
Economics of architectural investments in industrial practice

Ana Ivanović and Pierre America

Philips Research, Eindhoven, The Netherlands

{ana.ivanovic, pierrre.america}@philips.com

Abstract
1

Architectural investments are large, lengthy, and

risky. A decision to invest in architecture is often post-

poned because of difficulties to estimate its economic

value and to communicate its long-term benefits.

This paper proposes a method to support a decision

process of architectural investments on an economic

basis in industrial practice. The method combines qua-

litative Real Options analysis to design an architectur-

al investment decision process and the Net Present

Value to quantify the economic value of investing in

architecture. The proposed framework can be used by

practitioners to make economically sound decisions

instead of relaying on gut feeling.

The paper demonstrates the framework by valuating

an investment in phasing out legacy software in a med-

ical imaging product line.

1. Introduction

Philips Healthcare develops and markets a wide range

of software-intensive product lines. The size of the

software is typically several million lines of code, with

a similar amount of test code.

Investing in an entirely new architecture in such sys-

tems is avoided because this involves an enormous

amount of work and risk. However, the organization

has to take a decision to improve quality attributes to

remain competitive in the market. Software restructur-

ing is becoming an established practice to improve the

quality of the software while maintaining the external

behavior of the code and requirements stable. We were

asked to provide an approach to support a decision

1

This work has been carried out as a part of the Darwin project at

Philips Healthcare under the responsibility of the Embedded

Systems Institute. This project is partially supported by the Dutch

Ministry of Economic Affairs under the BSIK program.

process on investments in architecture improvements

tailored to architects’ practice.

Extensive research has been done in estimating eco-

nomic value of software investments [8]. Scenario-

based methods [5, 9] and Real Options [1, 4, 6, 7] ap-

proaches are commonly used for assessing the value of

architecture. With some exceptions, the current ap-

proaches apply complex mathematical formalisms or

require numerous stakeholders for architectural valua-

tion that make them rarely applied in an industrial set-

ting. We propose an approach, based on the Real Op-

tions way of thinking and Net Present Value, to explain

and estimate economic benefits of investments in archi-

tecture tailored to architects’ practice. In the following

sections we describe our method, apply it on a case

study, and propose further method improvements.

2. Method

Real Options and Net Present Value. Real Options is

an established economic approach for valuation in-

vestments under uncertainties [3]. We apply the Real

Options way of thinking defining an architectural in-

vestment as investment that gives a right, but not an

obligation to implement new features with less devel-

opment effort and shorter time-to-market. Architectural

investment involves at least two investment decisions:

1. The decision to invest in architecture (buying the

option). This involves architecture implementation,

i.e. writing or modifying software following the

guidelines of the architecture.

2. The decision to invest in deploying the architecture

(exercising the option). This involves developing

new features, installing the software on systems, of-

fering new services, or selling systems with this

software.

Figure 1 shows a simplified decision tree with two de-

cision points: Invest in architecture and Implement

feature. In practice regardless of our investment in ar-

chitecture there may or may not be request to imple-

ment a feature. The feature should be implemented

when its Market Value - Dev Cost > 0. In the case that

we did not invest in the architecture Dev Cost old

would be higher, Time to market longer (assuming

fixed organization resources) resulting in a lower reve-

nue. Net Present Value determines when the architec-

tural investment will pay off. The architecture will pay

off when the present value of the cash flow facilitated

by the new architecture is greater than the cash flow

facilitated keeping the existing (old) architecture. We

identify four parameters to estimate Net Present Value:

cost, time, market value, and uncertainty.

Parameters.

• Cost. Investing in architecture will cost money, Arch

Invest. The cost of developing an individual feature is

called Development cost, whereas Maintenance cost

refers to the overall maintenance of the system. These

will be different for implementing the feature in scena-

rios with the existing and the new architecture. Table 1

shows the cost savings of investment in architecture.

• Time. Implementation time will define the moment to

start architecture and Deployment time defines how

long we may take the benefits of the architecture.

Time to market is the time until the architecture is

deployed to generate new cash flow.

• Market value. The market value is the difference in

the market value of the feature deployed on the exist-

ing and the new architecture, ∆ Market Value.

• Uncertainty. The probability of the feature request

and market acceptance must be estimated.

The number of features deployed on the new architec-

ture will significantly influence the value of the invest-

ments. Offering new functionality with shorter time to

market provides market benefits by enabling earlier

cash flow. We apply this method to the case study be-

low.

3. Case study
2

Disruptive innovation in professional software

healthcare is often provided in parallel with the existing

solutions to reduce risk of development and ascertain

market acceptance of the new solution. Over time the

older software is used less frequently and becomes

legacy. The medical imaging product line in our case

study includes several products with two software

releases per year supported by several million lines of

code.

