Concrete syntax and semantics of the compositional
interchange format for hybrid systems*

D.A. van Beek* M.A. Reniers T J.E. Rooda* R.R.H. Schiffelers*

* Department of Mechanical Engineering
T Department of Mathematics and Computer Science
Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven,
The Netherlands
{d.a.v.beek, m.a.reniers, j.e.rooda, r.r.h.schiffel@sue.nl

Abstract: The compositional interchange format for hybrid systems is syntactically and semantically
defined in terms of an interchange automaton in an abstract format, allowing among others differential
algebraic equations, variables that can be internal or external, operators for parallel composition,
action hiding, variable hiding and urgent actions, synchronization by means of shared labels, and
communication by means of shared variables and CSP channels. A concrete format is defined for
modeling. Its semantics is defined in terms of a mapping to the abstract format. The concrete format
adds inputs, outputs and open and closed scopes to enable modular and hierarchical specifications. The
concrete format is illustrated by means of a bottle filling line example.

1. INTRODUCTION The contribution of this article is twofold:

In Beek et al. [2007a] and Beek et al. [2007Db] the foundatiolrll) The abstract syntax of the CIF, as defined in Beek et al
of a compositional interchange format for hybrid systems (ClI
have been defined, along with a detailed discussion of desi

considerations, and the CIF has been related to previous wi ed in UPPAAL (see Larsen et al. [1997]), although the latter

on interchange formats for hybrid systems: MoBIES tea : o .
[2002], Pinto et al. [2006], Cairano et al. [2006]. The mai%;tg;as CSP to pure synchronization (no communication of
d .

requirements for the interchange format, as defined in Be
et al. [2007a], are summarized below.

007a] is extended witbhanneldo allow a CSP style commu-
ication (see Hoare [1985]), such as used in the Chi language
e Beek et al. [2006], Man and Schiffelers [2006]) and as

(2) A concrete formatthat is used for modeling, is defined.
The semantics of the concrete format is formally defined by
eans of a mapping to the abstract format (as defined in Beek
al. [2007a]). The language elements of the abstract format are
athematical constructs, such as sets, partial functions etc. cho-
n to facilitate the definition of the semantics. It consists of a
nall number of orthogonal language elements. For modelling

X ; . . urposes, however, the abstract syntax is rather cumbersome.
(3) It should support arbitrary differential algebraic equa'EI)'hepconcrete syntax is chosen to ?‘/acilitate modelling. For ex-

tions (DAES), including fully implicit equations, higher ;0 “instead of defining a set of variables, a partial function
index systems, algebraic loops, steady state initializatiof jefine their dynamic type (see Section 2), and a predicate
switched systems such as piecewise affine systems, a@é’fining their initial values, a variable declaration mechanism

DAEs with discontinuous right hand sides. used in many modelling languages is used. Furthermore, the

; S
(4) 1t shoulg ?rllj phpobr:ig W|dter:1ar:ge icr)1f :Jrgii ncy $Ongepts’r83§6ncrete syntax extends the abstract syntax with constructs for
as use y automata, Including urgency pre modeling, including amongst others
cates’, ‘deadline predicates’, ‘triggering guard semantics’,

and ‘urgent actions’.
(5) It should support parallel composition with synchroniza-
tion by means of shared variables and shared actions. .
(6) It should support hierarchy and modularity to allow the
definition of parallel modules and modules that can con-
tain other modules (hierarchy), and to allow the definition
of variables and actions as being local to a module, or
shared between modules.

* Work partially done in the framework of the HYCON Network of Excel- ®

(1) It should have a formal and compositional semantic
based on (hybrid) transition systems, and allow property,
preserving model transformations.

(2) Its concepts should be based on mathematics, and incg1
pendent of implementation aspects such as equation sq
ing, and numerical equation solving algorithms.

e clocksthat are added for compatibility with timed au-
tomata,

input and output variablethat are added for compatibility
with languages such as Simulink (see The MathWorks,
Inc [2005]) and PHA\ER (see Frehse [2005]), and to
enable compositional verification in the form of assume-
guarantee reasoning (e.g. see Henzinger et al. [2000],
Frehse et al. [2001]),

open and closed scopdsat allow the definition of vari-

lence, contract number FP6-IST-511368; as part of the Darwin project under
the responsibility of the Embedded Systems Institute, partially supported by
the Netherlands Ministry of Economic Affairs under the BSIK program; and as e
part of the ITEA project Twins 05004.

ables, channels, clocks and actions as being local to facil-
itate hierarchy and modularity,

automaton definition and instantiatiahat facilitate re-
use of automata.

