valuable for the

following reasons:

• Knowledge in the heads of experts is volatile, since

experts move to other jobs and retire. Capturing this

knowledge makes it less volatile.

• Not only the experts’ knowledge is implicit, also

inconsistencies between experts remain hidden. By

making the knowledge explicit, inconsistencies become

clear and can be resolved.

• Whereas the cognitive capacities of experts remain the

same, the complexity of many industrial questions

increases, e.g., due to an increase in the products sold

per year. Hence, the experts need support to be able to

answer many industrial questions at least as well and

fast as before.

Our research question that we address in the reminder of

this paper is: How can the (dis)similarity between products

be measured?

4 Related work

To our knowledge, [14] is the only article that explicitly

addresses one aspect of supporting evolving product

families. [14] proposes to exploit commonalities between

products in order to reduce the verification effort. [14]

measures the similarity between products using “locality

sets” that contain the architectural elements that realise the

functionality concerned by a certain requirement.

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

Verification of that requirement is required to be

independent of the behaviour of any architectural element

contained in the product but not in the locality set. In the

worst case, the locality set contains all architectural

elements of the product. Using the locality sets, the set of

representative products is determined such that the

successful functional verification of this small set implies

the functional correctness of the entire product family. We

have doubts whether the approach using locality sets can be

generalised to also guarantee non-functional correctness,

since non-functional dependencies between the

functionalities due to, for example, shared buses, memory,

and processors, impact many non-functional properties in

nontrivial ways.

The field of product family testing [8][16] so far only

addressed the testing of products to be released to the

customers. Because many test-related questions also relate

to the installed base, we expect that product family testing

will in the near future also include sold products that still

must be supported into the test plans. Product family testing

exploits similarities between the products, such as shared

requirements expressed as use cases [3][11], the shared

architecture [9] and the shared framework [1].

The field of independent lifecycles [7][13] addresses the

impact on a product of asynchronous obsolescence of its

constituent parts. By developing models to manage the

product’s evolution, minimal product ownership costs are

realized. These models specify when the product should

evolve, i.e., when which part is to be replaced by which

other part. Our work complements theirs. Whereas they

assume that technical feasibility of part replacement has

already been achieved, we explicit address the question

whether a part is a viable replacement for another part (see

section 3.3.1).

5 Solution direction

The research described in this section is executed as part of

Darwin [19]. Darwin is a collaborative project between the

Embedded Systems Institute, Philips Healthcare, Philips

Research, and five Dutch universities (Delft, Eindhoven,

Groningen, Twente, and the VU University of Amsterdam).

The project started end of 2005 and will run until the end of

2010. The size of the staff of the project is equivalent to 20

full-time people, and includes 10 PhD students and 2

Postdocs. The goal of Darwin is to understand evolvability

as a system property; to identify, create, and apply

constructs, models, and methods to support evolvability; to

support the trade-off decisions the architect will have to

make with respect to evolvability; and to support the sub-

system and technology lifecycle view of a system. The

Darwin project is carried out using the industry-as-

laboratory paradigm. Hence, the researchers are working

closely together with developers of Philips Healthcare MRI,

a large organization that produces MRI scanners:

Embedded systems with a lifetime of over a decade, which

are used in hospitals to visualize the structure and function

of patient’s bodies. Furthermore, the researchers have

access to a large source of information, including a large

archive going back for many years. Within the archive of

Philips Healthcare MRI many different databases exist that

contain a wealth of information related to products and the

parts (both hardware and software) they contain.

Unfortunately, each database has its own point of view,

e.g., sales, service, or logistics, and each database is

maintained in isolation which complicates relating the

content in different databases.

In this section, we describe the solution direction we took to

answer the question: How can the (dis)similarity between

products be measured? Since industrial experts are

currently answering this question, we cooperated

extensively with experts from Philips Healthcare MRI. At

all times, we kept our solution direction as simple as

possible. Furthermore, we made many small iterations to

ensure substantial feedback from the industrial experts.

