
Concrete syntax and semantics of the compositional
interchange format for hybrid systems?

D.A. van Beek∗ M.A. Reniers† J.E. Rooda∗ R.R.H. Schiffelers∗

∗ Department of Mechanical Engineering
† Department of Mathematics and Computer Science

Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven,
The Netherlands

{d.a.v.beek, m.a.reniers, j.e.rooda, r.r.h.schiffelers}@tue.nl

Abstract: The compositional interchange format for hybrid systems is syntactically and semantically
defined in terms of an interchange automaton in an abstract format, allowing among others differential
algebraic equations, variables that can be internal or external, operators for parallel composition,
action hiding, variable hiding and urgent actions, synchronization by means of shared labels, and
communication by means of shared variables and CSP channels. A concrete format is defined for
modeling. Its semantics is defined in terms of a mapping to the abstract format. The concrete format
adds inputs, outputs and open and closed scopes to enable modular and hierarchical specifications. The
concrete format is illustrated by means of a bottle filling line example.

1. INTRODUCTION

In Beek et al. [2007a] and Beek et al. [2007b] the foundations
of a compositional interchange format for hybrid systems (CIF)
have been defined, along with a detailed discussion of design
considerations, and the CIF has been related to previous work
on interchange formats for hybrid systems: MoBIES team
[2002], Pinto et al. [2006], Cairano et al. [2006]. The main
requirements for the interchange format, as defined in Beek
et al. [2007a], are summarized below.

(1) It should have a formal and compositional semantics,
based on (hybrid) transition systems, and allow property
preserving model transformations.

(2) Its concepts should be based on mathematics, and inde-
pendent of implementation aspects such as equation sort-
ing, and numerical equation solving algorithms.

(3) It should support arbitrary differential algebraic equa-
tions (DAEs), including fully implicit equations, higher
index systems, algebraic loops, steady state initialization,
switched systems such as piecewise affine systems, and
DAEs with discontinuous right hand sides.

(4) It should support a wide range of urgency concepts, such
as used in hybrid automata, including ‘urgency predi-
cates’, ‘deadline predicates’, ‘triggering guard semantics’,
and ‘urgent actions’.

(5) It should support parallel composition with synchroniza-
tion by means of shared variables and shared actions.

(6) It should support hierarchy and modularity to allow the
definition of parallel modules and modules that can con-
tain other modules (hierarchy), and to allow the definition
of variables and actions as being local to a module, or
shared between modules.

? Work partially done in the framework of the HYCON Network of Excel-
lence, contract number FP6-IST-511368; as part of the Darwin project under
the responsibility of the Embedded Systems Institute, partially supported by
the Netherlands Ministry of Economic Affairs under the BSIK program; and as
part of the ITEA project Twins 05004.

The contribution of this article is twofold:

(1) The abstract syntax of the CIF, as defined in Beek et al.
[2007a] is extended withchannelsto allow a CSP style commu-
nication (see Hoare [1985]), such as used in the Chi language
(see Beek et al. [2006], Man and Schiffelers [2006]) and as
used in UPPAAL (see Larsen et al. [1997]), although the latter
restricts CSP to pure synchronization (no communication of
data).

(2) A concrete format, that is used for modeling, is defined.
The semantics of the concrete format is formally defined by
means of a mapping to the abstract format (as defined in Beek
et al. [2007a]). The language elements of the abstract format are
mathematical constructs, such as sets, partial functions etc. cho-
sen to facilitate the definition of the semantics. It consists of a
small number of orthogonal language elements. For modelling
purposes, however, the abstract syntax is rather cumbersome.
The concrete syntax is chosen to facilitate modelling. For ex-
ample, instead of defining a set of variables, a partial function
to define their dynamic type (see Section 2), and a predicate
defining their initial values, a variable declaration mechanism
as used in many modelling languages is used. Furthermore, the
concrete syntax extends the abstract syntax with constructs for
modeling, including amongst others

• clocks that are added for compatibility with timed au-
tomata,

• input and output variablesthat are added for compatibility
with languages such as Simulink (see The MathWorks,
Inc [2005]) and PHAVER (see Frehse [2005]), and to
enable compositional verification in the form of assume-
guarantee reasoning (e.g. see Henzinger et al. [2000],
Frehse et al. [2001]),

• open and closed scopesthat allow the definition of vari-
ables, channels, clocks and actions as being local to facil-
itate hierarchy and modularity,

• automaton definition and instantiationthat facilitate re-
use of automata.