The remainder of this article is organized as follows: Section2 (g} < Expr(X), {x} € X }, wheree and x are either
defines the abstract syntax of the CIF, Section 3 informally empty f = 0) or denote comma separated sequences
explains the semantics of the abstract syntax, Sections 4 and ¢, " e, andxy, ..., X, of expressions and variables

6 define the concrete syntax and its mapping to the abstract (n > 1), respectively. The CSP statemehts, h?x, h!?,
syntax, respectively, Section 5 presents a bottle filling system hi9x := e are called send statement, receive statement,

example and Section 7 presents concluding remarks. synchronization statement, and communication statement,
respectively. We assume the set of CSP statements to be
2. ABSTRACT SYNTAX OF INTERCHANGE AUTOMATA disjoint from the set of basic action labeBx N Lpasic =
A.

First some notations are defined. A 3&bf variables, a set of

basic action label§pasic which does not include the predefinedThe interchange automaton format consists of automata, and
non-synchronizing action, a set of channel labefs, and a set operators for parallel composition, for hiding of actions and
of valuesA are assumed. The sétom denotes the set of CSP variables, and for the definition of urgent actions. The automata
action labels. It is defined a8om = {hlcs h7cs hi?cs| h e and operators can be freely combined:

H,cs e A*}, whereh € H denotes a channel, am$ € A* Definition 2.(Interchange automaton)he set of interchange

denotes a listdy, ..., cp] of values ¢ € A, 1 <i <n). The automatad is defined by the following grammar for the inter-
CSP actions labelg!cs h2cs hl?cs are called send action change automata e A:

label, receive action label, and communication action label,
respectively. We assume the set of basic action labels and the set::= aatom atomic interchange automaton
of CSP action labels to be disjointpasicN Lcom = @. The setl | o]« parallel composition
denotes the set of basic and CSP action laBgisicU £com, and | hidevary, (e, on) variable hiding operator
|
|
|

the setC, denotes the set U {r}. For a set of variableS C V, hideact (@) action hiding operator
Pred S) denotes the set of all predicates over variables f8m urgent; (@) urgent action operator
and Expr(S) denotes the set of all expressions over variables encap| () action encapsulation operator,
from S.
_y . - where
Definition 1.(Atomic Interchange Automaton)n atomic in-
terchange automatois a tuple(X, X;, dtype, V, vg, init, flow, e agomdenotes an atomic interchange automaton;
inv, tcp, L, E) where e Xp C V denotes a set of variables to hide afd X, — A

e X C Vs a finite set of variablesX; € X is the set of g?i?\?é?ihzi(,]paert:ﬂ,zovrﬁ!:tanon for the hidden state variables
internal variables. 9 an

i : : , . L € £ denotes a set of actions to hide;

e dtype : X — {disc cont alg} is a function that associates ~ ° P
to each variable a dynamic typeéliscrete continuous ® ::“ g grdgﬁg?égsaizfg?gggggsI%ﬁg?eatﬁgzﬂza
or algebraic The setsXgisc, Xcont, Xalg are defined as * Le=)
Xt = {X € X | dtype(x) =t} for t € {disc cont alg},
and Xstate= Xdisc U Xcont IS the set oktatevariables.

e V is a finite non-empty set ofertices calledlocations . . . '
andug € V is the initial location. The informal semantics of the abstract syntax is defined below.

. 7 i P P J_ The complete formal semantics, including CSP channels, is
t € Pred X) is the initial condition. Foly € X, Y =Y U X \ : .

* '{r; |ey c gﬂ)xcom} is the extension of with the dotteq defined in Beek et al. [2007b]. The semantics without CSP
versions of the continuous variablesvin communication has appeared in Beek et al. [2007a].

e flow, inv, tcp : V — Pred X), are functions that each .
associate to each locatiane V a predicate describing 3-1 Atomic automata

theflow condition theinvariant, and theime can progress .) .
condition respectively. Variables The interchange automaton defines three classes of

o L C Lhasicis a finite set of synchronizing action labels.variables: the discrete and continuous variables, and in addition
Usually, this set includes at least the labels that occur dR€ algebraic variables. The main differences are as follows:
the edges of the automaton, in which case thelset First, the values of discrete variables remain constant when
referred to as thalphabetof the automaton. model time progresses, the values of continuous variables may

e E =V x PredX) x (LpasicU {} U Cx) x (P(X) x change according to a continuous function of time when model

PredX U X)) x V is afinite set odgessuch that for - (1 MOWESEES. #1° A SRR B B e ond.
each elementv, g, a, (W, r),v") € E, v andv’ are the 9 9 : '

- . : the values of the discrete and continuous variables do not
fs,ourcea'ndtargetIocat|ons,~r§spect|velg 'S t.h eg“a.“* a change in action transitions unless such changes are explicitly
is anaction statemeniV < X is a set of jumping variables ¢necified, for example by assigning a new value. The values of
(the yqlue of Wh'.Ch may change_ as a result of an actio Igebraic variables can change arbitrarily in action transitions,
transition), and is thejump predicatealso calledeset | 5ja55 such changes are explicitly restricted, for example by
map ForanyY € VUV, Y= = {y” | y € Y} denotes ,qqigning a new value. Third, there is a difference between the
the set of minus superscripted variables that represefiterent classes of variables with respect to how the resulting
the values of variables before an action transition. Threg,es of the variables in a transition relate to the starting values
Kinds of action statements exist: basic action labeiSL ot the variables in the next transition. The resulting value of
that synchronize on the basis of equality, the predefinedl yiscrete or continuous variable in a transition always equals
non-synchronizingr action, and CSP statemends < 5 siarting value in the next transition. For algebraic variables
Cx, whereCx = { hte, h”x, ht?, hi?x := e | h € H, {here is no such relation. In most models, the values of discrete