Our initial solution direction is based on a simple fact, a

rule of thumb of our industrial experts, and two

assumptions. Fact: products are composed out of many

parts. Rule of thumb: the more parts products share, the

more similar they are. Assumption One: We assume that the

similarity measure is relative, since we think that the

similarity between two products containing 1000 and

sharing 900 parts is equal to the similarity between two

products containing 10000 and sharing 9000 parts.

Assumption Two: We assume that the similarity measure is

symmetric, i.e., the similarity between i and j is equal to the

similarity between j and i.

Table 1 - Example of a product-part matrix. A product-part

matrix shows which parts are contained in which products.

product

part

prod1 prod2 prod3 prod4 …

part1 1 1 1 0 …

part2 1 0 0 1 …

part3 0 1 0 1 …

part4 0 0 1 0 …

… … … … … …

A product-part matrix, as shown in Table 1, captures the

composition of products out of parts. When a product

contains a part, the corresponding value in the matrix is

equal to one. In the other case, the value is zero. A product

is thus represented in a column as a binary vector. As our

first guess of a similarity measure between products, we

took the cosine of the angle between their vectors:

∑∑∑=

⋅=

p

pj

p

pi

p

pjpi

jijiij

pppppppp

prodprodprodprod

22

)cos(θ

where pp denotes the product-part matrix. Note that this

similarity measure is also known as Ochiai [5].

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

Ochiai %

M
o

d
e

l
A

M
o

d
e

l
B

M
o

d
e

l
C

M
o

d
e

l
D

M
o

d
e

l
E

M
o

d
e

l
F

M
o

d
e

l
G

M
o

d
e

l
H

M
o

d
e

l
I

M
o

d
e

l
J

M
o

d
e

l
K

M
o

d
e

l
L

M
o

d
e

l
M

M
o

d
e

l
N

M
o

d
e

l
O

M
o

d
e

l
P

M
o

d
e

l
Q

M
o

d
e

l
R

M
o

d
e

l
S

M
o

d
e

l
T

M
o

d
e

l
U

M
o

d
e

l
V

M
o

d
e

l
W

M
o

d
e

l
X

M
o

d
e

l
Y

M
o

d
e

l
Z

Model A 100 40 39 35 33 35 36 34 34 26 26 27 27 31 29 27 36 35 38 36 35 34 33 34 34 46

Model B 40 100 92 75 71 62 64 59 59 46 45 42 41 39 36 35 70 70 73 59 57 57 53 55 54 51

Model C 39 92 100 81 78 66 68 63 64 47 48 44 45 41 36 39 72 68 72 60 58 59 58 59 60 50

Model D 35 75 81 100 93 84 87 81 81 64 64 62 62 54 50 51 61 60 63 69 66 67 69 70 70 46

Model E 33 71 78 93 100 84 80 75 76 59 61 57 58 50 46 48 62 60 60 72 75 76 76 77 77 44

Model F 35 62 66 84 84 100 96 91 91 75 77 73 74 54 53 55 54 53 56 68 67 68 71 72 72 45

Model G 36 64 68 87 80 96 100 94 94 78 78 76 75 57 55 56 54 55 58 65 63 63 67 68 68 46

Model H 34 59 63 81 75 91 94 100 99 77 77 80 79 61 60 58 52 54 57 65 64 65 67 69 69 43

Model I 34 59 64 81 76 91 94 99 100 77 78 79 80 61 59 59 53 54 56 65 64 65 66 69 69 43

Model J 26 46 47 64 59 75 78 77 77 100 99 89 89 68 72 68 36 36 37 44 43 44 50 49 49 37

Model K 26 45 48 64 61 77 78 77 78 99 100 89 90 68 70 70 38 36 37 44 43 45 50 49 50 37

Model L 27 42 44 62 57 73 76 80 79 89 89 100 99 78 77 75 36 38 39 50 50 51 53 56 56 39

Model M 27 41 45 62 58 74 75 79 80 89 90 99 100 78 77 76 37 37 38 50 50 52 53 55 56 39

Model N 31 39 41 54 50 54 57 61 61 68 68 78 78 100 96 93 45 47 48 65 63 64 69 71 70 46