The remainder of this article is organized as follows: Section 2
defines the abstract syntax of the CIF, Section 3 informally
explains the semantics of the abstract syntax, Sections 4 and
6 define the concrete syntax and its mapping to the abstract
syntax, respectively, Section 5 presents a bottle filling system
example and Section 7 presents concluding remarks.

2. ABSTRACT SYNTAX OF INTERCHANGE AUTOMATA

First some notations are defined. A setV of variables, a set of
basic action labelsLbasic, which does not include the predefined
non-synchronizing actionτ , a set of channel labelsH, and a set
of values3 are assumed. The setLcom denotes the set of CSP
action labels. It is defined asLcom = {h!cs, h?cs, h!?cs | h ∈

H, cs ∈ 3∗
}, whereh ∈ H denotes a channel, andcs ∈ 3∗

denotes a list [c1, . . . , cn] of values (ci ∈ 3, 1 ≤ i ≤ n). The
CSP actions labelsh!cs, h?cs, h!?cs are called send action
label, receive action label, and communication action label,
respectively. We assume the set of basic action labels and the set
of CSP action labels to be disjoint:Lbasic∩Lcom= ∅. The setL
denotes the set of basic and CSP action labelsLbasic∪Lcom, and
the setLτ denotes the setL∪ {τ }. For a set of variablesS⊆ V,
Pred(S) denotes the set of all predicates over variables fromS,
and Expr(S) denotes the set of all expressions over variables
from S.

Definition 1.(Atomic Interchange Automaton).An atomic in-
terchange automatonis a tuple(X, Xi, dtype, V, v0, init, flow,
inv, tcp, L , E) where

• X ⊆ V is a finite set of variables,Xi ⊆ X is the set of
internalvariables.

• dtype : X → {disc, cont, alg} is a function that associates
to each variable a dynamic type:discrete, continuous
or algebraic. The setsXdisc, Xcont, Xalg are defined as
Xt = {x ∈ X | dtype(x) = t} for t ∈ {disc, cont, alg},
andXstate= Xdisc ∪ Xcont is the set ofstatevariables.

• V is a finite non-empty set ofvertices, called locations,
andv0 ∈ V is the initial location.

• init ∈ Pred(X̃) is the initial condition. ForY ⊆ X, Ỹ = Y ∪

{ẏ | y ∈ Y ∩ Xcont} is the extension ofY with the dotted
versions of the continuous variables inY.

• flow, inv, tcp : V → Pred(X̃), are functions that each
associate to each locationv ∈ V a predicate describing
theflow condition, theinvariant, and thetime can progress
condition, respectively.

• L ⊆ Lbasic is a finite set of synchronizing action labels.
Usually, this set includes at least the labels that occur on
the edges of the automaton, in which case the setL is
referred to as thealphabetof the automaton.

• E = V × Pred(X̃) × (Lbasic ∪ {τ } ∪ CX) × (P(X̃) ×

Pred(X̃ ∪ X̃−)) × V is a finite set ofedges, such that for
each element(v, g, a, (W, r), v′) ∈ E, v andv′ are the
sourceandtarget locations, respectively,g is theguard, a
is anaction statement, W ⊆ X̃ is a set of jumping variables
(the value of which may change as a result of an action
transition), andr is the jump predicate, also calledreset
map. For anyY ⊆ V ∪ V̇, Y−