3. SEMANTICS OF THE ABSTRACT SYNTAX

variables are defined by assignments, whereas the valuesAation encapsulation operator The action encapsulation

algebraic variables are defined by invariants ((in)equalities). operator applied to an automatoemcap, («), blocks ac-
tions from the setL.. The delay behavior and consistency

Predicates in a location The initial condition should hold pehavior of « are not affected. Send and receive actions

initially, whereas the invariant should hold at all times. Theyn channels from a seHe can be blocked by means of

time can progresstp) predicate allows passing of time in aencapipics hacsheHe csea} (@). I this way, only the the syn-

location for as long as the condition is true, or in other wordsghronous execution of matching send and receive actions via

until the time-point when the condition is false. Differentialchannels from the sét, can take place.

algebraic equations (DAES) can be specified in the invariants of

an interchange automaton, since such invariants are predicates 4. CONCRETE SYNTAX DEFINITION

over all variables, including the dotted variables. Flow clauses

are supported for reasons of compatibility with existing hybrigh, this section, the concrete syntax of CIF models is defined

automata. The reason for not enforcing a separation betwe@g‘ng a Backes-Naur (BNF) like notation. The sympoéfines
invariants (over non-dotted variables) and flow clauses (OVQrEmice and notatior] definesZ as being optional.
dotted variables), as in existing hybrid automata, is that suc ’

a separation is absent in the mathematical theory of dynamical
systems, including control theory. In many cases, fully implicispec
DAEs, cannot even be rewritten to a form where the algebragitDefs
constraints and the differential constraints are separated. autDef

[autDef§ modellautDef§

autDef | autDefs autDef

automaton autld [‘('paramDecls)’'] =
closedScope

paramDecl| paramDeclsparamDecl
varlds: type

varld| varlds varld

[[cScopeDecls:] automaton]|
cScopeDec| cScopeDecleScopeDecl
extern decls

input var inputVarDecls

output var varDecls

intern decls

connect connectSets

decl| decls decl

var varDecls

clock clocklds

chan chanDecls

act actlds

In the formal semantics, three kinds of transitions are defingg, .- pecls -
for interchange automata: action transitions, time transitions; .o mpecl
and consistency transitions. Action transitions and time trayz;|qs

sitions are well known in hybrid automata. Consistency ”anslﬂosedScope .
tions in the CIF ensure that when one of the automata does @8copeDecls::
action transition in a parallel composition, the initial ConditiO”%ScopeDecl .
and invariants of the automata that do not synchronize hold.

3.2 Operators

Parallel composition operator There are no compatibility decls
requirements for the parallel composition of interchange autec|
tomata: any pair of interchange automata can be composed
by the parallel composition operator. The parallel composition
operator synchronizes on external actions that the arguments
share. CSP actions synchronize on the basis of pairs of sefpgtDecls varDecl| varDecls varDecl
(h'e) and receivel{?x) actions. The CSP communication actionyarDecl| varlds: (disc | cont | alg) type
h!?x := eis the result of elimination of parallel composition as [= (expr| ‘(exprs')")]

defined in Beek et al. [2007b]. All other actions may be interexprs expr| exprs expr

leaved (under the condition that they maintain the consistengockids clockld | clocklds clockid

of the other automaton). Time transitions must be synchronizeghanDecls chanDecl| chanDeclschanDecl
and consistency is established only if both automata agree eRanDecl chanlds[! | ?] : type

it. The external state variables that are shared by the argumentnids chanld| chanlds chanid
automata need to have the same values (all the time). actlds actld| actlds actld

.) o . inputVarDecls:= varDecl| varDecls varDecl
Hiding operators The action hiding operator applied to aninputvarDec! ::= varlds: type

automaton,hideact (@), hides (abstracts from) the actions gnnectSets - {connector} | connectSetgconnectors

from setLp by repla}cing them by thg internal actioq This connectors connector| connectorsconnector
only affects the action behavior of; its delay behavior and cqnnector [autld] (varld | clockld | chanld] actld)

consistency remain unchanged. Transitions contain, amongskomaton cAutomaton

others, information about the variables, such as their values oAutomaton

or, in case of a time transition, their trajectories. The variablga tomaton - [autld:] closedScope
hiding operator applied to an automatdfidevary, («, on), [autld:] autinst

hides the variables from set;, by removing the information cAutomaton| cAutomaton
about them from the transitions af The values of the hidden g tjnst autld [‘C exprs')']

state variables after a transition are stored in valuatjpn oAutomaton = atomicAut

[autld:] openScope

oAutomaton| oAutomaton

|([init,] mode modes:: modeld)|
init preds

Urgent action operator The urgent action operator applied
to an automatonurgent; («), gives actions from the sdt,, .