Model O 29 36 36 50 46 53 55 60 59 72 70 77 77 96 100 95 40 42 43 61 59 60 68 67 67 39

Model P 27 35 39 51 48 55 56 58 59 68 70 75 76 93 95 100 43 43 44 62 60 62 69 68 69 41

Model Q 36 70 72 61 62 54 54 52 53 36 38 36 37 45 40 43 100 96 92 73 73 73 67 69 70 52

Model R 35 70 68 60 60 53 55 54 54 36 36 38 37 47 42 43 96 100 96 73 73 72 69 70 70 52

Model S 38 73 72 63 60 56 58 57 56 37 37 39 38 48 43 44 92 96 100 76 74 73 69 71 70 54

Model T 36 59 60 69 72 68 65 65 65 44 44 50 50 65 61 62 73 73 76 100 97 96 90 91 90 51

Model U 35 57 58 66 75 67 63 64 64 43 43 50 50 63 59 60 73 73 74 97 100 99 92 94 94 49

Model V 34 57 59 67 76 68 63 65 65 44 45 51 52 64 60 62 73 72 73 96 99 100 93 94 95 49

Model W 33 53 58 69 76 71 67 67 66 50 50 53 53 69 68 69 67 69 69 90 92 93 100 98 98 44

Model X 34 55 59 70 77 72 68 69 69 49 49 56 55 71 67 68 69 70 71 91 94 94 98 100 99 46

Model Y 34 54 60 70 77 72 68 69 69 49 50 56 56 70 67 69 70 70 70 90 94 95 98 99 100 46

Model Z 46 51 50 46 44 45 46 43 43 37 37 39 39 46 39 41 52 52 54 51 49 49 44 46 46 100

Figure 2 - The similarity between MRI scanner models as measured by the Ochiai percentage. Cells are colour-coded based on

their Ochiai percentage.

Ochiai %

M
o

d
e

l
A

M
o

d
e

l
B

M
o

d
e

l
C

M
o

d
e

l
D

M
o

d
e

l
E

M
o

d
e

l
F

M
o

d
e

l
G

M
o

d
e

l
H

M
o

d
e

l
I

M
o

d
e

l
J

M
o

d
e

l
K

M
o

d
e

l
L

M
o

d
e

l
M

M
o

d
e

l
N

M
o

d
e

l
O

M
o

d
e

l
P

M
o

d
e

l
Q

M
o

d
e

l
R

M
o

d
e

l
S

M
o

d
e

l
T

M
o

d
e

l
U

M
o

d
e

l
V

M
o

d
e

l
W

M
o

d
e

l
X

M
o

d
e

l
Y

M
o

d
e

l
Z

Model A 100 13 13 12 12 13 13 13 13 5 5 9 9 11 6 5 13 13 13 13 13 13 9 13 13 15

Model B 13 100 88 75 75 53 54 47 47 33 33 33 33 26 15 20 58 61 61 50 50 49 42 46 45 32

Model C 13 88 100 84 86 59 58 51 53 37 39 37 39 30 18 27 59 53 53 48 48 50 48 52 54 30

Model D 12 75 84 100 96 71 72 63 62 51 50 49 49 36 25 30 52 49 49 55 55 54 55 59 58 29

Model E 12 75 86 96 100 71 69 61 63 49 51 48 50 35 24 32 53 48 48 56 56 57 53 57 58 31

Model F 13 53 59 71 71 100 99 90 92 79 81 76 78 37 33 41 42 40 40 45 45 47 48 52 54 30

Model G 13 54 58 72 69 99 100 91 90 80 79 77 76 37 34 38 40 41 41 46 46 45 49 53 52 30

Model H 13 47 51 63 61 90 91 100 99 80 78 82 81 46 42 39 35 39 39 44 44 43 47 51 51 24

Model I 13 47 53 62 63 92 90 99 100 78 80 81 83 45 42 42 38 38 38 43 43 46 46 51 53 24

Model J 5 33 37 51 49 79 80 80 78 100 98 89 88 42 46 43 22 24 24 25 25 25 35 34 34 15