The legacy Mini software exists in parallel with the

Maxi software and they are tightly coupled. The user

runs applications either in one or the other software

environment, switching manually between these two

working environments. If any new feature is requested,

it has to be implemented and tested in both software

environments. The architects claim that due to legacy

Mini software, there is high maintenance cost, double

test effort, and low extensibility.

Therefore, it was decided to replace the functionali-

ty available in the legacy Mini environment by new

functionality in the Maxi environment keeping all func-

tionality of the system during and after the phase-out

project. The phase-out project will last for four years.

The decision to phase out Mini software had already

been taken and the phase-out project is still in progress.

We were asked to valuate this software restructuring

investment decision retrospectively.

3.1 Method: Parameters

We apply the method described in the previous section.

To estimate parameters needed for Net Present Value,

we conducted several interviews with the stakeholders

whose work involved development with the Mini soft-

ware environment and used their input for analysis.

Cost. The up-front software restructuring investment

for Mini software phase-out had been already

estimated, Arch Investment = 24 man-years, by the

software architects using the COCOMO II model [2].

When the legacy code is removed, the costs of

2 We have renamed the relevant projects because their real names are

not relevant for the paper

Decision nodes (Options)

External events (sources of uncertainties)

Timetoday T1 T2

Feature
Request

Feature

Request

Market

acceptance

Implement

feature?
Invest in

architecture?

Implement

feature?

No 0 $

Yes

No

Yes

0 $

No

No

Yes

Yes

No

Arch Investment

Market

acceptance

Dev Cost new

Dev Cost old

0 $

0 $

High

Low

Yes

Figure 1. A decision tree of architectural

 investment

Table 1. Cost savings
 New

Architecture

Existing

Architecture

Cost

Savings

Maintenance

Cost

Maint Cost

new

Maint Cost

old

∆ Maint

Cost

Develop-

ment cost

Dev Cost

new

Dev Cost

old

∆ Dev

Cost

maintenance and testing of legacy code will be reduced

to zero, Maint new = 0. The whole maintenance cost

savings are equal to the estimated costs of Mini

software maintenance over time if it had not been

phased out.

To estimate Development cost in implementing new

features, we will need to identify what these features

are and how likely they will be requested, as described

in the following section.

Time. The implementation time of the Mini phase-out

project has been estimated at four years. Based on the

roadmaps of the organization the architects estimated

that Maxi restructured software will be deployed for at

least 5 years after its implementation.

Market value. The stakeholders affected by the

software restructuring could not foresee any new

features, applications, or businesses facilitated

exclusively by the restructured software in the future.

Such benefits have high uncertainty and may be

realized once the restructured code is in use. The

benefits they pointed out did not have a significant

market value that could drastically influence our

evaluation. Therefore, we simplified our model,

neglecting the Market Value of investing in

restructuring. Without new features envisioned, the

development cost savings (∆ Dev Cost) are also equal

zero.

4. Results

Maintenance cost. We needed to identify the cost of

Mini software maintenance over time, if it was not

phased out. We started with the architects’ claim that

maintenance and testing costs are doubled due to

keeping both Mini and Maxi software operational. To

verify this claim, we traced maintenance effort of Mini

and Maxi software in the time-keeping archive two

years before the phase-out project started. The archive

contains the time spent on assigned tasks written by

software developers. We asked an experienced

architect to identify relevant tasks for maintaining and

testing Maxi and Mini software from the archive. He

identified 30 tasks among 10000 tasks per year

relevant for our case. The results were surprising. The

effort of maintaining the Mini legacy software (0.1-

1fte) was very low compared to maintenance effort of

Maxi software for the last two years. Thus, the claim of

double cost of maintenance of the legacy software

would not justify the investment of 24 man years.

Since we believed the software architects’ complaints

about the large effort associated with legacy software,

we investigated further.

Cross-project cost. We interviewed several architects

involved in different development projects that have to

be integrated with the legacy Mini software. The find-

ings were the following: Due to the presence of the

legacy Mini software, the new development projects

have to keep their software compatible with the legacy,

slowing down development and increasing their devel-

opment effort. For example, Maxi software used an

event mechanism to deal with asynchronous inputs,

while Mini used polling. Thus, any new development

has to support both mechanisms, resulting in larger

development effort and increased software complexity.

Usually, this effort of problem solving with the legacy

software environment would be administrated as devel-

opment effort related to the new development project.

We concluded that the costs are not dominated by the

cost of maintaining legacy software; rather they are

dominated by keeping other parts of the software com-

patible with the legacy over time.

Thus, the main cost savings that we are going to es-

timate are the extra costs of new development projects

in a legacy environment, if Mini software had not been

phased out.

We organized a workshop to estimate the cost sav-

ings due to Mini software phase-out inviting the archi-

tects involved in the projects affected by legacy Mini

software. We began the workshop presenting them the

framework (including Figure 1) and our findings about

Mini software maintenance cost. Next, we asked the

architects involved in the current and future projects

related to the legacy Mini software to estimate the addi-

tional effort in the new development projects if the

Mini software had not been phased out.