S ; Lu ; . . atomicAut
priority over time passing. The action behavior and consistency:

of « are not affected by the urgent action operator. Tim(ﬁ){It

transitions are allowed only if at the current state, and at ea reds pred| preds& pred
intermediate state while delaying, no actions from thelset odes mode| modesmode
ying, mode modeld = [dyng [edge$

are possible.

dyns dyn| dyns dyn

dyn := (inv | flow | tcp) preds Both concepts of scoping can be found in modeling languages.
edges = edge| edges edge The concept of open scopes is often used in different syntactic
edge := [guard] [now] [action] [updaté forms, such as the “for loop” used in many programming
goto modeld and modeling languages. It uses a local iterator that can be
guard := when preds used in the body of the for loop together with the variables
action := act (actld| comLabel that are declared at a more global level. This local iterator is
comLabel ::= chanld ! exprg essentially a local variable declared in an open scope in which
| chanld ? Yarldg the body of the for loop is executed. The concept of closed
| chanld !? farlds:= exprg scopes can be found in many modeling languages, such as
update := do varClocklds(:= exprs| : preds Modelica (see Modelica Association [2002]), where interfaces
varClocklds ::= varClockld specify the interaction points (ports) of components explicitly,
| varClocklds varClockld and connectors are used to connect these ports. The ports and
varClockld ::= varld connectors can be mapped to the external variables and connect
| clockid sets, respectively, of the CIF.
ggigsgg%ils: 58[8520[?;53253 %%lgglgastgg)leDecl When scopes are nested, inner scopes may declare variables
OScoBeDecl e internpdeCIS P P using a name (identifier) that is already used in a variable
o declaration in an outer scope. A variable used in an automaton
model := model modelld = closedScope

binds to the declaration of that variable in the smallest enclosing
scope that declares the variable. The search for this variable
Here, modelld denotes a model identifier, autld denotes a&eclaration starts in the smallest enclosing scope of the automa-
automaton identifier, varld denotes a variable identifier, clockltn. If the variable declaration is not found in an open scope, the
denotes a clock identifier, chanld denotes a channel identifisgarch proceeds one level up in the scope hierarchy. If it is not
actld denotes an action, modeld denotes a mode identifiund in a closed scope, the model is erroneous, because closed
pred denotes a predicate, expr denotes an expression and tgpepes may not have free variables.

denotes a static type. It is not allowed to use a dot (") in a

identifier. An expression can also contain a tuple of expressio tomata (BNF non-terminaAutomatoj may be connected

syntactically denoted by a comma separated list O.f e.XpreSSiOQ:T‘ch that the connected variables refer to the same variable.
surrounded by round braces, for exam(et- 3, 2). Similar to The following connections are possible:

an expression, a variable (clock) identifier can contain a tuple

By means of connect sets, variables from different(!) closed

(X, y) of variable (clock) identifiers andy. e Hierarchical connections: The internal and external vari-
ables of a closed automaton can be connected to external
4.1 Input and output variables variables of the contained closed automata.

e Parallel connections: In a parallel composition of closed

Input variables and output variables are special classes of ex- automata, the external variables of each closed automaton
ternal variable declarations. The semantics ensures that, under can be connected to external variables of the other closed
the assumption that an automaton does not restrict the behay- automata.

ior of its own input variables, the input variables can changg, japlesx andy are connected if they both occur in a connect
arbitrarily in action and time transitions when that automato et{x, y} or if they occur in different connect sets for which the

is composed in parallel with another automaton, as long as tj@qsection is non-empty, for exampiie, z}, {y, z}. Within a

'”ﬁUtS arca.unconneck;[ed, or conne_ctt()eld to other input ‘(’ja”ablgénnect set declaration, it is not allowed that two or more vari-
only. In t _lsb\llvay,hw berr]1 input \;arrl]a es are connecte }o bles that are declared in the same scope are connected. Action
output variable, the behavior of the connection Is completely,q|s and channels can be connected to other action labels and

determined by the output variable. Output variables cannot bganneis; respectively, in a similar way as connections between
connected to output variables of parallel automata. An outpyt isples are specified.

variable can be connected to an output variable of an outer

block. Section 5 presents several examples of the use of open and
closed scopes, together with examples of the use of connect
4.2 Closed and open scopes sets, internal and external variables and channels.