Model K 5 33 39 50 51 81 79 78 80 98 100 88 89 41 45 46 25 24 24 25 25 28 34 33 36 15

Model L 9 33 37 49 48 76 77 82 81 89 88 100 99 60 58 54 26 31 31 35 35 35 38 43 42 21

Model M 9 33 39 49 50 78 76 81 83 88 89 99 100 59 57 56 29 30 30 35 35 37 38 42 44 20

Model N 11 26 30 36 35 37 37 46 45 42 41 60 59 100 91 85 42 46 46 63 63 62 70 75 74 29

Model O 6 15 18 25 24 33 34 42 42 46 45 58 57 91 100 93 31 36 36 54 54 53 69 67 66 13

Model P 5 20 27 30 32 41 38 39 42 43 46 54 56 85 93 100 39 41 41 57 57 60 72 70 72 21

Model Q 13 58 59 52 53 42 40 35 38 22 25 26 29 42 31 39 100 92 92 76 76 78 65 69 70 34

Model R 13 61 53 49 48 40 41 39 38 24 24 31 30 46 36 41 92 100 100 75 75 74 67 70 69 36

Model S 13 61 53 49 48 40 41 39 38 24 24 31 30 46 36 41 92 100 100 75 75 74 67 70 69 36

Model T 13 50 48 55 56 45 46 44 43 25 25 35 35 63 54 57 76 75 75 100 100 99 85 89 87 38

Model U 13 50 48 55 56 45 46 44 43 25 25 35 35 63 54 57 76 75 75 100 100 99 85 89 87 38

Model V 13 49 50 54 57 47 45 43 46 25 28 35 37 62 53 60 78 74 74 99 99 100 84 87 89 37

Model W 9 42 48 55 53 48 49 47 46 35 34 38 38 70 69 72 65 67 67 85 85 84 100 97 96 27

Model X 13 46 52 59 57 52 53 51 51 34 33 43 42 75 67 70 69 70 70 89 89 87 97 100 99 33

Model Y 13 45 54 58 58 54 52 51 53 34 36 42 44 74 66 72 70 69 69 87 87 89 96 99 100 33

Model Z 15 32 30 29 31 30 30 24 24 15 15 21 20 29 13 21 34 36 36 38 38 37 27 33 33 100

Figure 3 - The similarity between MRI scanner models as measured by the weighted Ochiai percentage, when only three

subsystems are considered relevant.

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

5.1 Similarity of models

To focus on our solution direction, we took a relative small

database that describes the parts that are used in models. A

model is a group of products which share the same

externally visible parts. A model is labelled with a unique

sales name. The concept of model is widespread in

industry. For example, VW Golf, VW Bora, VW Beetle,

and Skoda Octavia are models in the same product

family [15]. Of course, not all VW Golfs are identical, but

they, at least, look the same. The similarity between MRI

scanner models as measured by the Ochiai percentage
2
 is

visualised in Figure 2.

The experts were asked for their opinion on the similarity

values. According to the experts, the similarity values were

reasonable on average. The cases in which experts

disagreed with the similarity values were further

investigated. We learned two facts:

1) Experts do not consider all parts equally relevant. For

example, the cover of an MRI scanner was considered

irrelevant compared to the magnet. We even learned that

the relevance of parts depends on the question at hand. For

example, parts that can be easily and quickly replaced are

considered less relevant by the maintainer of the test

products (see section 3.3.4). The experts however indicated

that specifying the relevance of each part individually was

not feasible due to the large number of parts in a product.

Parts have many properties, such as weight, price, time to

replace, and belonging to a particular subsystem.

Specifying the relevance of a part based on these properties

was considered feasible. Based on the insight of the experts

and since the database contained the mapping from part to

subsystem, we introduced a relevance value per subsystem.

Hence, the similarity measures changed to:

∑∑∑∑

∑∑

∈∈

∈
=

sp

pj

s

s

sp

pi

s

s

sp

pjpi

s

s

ij

ppwppw

ppppw

22
σ .