Collectively, the architects identified the cost sav-

ings over the projects as shown in Table 2. We col-

lected cost savings only during the first five years after

the Mini software phase out started, since no projects

had been planned yet for the years after. However, we

see a pattern emerging when we consider that P2 is a

successor project for P1 and P5 is a successor for P4.

This suggests continuous savings of 9-10 man-years

Table 2. Estimated additional effort per
project, if Mini software had not been phased

out
Year

Project
0 1 2 3 4 5 6

P1 2 6 6 -

P2 6 6

P3 5 -

P4 3 3 -

P5 3 3 -

P6 3 -

each year. Over a four year period after restructuring

this would add-up to 36-40 man years.

In this case the exact calculation of the Net Present

Value was not of interest as the Architectural Invest-

ment was split over 4 years and cash flow was generat-

ed over 5 years. The difference in present value of cash

flow was negligible.

Consolidating an estimated effort with the software

restructuring investment IA = 24 man-years the decision

of investment in software restructuring was justified.

4.1 Lessons Learned

Lesson 1. The maintenance cost of keeping legacy

software itself is not so high, because the legacy code is

very stable. The main cost due to legacy code is

distributed over the other development projects to

ensure compatibility with the legacy software. We

hypothesize that this phenomenon is not limited to our

case study.

Lesson 2. The pay-off of phasing out legacy may

extend to a point in time not yet planned by product

roadmap and this should be discussed additionally.

Lesson 3. Gathering data to construct economic

parameters for determining the value of architecture

investment is difficult. Although identifying cost

savings over the projects was intuitive for the architects

they were also pressed hard to think beyond the

planned projects.

Lesson 4. The pay-off of a phase-out investment may

already start before the end of the project. This is

because new developments can often afford to be

incompatible with the phased-out software, since they

will be released after the phase-out is completed.

5. Conclusion

We have described a framework to support a deci-

sion process for architectural investment on an eco-

nomic basis in industrial practice. Real Options and

Net Present Value approaches were adapted to suit the

needs of the situation at hand.

We have evaluated the framework by applying it to

a case study in an industrial context. We generated

reasonably accurate results justifying the architectural

investment decision to conduct software restructuring.

This paper presents a first step of defining a sound

decision-support framework on how to take architec-

tural decisions in industrial practice under uncertainty.

Currently we are applying the approach to other

projects to evaluate architectural investments including

market value. Future work will also focus on investigat-

ing how uncertainty influences architectural investment

decisions.

Acknowledgements

We would like to thank the people at Philips

Healthcare, as well as our colleagues Zharko

Aleksovski and Aleksandra Tesanović for their

comments on earlier versions of this paper.

References

[1] Rami Bahsoon and Wolfgang Emmerich: Applying

ArchOptions to Value the Payoff of Refactoring. In

Sixth International Workshop on Economics-

Driven Software Engineering Research,

Edinburgh, Scotland, UK, 2004.

[2] Barry W. Boehm, Ellis Horowitz, Ray Madachy, Donald

Reifer, Bradford K. Clark, Bert Steece, A. Winsor

Brown, Sunita Chulani, and Chris Abts: Software

Cost Estimation with Cocomo II. Prentice Hall,

2000.

[3] Tom Copeland and Vladimir Antikarov: Real Options, A

Practitioner's Guide. TEXERE, New York, 2003.

[4] Hakan Erdogmus: Valuation of Software Initiatives

Under Uncertainty: Concepts, Issues, and

Techniques. In Stefan Biffl, Aurum Aybuke, Barry

W. Boehm, H. Erdogmus, and Paul Gruenbacher,

eds.: Value-Based Software Engineering Springer,

2006.

[5] Rick Kazman, Jai Asundi, and Mark Klein: Quantifying

the costs and benefits of architectural decisions. In

23rd International Conference on Software

Engineering, Toronto, Canada, 2001.

[6] Ipek Ozkaya, Rick Kazman, and Mark Klein: Quality-

Attribute-Based Economic Valuation of

Architectural Patterns. Software Architecture

Technology Initiative, Software Engineering

Institute, Technical Report ESC-TR-2007-003,

May, 2007.

[7] Kevin Sullivan, Prasad Chalasani, Somesh Jha, and

Vibha Sazawal: Software Design as an Investment

Activity: A Real Options Perspective. In Lenos

Trigeorgis, ed.: Real Options and Business

Strategy: Applications to Decision Making. 1998.

[8] Value-Based Software Engineering Springer, 2006.

[9] J. H. Wesselius: Modeling Architectural Value: Cash

Flow, Time and Uncertainty. In 9th International

Software Product Lines Conference, Rennes,

France, 2005.