The building blocks that support hierarchy and modularity are 5. EXAMPLE: BOTTLE FILLING SYSTEM

the closed scop§ cScopeDecls:: automaton]| and open

scopel(oScopeDecls: automaton)|. Here, the double colon The bottle filling system as shown in Figure 1 consists of a
acts as a separator between the declarations of variables, actignid storage tank, two identical bottle filling lines, and a bottle
labels and channels on the one hand, and the specification of gwpply (see Man and Schiffelers [2006]).

behavior on the other hand. Declarations can be inteimal The bottles are filled with liquid from the storage tank. A

keyword) or externaldxtern, input or output keyword). The oo svctem keeps the volurie in the storage tank between

main difference between closed and open scopes is that 0B£0, 1’15 and the pH level (acidity) of the liquid in the storage
scopes may haviree variables, that is variables that are NOtank between 7 and.Z. The liquid in the storage tank slowly

bound in the open scope itself, but in an outer, more glob ecomes less acidic (pH level increases). To correct this, a

encompassing scope. A closed scope, on the other hand, Mgy, "2 4 'is dribbled into the storage tank when the acidity
not contain free variables: all variables must be bound in th& the liquid becomes too lowpH > 7.1)

closed scope.

, n: cont real

, pH: alg real =7

, ¢, Qa, Qu: alg real
| (mode physics =

, intern var alpha, beta: disc nat =

(0,0)

QFI QFr inv dot V = Qu + Qa - QF1 - QFr
¥ & dot n = cuxQu + ca*Qa - c*QF1l
- c*QFr - Kloss*V
& n = c*xV
& H = - log c/1000
@l (® & ga = alphi*Qseta
& Qu = betax*Qsetu
Fig. 1. The bottle filling system. :: physics
The acid and liquid supply processes are not modeled, since we |)ll(mode closed = when pH >= 7.1
consider the acid and liquid always to be available, and we are now do alpha := 1 goto opened
not interested in the amount of acid or liquid that is used. , opened = when pH <= 7
The storage tank and the two bottle filling lines are connected . closed now o aipha := 0 goto closed
by means of the variable®r, and Q, respectively. The)
volume of the storage tank is available in both bottle filling lines [l 1(mode closed = when V <= 2
(variableV) to prevent filling of the bottles when the storage now do beta := 1 goto opened
tank is empty. , opened = when V >= 10
now do beta := 0 goto closed
The molar quantity and molar concentration of the acid in :: closed &
the storage tank are denoted byand c, respectively, where)1
n = cV. The incoming flows of liquid and acid of the liquid 11
storage tanK are denoted byQ, and Q,, respectively. Acid |l left : Bottle Filling Line
leaves the tank in outgoing flow®r and Qg,. The gradual || right : Bottle Filling Line

reduction of the acidity of the liquid is modeled by means oj' bs : Bottle_Supply

a constanKpss, Which leads ta' = ¢, Qy + €2Qa — CQf — !

CQrr — KiossV, Wherecy, andc, denote the concentrations of | . . i1e Filling Line =
acid in the flowsQ, and Qa. Taking into account that the units | [snout var vr: real

of ¢ are in [moym?] instead of [mofl], the pH is given by | extern var QF: alg real
pH=— |Og ¢/1000. , chan bottles?: nat
L - s t {fp. , fc. 1,
In the CIF specification of the liquid storage tank, symbols’ “**"°° {f}}j_%;f”‘:c,vgfma
Qseta, Qsetu, ca, cu, aNdKloss denote constants. The behavior {bottles, fc.bottles}

of the liquid storage tank is explained as follows. Initially, the:: fp : Filling Physics

ph Of the liquid in the storage tank equals 7. It is assumed fc : Filling_Controller
that the pH level of the incoming liquid is 7 or more, sincel

the acidity controller can only make the acidity of the storage

tank increase, causing the pH to decrease. If the pH value ggtomaton Filling Physics =
ceeds the maximum valugs(>= 7.1), the acid valve is opened 'l irput ver gamma: nat
(a1pha:-1) SO that acid is dribbled into the tank. Dribbling of * P2 27 o 2% "o
the acid continues until the pH value comes back at 7, and thé | cge m = inv dot vB
valve is closedd1ipha:=0). In a similar way, the controller tries & qF
to keep the level of the storage tank between 2 and 10. (i om

)

QF

gamma*QsetF

The behavior of the filling controller is explained as follows.
When a new crate of bottles arrivesotties?n), wheren
denotes the number of bottles in a crate) the bottle volume iStonaton Filling_Controller =
reset to 0, and filling a bottle is started/f, gamma) := (0,1)). |[input var VB, VT: real

The valve switching the flower is modeled by means of the , output var gamma: disc nat = 0
discrete variablgamna. Filling stops when the volume in the . extern chan bottles?: nat
storage tank drops below 0.Bhén vT<=0.5 now do gamma:=0). » intern var n: disc nat = 0
Filling resumes when the volume in the storage tank is at least ! ¢ mede start =

e . = ?
0.7. Filling also stops when the bottle is fullhén VB>=1 now do vhen m = 0 act bottles?n