Note that by setting the weight of a subsystem to zero an

expert expresses that this subsystem is not in the locality set

[14] of the requirement/question under investigation. An

example of the similarity between models based on the

changed similarity measurement is depicted in Figure 3.

According to the experts, the similarity values were indeed

improved by this change.

2) The experts missed information about individual

products, such as the number of products sold per model. In

addition, they did not consider two products of the same

model identical, i.e., a similarity percentage of 100%.

Unfortunately, the database did not contain information

about individual products. In the next section, we describe

the results using another database that contains individual

product information (yet lacks the mapping from part to

subsystem).

2
 We used the percentage to save two characters per value,

i.e., instead of 0.xy we only need to write xy.

5.2 Similarity and difference of products

Figure 4 - The average similarity as measured by the

Ochiai percentage between sets of MRI scanners of a single

model. The sets of MRI scanners are created by ordering

and grouping the MRI scanners based on their ordering

date. The matrix of similarity values shows the evolution of

a single model over time.

Whereas the number of models is relatively small, the

number of products sold is considerably larger. As a

consequence, a similarity matrix containing all products is

too large to fit on a single page or screen. For this reason an

(artificial) hierarchy in products had to be added. At the

highest level, a division in models seems logical. Since the

number of products sold of a single model is still too large

to fit on a single page, we had to order the products even

further. A number of options exist. Subsets can, for

example, be made arbitrarily, by clustering based on

similarity, and by clustering based on date. We opted for

clustering based on date, since it would enable the

visualization of the evolution of models in a product family

over time. Still, a number of dates are associated with a

product: order date, production date, and delivery date.

Ordering products based on these dates adds some

structure, since in general the closer the dates, the more

similar the products, but exceptions exist in all three cases:

• Order date: while most customers want their products as

quickly as possible, in some cases the hospital still had

to be built when an order for an MRI scanner was

placed.

• Production date: the production date of a product is ill

defined. Not only since part of the integration happens

at the customer’s site, but also since the production

dates of the constituent parts vary considerable.

• Delivery date: a product can be produced considerably

earlier than delivered, for example, due to variations in

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

available capacity in the factory caused by the variation

in orders and availability of personnel over time.

Since all kinds of dates had their drawbacks, we just

selected one: the order date. The experts were asked for

their opinion on the similarity values calculated based on a

large database originating from logistics. The similarity

values were presented using the previously described

hierarchical structure. See also Figure 4.

The experts were surprised by the huge difference between

the initial product and the current product of the same

model. For example, in Figure 4, we see that the average

similarity is just 18 percent between subsets 2 and 16. As a

consequence, they desired more details about this

difference. We addressed this desire by listing the shared

and different parts between (groups of) products as is

shown in Figure 5. Note that this information is crucial to

be able to increase the similarity in the installed base (see

section 3.3.2).

Figure 5 - Shared and (part of) different parts contained in

two different sets of a single model.

Showing the actual parts in products triggered an interesting

discussion with the experts: What is a part? The database

was maintained by logistics and made distinctions between

parts that were painted in different colors and between

pieces of hardware with minor change, e.g., due to bug

fixes and cost reductions. For some experts, these small

differences made the parts indeed different. For others,

these small differences were irrelevant, and they would like

to consider these parts as being identical. Fortunately, the

parts were encoded such that the least significant bits

encoded these small differences, such that we were able to

use the appropriate definition of a part for each expert.

Another point of feedback we received from the experts

was related to the products shown. For many questions not

all products are relevant. For example, to answer the

question which products to test for a replacement (see

section 3.3.1) only those products that use the part to be

replaced are relevant. An expert thus wants to be able to

filter the product presented to suit his needs.

6 Summary

To support evolving product families, being able to

measure the (dis)similarity between products is a

prerequisite. In an industrial setting, we experimented with

a similarity measurement and compared the resulting

similarity values with the opinions of experts.

We learned that the measurement depends strongly on the

questions at hand. Hence, a similarity measure must be

highly configurable, including

• Specifying the relevance of parts, e.g., using a weight

per subsystem.