(gamma,n) := (0,n—1))- when n > 0

do (VB,gamma) := (0,1) goto filling

model Bottle_Filling_System = now do (VB,gamma) := (0,1) goto filling
| [connect {tank.V, left.VT, right.VT} , filling =
, {tank.QF, left.QFl} when VT <= 0.5
, {tank.QF, right.QFr} now do gamma := O goto stopped,
, {bs.bottles, left.bottles, right.bottles} when VB >= 1
: tank: now do (gamma,n) := (0,n-1) goto start
| [output var V: cont real » stopped =

, extern var QF1, QFr: alg real when VT >= 0.7

now do gamma := 1 goto filling
1 start

)|
11

automaton Bottle_Supply =
|[extern chan bottles!: nat
, intern clock t
:: |(mode m = when t >= 2 act bottles!24
do t:= 0 gotom
rrom
)
11

Figure 2 shows a graphical representation of (a part of) the ClI
model of the bottle filling line. Solid (dashed) boxes represen
closed (open) scopes, where the internal declarations are listed ,
in the upper left corner, and the external declarations are repre-
sented as boxes (for variables) or triangles (for channels) on the
borders of the box. Modes are visualized by means of circles,’
urgent (nonurgent) edges are represented as double (singlﬁ
arrows between modes, and labelled with their guard, action,

and update.

6. MAPPING CONCRETE TO ABSTRACT SYNTAX

the set{xo, ..., Xn}, and notationcoOoto, . . ., chOntn, Where

Qi e {!:,?) fori € {0,...,n} denotes denotes the list
Co, - - -, Cn. The clocks and actions are grouped into respective
lists clocksyx:, andactsx:. A similar notation is used for the
internal declarations. Connect set declarations are combined
into new connect set declarations that specify the same connec-
tions between the identifiers such that each identifier occurs at
most in one connect set (for example the connect set declaration
connect {X, z}, {Y, z} is replaced byonnect {X, y, z}. Finally,

all automaton instantiations occurring in the model are flattened
using the automaton definitions of the specification: Let

pautomaton I(po:to,...pn:th) =

t [extern var discvarsyt, contvarsy:, algvars.y;
clock clocksxt, chan changyt, act actSxt
intern var discvarsht, contvars,, algvars,;
clock clocksnt, chan changt, act actsnt
connect set, ..., Seh

?automaton

be the automaton definition associated with automaton defini-
tion identifierl, then automaton instantiatidiiey, . ..e,) de-
notes the following automaton:

This section defines the formal semantics of a CIF model I(extern var discvargx, contvargx, algvarg.
specified in concrete syntax by means of a mapping to the: clock clocksxt, chan changxt, act actsxt

abstract format. First the concrete syntax is preprocessed as Intern var discvargy, po : to = €o, ...

, Pn i th = €y,

described in Section 6.1. The mapping of the concrete syntax to CONtVarst, algvarsy

the abstract syntax is defined by means of funcffont takes

, clock clocksnt, chan changt, act actsnt

the preprocessed CIF model as input, and returns an automaton €oNNect Sk, ..., seh
specified in the abstract syntax. This function is defined in ** @utomaton

Section 6.2.
6.1 Preprocessing

First, declarations of the fornmput var varlds : type are

l

The parameter variablg®, . . ., pn of the automaton definition
are declared as internal discrete variables inside the closed
scope automaton, with initial values, ..., e,. Then, the
possibly incomplete atomic automaton constructs that occur

replaced byextern var varlds: alg type and declarations of the jn automatonare made complete according to the following

form output var varDeclsare replaced bgxtern var varDecls

defaults/transformations:

All closed scopes, open scopes and automaton instantiations
that occur in the body of the top-level closed scope which are ®
not prefixed with an automaton identifier are prefixed with a ®
fresh identifier. °

[]
Using a bottom-up approach, each closed scope prefixed with
an automaton identifier is replaced with the same closed scope
in which all variables, clocks, channels and actions (includ-
ing those in nested scopes) are prefixed with the automaton
identifier and a dot (*."). The automaton identifier is removed 4
from the closed scope. A similar approach is used for replac- ¢
ing open scopes and automaton instantiations. In this way, all
variables, clocks, channels and actions occurring in the body
of the top-level closed scope are made unique. The exter-
nal variable declarations are grouped w.r.t. their dynamic type

an omitted invariant denotes the invariant true,

an omitted flow denotes the flow true,

an omitted tcp predicate denotes the tcp predicate true,
an omitted guard denotes the guard true,

for each urgent edge, the time can progress predicate of
the source mode is augmented with the disjunction of
negation the guard of this edge. Then, the keywara

is removed from the edge.

an omitted label denotes the (non-synchronizing) label

an update assignmert= eis replaced by{x} : x = e~

an omitted update denotes the empty updhaterue, i.e.

the values of the discrete and continuous variables and the
clocks are not changed.

into three different lists. The listdiscvargx:, contvargx, and g 2 FunctionZ

algvars,,; denote a comma seperated list of external variables

declared with dynamic typdisc, cont, andalg, respectively. Model

Each entry in such a list is of the form : t = e, wherex
denotes a variabld, denotes its static type, areldenotes its
initial value if the initial value is specified at the declaration.

The translation of a specification is defined as follows:

T (model m = closedScope= encap,___(
/

/ﬁﬁwﬁﬁgm@(dosedScogQ

The declared external channels are grouped inclgtngy,
where each entry in the list is either of the fore : t,
c? :t,orc:t, wherec denotes a channel , atddenotes its
type. Notationxg : o =€n, ..., Xy : th = €, denotes the list
Xo, ..., Xn, NOtation{xg : to=#€y,..., Xn : th = &y} denotes

Function7’ takes two parameters: the first parameter contains
variables, the dynamic type of variables, clocks, actions, and
an initialization predicate over variables that are defined at a
higher level than the second parameter. The second parameter
contains elements of the preprocessed concrete syntax.

model Bottle_Filling_System

tank

var alpha, beta: disc nat = (0,0),
n: cont real,
pH: alg real =7
c, Qa, Qu: alg real

physics

inv
n = c*V,
dot V=Qu + Qa - QF1 - QFr &
dot n = cu*Qu + ca*xQa - c*QF1

- cxQFr - Kloss*V &
pH = - log ¢/1000 &
Qa = alpha*Qseta &
Qu = beta*Qsetu

when pH >= 7.1
now do alpha:=1

opened

when pH <=7
now do alpha:=0

when pH >=7.1
now do alpha:=1

when pH <=7
now do alpha:=0

Bottle_Filling_Line

QF1l: alg real V: cont real QFr: alg real
left bs right
L= L=
QF VT VT QF

Bottle_Supply

Bottle_Filling_Line

bottles? bottles! bottles!
1 T T

Fig. 2. Graphical representation of the CIF model representing the bottle filling system.

Closed scope

follows:

Tl extern var discvargyt, contvargye, algvarg,y;

clock clocksxt, chan changy:, act actSx:
intern var discvarght, contvars., algvars,
clock clocksnt, chan chanst, act actsnt
connect Set, ..., Seh

: automaton

1) =

hidevary\m(

hideact £y, Lcom\ ({actsx)Uchanactse (
€ncap, \chanactsy (Zeny (automaton))), on)

where

varsex = {discvarsy, contvarsy:, algvars,,

varsnt = {discvars, contvarsy, algvarsy},
chanactsy; = {h!cs h?cs h!?cs| h € {changy}, cse A*}
env = (vars dtype acts clocks init),

vars = varsy: U varsns,

dtype= {X — disc | x € {discvarsxt, discvarg;}} U {X —
cont | X € {contvarsyt, contvarg;}} U {x — alg | x €
{algvars,y, algvargy}},

acts= {actsxi U {actsnt},

clocks= {clocksxi U {clocksnt},

iNit = Ax: xevarsvalugas(x)#L - X = ValuBars(X),
automatoh= automatofildy, ..., Id,/set, ..., set],

A closed scope (BNF non-terminal
closedScopeis mapped to an abstract CIF automaton as

e dom(op) = 9,

where function application valygs(x) returns the initial value
for variablex that is specified ivarsor L otherwise. Notation
automatofildy, ..., Id,/set, ..., set] denotes the automaton
where all occurrences of identifiers fraget in automatorare
replaced with identifietd; fori € {1, ..., h}. Identifierid; is
defined add; € set N (varsu actsU {changy} U {chang}) if
set N (varsu actsU {chansxi} U {chans}) # ¢, andfreshld
otherwise, wherdreshld denotes a fresh identifier.

Note that for a closed scope, the environmemiis irrelevant,

and its elements are not used in the automaton. An automaton
can be a closed scope, an atomic automaton, an open scope, or
a parallel composition of automata. In the next subsections, the
mapping of the latter three is described.

Atomic automaton An atomic automaton (BNF non-terminal
atomicAuj, is mapped to an abstract CIF automaton as follows:

T((/arsqn{peactsclocksinit) (
|(init INitayt
, modeVy = invij flow f1tcp ug
when gy, act a1, do upy; goto Vi,

when Oy, act ay, do uplkl goto V1kl

, modeV,, = invipflow fatep up 3 of the HYCON NoE (see HYCON Network of Excellence

when gn, act an, do up,, goto Vp, [2005]), and in b) the new FP7 STREPS MULTIFORM project.
: e g 3¢t 8. do . goto V REFERENCES
when ac ou goto
o a n o D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda,
tvo o _ and R. R. H. Schiffelers. Syntax and consistent equation
D) = (X, 9, dtype V, vo, init, flow, inv, tcp, acts E) semantics of hybrid Chi.Journal of Logic and Algebraic

Programming 68(1-2):129-210, 2006.

where D. A. van Beek, M. A. Reniers, J. E. Rooda, and R. R. H.
e X =varsuU clocks Schiffelers. Foundations of an interchange format for hybrid
o V={Vy,...,Vu}, systems. In Alberto Bemporad, Antonio Bicchi, and Giorgio
e init = init A initagut A (Ax:xeclocks: X = 0), Butazzo, editorgiybrid Systems: Computation and Control,
e dom(flow) = dom(inv) = dom(tcp) =V, 10th International Workshqgpolume 4416 ot ecture Notes
Viiet,..n © flow(Vi) = fi A (Axixeclocks: X = 1), in Computer Sciencgages 587-600, Pisa, 2007a. Springer-
inv(Vi) =ij, Verlag.
tep(V) = u;, D. A. van Beek, M. A. Reniers, J. E. Rooda, and R. R. H. Schif-
e E = {\M., g, &, up; . Vi) i efl,....nh | e felers. Revised hybrid system interchange format. Technical
{1,....kl}. Report HYCON Deliverable D3.6.3, HYCON NoE, 2007b.