• Specifying the definition of a part, e.g., can a part have

multiple coloured instances?

Furthermore, the presented information must be highly

configurable, including

• Ordering the products in a hierarchical structure to

enable visualization.

• Filtering the products to exclude irrelevant products,

e.g., only present products using a given part.

• Focus on the similarity and difference between (groups

of) products to get more insight in the causes of a

similarity value.

Finally, our similarity measurement turned out to be in

good agreement with the experts’ opinions. We think

similarity measures are valuable for industry. Illustrative of

this industrial value for us was the fact that one of our

earliest results had a prominent place on the wall of one of

the experts for a couple of months.

7 Discussion

We kept our solution direction as simple as possible.

Consequently, we just counted parts. However, many

problems are caused by interactions between the constituent

parts of a product [6]. Since testing combinations of parts

achieves better results only in particular cases [2], we doubt

whether counting combinations is better in general. Yet,

whenever evidence becomes available that counting

combinations of parts, i.e., pairs, triplets, quadruples, etc.,

would yield better results than counting individual parts, we

would definitely go for these more complex solutions.

While developing a similarity measure, we heavily relied

on experts. Experts are currently judging the similarity

between products based on experience and gut feeling.

Discussions with the experts revealed that their accuracy is

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

at most in the order of tens of percents. Our solution

direction, in which parts are counted to calculate the

similarity values, seems to yield exact numbers. We,

however, consider the accuracy of our similarity values

comparable to that of the experts, i.e., tens of percents,

among others, because experts were used in the evaluation

of the similarity values; because configuring the similarity

values needs expert input; and because the databases were

not designed for extracting exact similarity values.

8 Road ahead

We would like to investigate whether the transfer function

of knowledge about product i to product j is equal to the

similarity value between product i and j. For example, if all

tests succeed on product i, is the chance that all tests

succeed on product j given by the similarity value between

products i and j? Furthermore, we would like to generalize

this question: what is the transfer function of knowledge

about a set of products to another product? Is it the

maximum of similarity values between a product in the set

and the other product? Does it relate to the total amount of

parts shared? Or, are pairs, triplets, or even quadruples

needed [6]? By answering these questions, we are closer in

answering the industrial questions of sections 3.3.1, 3.3.3,

3.3.4, and 3.3.5.

In product families, one typically has a minimal product,

i.e., without any optional functionality, and a full-fledged

product, i.e., with all optional functionality. We have the

gut feeling that the similarity between the minimal and the

full-fledged product is not symmetric. For example, we

think that the chance of all tests succeeding on the minimal

product given that all tests succeeded on the full-fledged

product is higher than the chance of all tests succeeding on

the full-fledged product given that all tests succeeded on the

minimal product. Focusing on minimal and full-fledged

products, we would like to challenge our second

assumption: the similarity measure is symmetric, i.e., the

similarity between i and j is equal to the similarity between

j and i.

Within Philips Healthcare MRI, we expect that showing the

valuable information for the development and support of

evolving product families stored in the different databases

will result in aligning the existing databases and in changes

in the information contained in them to make it usable

throughout the whole organization instead of a single

department, such as logistics. When the content of the

databases is collected with the requirements of similarity

measures in mind, the accuracy of the similarity values will

definitely increase.

When looking into the future, we expect industry to be

confronted more and more with problems related to

supporting evolving product families. Hence, we expect

that supporting evolving product families will receive the

attention it deserves soon, not only from industry but also

from the academic world. This article was written with the

goal of drawing attention to the challenging problems

associated with supporting evolving product families. We

hope we did achieve this goal!

9 Acknowledgements

We would like to thank the experts of Philips Healthcare

MRI for their useful feedback. In particular, we thank

Jeroen de Jong for his enthusiasm and support.

Furthermore, I would like to thank Gerrit Muller and Pierre

America for useful feedback on an earlier version of this

paper.

10 References

[1] Al Dallal, J. & Sorenson, P. (2008), “Testing Software

Assets of Framework-Based Product Families during

Application Engineering Stage”, Journal of Software 3(5),

11- 25.