Stefano Di Cairano, Alberto Bemporad, and Michal Kvasnica.

Open scope An open scope (BNF non-terminapenScope An architecture for data interchange of switched linear sys-

is mapped to an abstract CIF automaton as follows:enet= tems. Technical Report D 3.3.1, HYCON NoE, 2006.

(vars, dtype acts clocks init), then G. Frehse, O. Stursberg, S. Engell, R. Huuck, and
B. Lukoschus. Verification of hybrid controlled processing
systems based on decomposition and deduction20i
IEEE International Symposium on Intelligent Contrphges
150-155, Mexico City, 2001. IEEE.

Goran Frehse. PHAVer: Algorithmic verification of hybrid sys-

] tems past HyTech. In Manfred Morari and Lothar Thiele, edi-

'))= tors,Hybrid Systems: Computation and Control, 8th Interna-

hidevz|1r B (hideact (tional Workshopvolume 3414 ot ecture Notes in Computer

varsi {aCtSHI}UCha”aCt‘"mh Sciencepages 258—273. Springer-Verlag, 2005.
encapchanacty, (Tenv (QUtOMAton)), on) Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani.

TanfI(extern var discvargyt, contvarsye, algvarg,,
clock clocksxt, chan changy:, act actSxt
intern var discvars, contvargy, algvars,
clock clocksnt, chan chang, act actsnt
connect set, ..., se}

: automaton

where Decomposing refinement proofs using assume-guarantee
i reasoning. In Ellen Sentovich, edit@00 IEEE/ACM Inter-

e varsnt = {discvargt, contvars, algvars}, national Conference on Computer-Aided Desigages 245—

e chanactg: = {h!cs h7cs h!?cs| h € {chang}, cse A*} 252, San Jose, California, 2000. IEEE.

e env = (varg, dtypé, acts, clocks, init’), C. A. R. Hoare. Communicating Sequential Processes

e vars = varsu vargn, Prentice-Hall, Englewood-Cliffs, 1985.

e dtypé = dtypeU {X — disc | X € {discvarst}} U {x = HYCON Network of Excellence. http://www.ist-hycon.org/,
cont | X € {contvarg}} U {x — alg | X € {algvars,}}, 2005.

e acts = actsU {actsn}, Kim G. Larsen, Paul Pettersson, and Wang Yi.PR4AL in

e clocks = clocksU {clocksn}, a Nutshell. International Journal on Software Tools for

e init = init A (Ax XEVarsy, Valugarg, (0#L - X = Technology Transferl(l—Z):l_34—152, 1997. -
valugyars,, (X)), K. L. Man an_d R. R. H_. Schiffelers. Formal _Spec_:lflcatlon

e automatoh= automatofilds, ..., Idn/set, ..., set], and Analysis of Hybrid SystemsPhD thesis, Eindhoven

e dom(op) = 9. University of Technology, 2006.

MOBIES team. HSIF semantics. Technical report, University
Parallel composition Function 7Zgn, distributes over of Pennsylvania, 2002. internal document.

parallel composition: 7en(automaton || automatop) = Modelica Association. Modelica - A Unified Object-
Tenfautomaton || Zen@utomaton) Oriented Language for Physical Systems Modeling
http://www.modelica.org, 2002.
7. CONCLUDING REMARKS Alessandro Pinto, Luca P. Carloni, Roberto Passerone, and

Alberto L. Sangiovanni-Vincentelli. Interchange format for
The presented concrete format consists of the major building hybrid systems: Abstract semantics. IrddoP. Hespanha
blocks required for hybrid system specification. Future work and Ashish Tiwari, editorstybrid Systems: Computation
entails, among others, a further concretization of the syntax,and Control, 9th International Workshppolume 3927 of
including the definition of compound data types, and the def- Lecture Notes in Computer Sciengages 491-506, Santa
inition of the syntax of expressions and equations; extending Barbara, 2006. Springer-Verlag.
the concrete format with urgent actions, urgent channels afide MathWorks, Inc. Using Simulink, version .6
OR-super states; and possibly extending the interchange formahttp://www.mathworks.com, 2005.
with stochastic model primitives. The development of transla-
tions to and from other languages and simulator implementa-
tions will be done by different partners in a) Work Package