[2] Bach, J. & Schroeder, P. (2004), “Pairwise Testing: A

Best Practice That Isn't”, Proceedings of 22nd Pacific

Northwest Software Quality Conference, pp. 180-196.

[3] Bertolino, A. & Gnesi, S. (2003), “PLUTO: A Test

Methodology for Product Families”, Proceedings of the

Fifth Workshop on Software Product Families Engineering,

pp. 181-197.

[4] Eriksson, M. (2003) “An Introduction to Software

Product Line Development”, Proceedings of Umeå's

Seventh Student Conference in Computing Science, pp. 26-

37.

[5] Esposito, F., Malerba, D., Tamma, V. & Bock, H.-H.

(2000), “Classical Resemblance Measures”, in Bock, H.-H.

& Diday, E. (eds), Analysis of Symbolic Data: Exploratory

Methods for Extracting Statistical Information from

Complex Data, pp. 139-152.

[6] Grindal, M., Offutt, J. & Andler, S.F. (2005),

“Combination testing strategies: a survey”, Software

Testing, Verification and Reliability 15(3), 167-199.

[7] Herald, T.E., Verma, D. & Lecher, T. (2007), “A Model

Proposal to Forecast System Baseline Evolution due to

Obsolescence through System Operation”, Proceedings of

fifth annual Conference on Systems Engineering Research.

[8] McGregor, J.D. (2001) Testing a Software Product Line,

Technical Report CMU/SEI-2001-TR-022.

[9] Muccini, H. & van der Hoek, A. (2003), “Towards

Testing Product Line Architectures”, Electronic Notes in

Theoretical Computer Science 82(6), 99-109.

[10] Muller, G. (2008) Modeling and Analysis: Life Cycle

Models, http://www.gaudisite.nl/MAlifeCyclePaper.pdf

[11] Nebut, C., Fleurey, F., Le Traon, Y. & Jézéquel, J.-M.

(2003), “A Requirement-Based Approach to Test Product

7
th

 Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20
th

 - 23
rd

 April 2009

Families”, Proceedings of the Fifth Workshop Product

Families Engineering, pp. 198-210.

[12] Rowe, D., Leaney, J. & Lowe, D. (1998), “Defining

systems evolvability–a taxonomy of change”, Proceedings

of the International Conference and Workshop on

Engineering of Computer-Based Systems (ECBS '98),

Jerusalem, Israel, pp. 45-52.

[13] Sandborn, P.A., Herald, T.E., Houston, J. & Singh, P.

(2003), “Optimum Technology Insertion Into Systems

Based on the Assessment of Viability”, IEEE Transactions

on components and packaging technologies 26(4), 734-738.

[14] Scheidemann, K.D. (2006), “Optimizing the Selection

of Representative Configurations in Verification of

Evolving Product Lines of Distributed Embedded

Systems”, Proceedings of the 10
th

 International Software

Product Line Conference (SPLC’06), pp. 75-84.

[15] Suh, E. (2005), “Flexible Product Platforms”, PhD

Thesis, Massachusetts Institute of Technology (MIT), USA.

[16] Tevanlinna, A., Taina, J. & Kauppinen, R. (2004),

“Product Family Testing – a Survey”, ACM SIGSOFT

Software Engineering Notes 29(2).

[17] Tseng, M.M. & Jiao, J. (1998), “Design for Mass

Customization by Developing Product Family

Architecture”, Proceedings of Design Engineering

Technical Conferences (DECT).

[18] van der Linden, F. (2002), “Software Product Families

in Europe: The Esaps & Café Projects”, IEEE Software

19(4), 41-49.

[19] van de Laar, P., America, P., Rutgers, J., van Loo, S.,

Muller, G., Punter, T. & Watts, D. “The Darwin Project:

Evolvability of Software-Intensive Systems”, Proceedings

of Third International IEEE Workshop on Software

Evolvability, pp. 48-53.

[20] van Ommering, R. (2004), “Building Product

Populations with Software Components”, PhD Thesis,

University of Groningen, The Netherlands.