= {y−
| y ∈ Y} denotes

the set of minus superscripted variables that represent
the values of variables before an action transition. Three
kinds of action statements exist: basic action labelsa ∈ L
that synchronize on the basis of equality, the predefined
non-synchronizingτ action, and CSP statementsa ∈

CX , whereCX = { h!e, h?x, h!?, h!?x := e | h ∈ H,

{e} ⊆ Expr(X̃), {x} ⊆ X̃ }, where e and x are either
empty (n = 0) or denote comma separated sequences
e1, . . . , en and x1, . . . , xn of expressions and variables
(n ≥ 1), respectively. The CSP statementsh!e, h?x, h!?,
h!?x := e are called send statement, receive statement,
synchronization statement, and communication statement,
respectively. We assume the set of CSP statements to be
disjoint from the set of basic action labels:CX ∩ Lbasic=

∅.

The interchange automaton format consists of automata, and
operators for parallel composition, for hiding of actions and
variables, and for the definition of urgent actions. The automata
and operators can be freely combined:
Definition 2.(Interchange automaton).The set of interchange
automataA is defined by the following grammar for the inter-
change automataα ∈ A:

α ::= αatom atomic interchange automaton
| α ‖ α parallel composition
| hidevarXh(α, σh) variable hiding operator
| hideactLh(α) action hiding operator
| urgentLu

(α) urgent action operator
| encapLe

(α) action encapsulation operator,

where

• αatom denotes an atomic interchange automaton;
• Xh ⊆ V denotes a set of variables to hide andσh : Xh 7→ 3

denotes a (partial) valuation for the hidden state variables
of interchange automatonα;

• Lh ⊆ L denotes a set of actions to hide;
• Lu ⊆ Lτ denotes a set of nondelayable actions;
• Le ⊆ L denotes a set of actions that are blocked.

3. SEMANTICS OF THE ABSTRACT SYNTAX

The informal semantics of the abstract syntax is defined below.
The complete formal semantics, including CSP channels, is
defined in Beek et al. [2007b]. The semantics without CSP
communication has appeared in Beek et al. [2007a].

3.1 Atomic automata

Variables The interchange automaton defines three classes of
variables: the discrete and continuous variables, and in addition
the algebraic variables. The main differences are as follows:
First, the values of discrete variables remain constant when
model time progresses, the values of continuous variables may
change according to a continuous function of time when model
time progresses, and the values of algebraic variables may
change according to a discontinuous function of time. Second,
the values of the discrete and continuous variables do not
change in action transitions unless such changes are explicitly
specified, for example by assigning a new value. The values of
algebraic variables can change arbitrarily in action transitions,
unless such changes are explicitly restricted, for example by
assigning a new value. Third, there is a difference between the
different classes of variables with respect to how the resulting
values of the variables in a transition relate to the starting values
of the variables in the next transition. The resulting value of
a discrete or continuous variable in a transition always equals
its starting value in the next transition. For algebraic variables
there is no such relation. In most models, the values of discrete

variables are defined by assignments, whereas the values of
algebraic variables are defined by invariants ((in)equalities).

Predicates in a location The initial condition should hold
initially, whereas the invariant should hold at all times. The
time can progress (tcp) predicate allows passing of time in a
location for as long as the condition is true, or in other words,
until the time-point when the condition is false. Differential
algebraic equations (DAEs) can be specified in the invariants of
an interchange automaton, since such invariants are predicates
over all variables, including the dotted variables. Flow clauses
are supported for reasons of compatibility with existing hybrid
automata. The reason for not enforcing a separation between
invariants (over non-dotted variables) and flow clauses (over
dotted variables), as in existing hybrid automata, is that such
a separation is absent in the mathematical theory of dynamical
systems, including control theory. In many cases, fully implicit
DAEs, cannot even be rewritten to a form where the algebraic
constraints and the differential constraints are separated.

In the formal semantics, three kinds of transitions are defined
for interchange automata: action transitions, time transitions
and consistency transitions. Action transitions and time tran-
sitions are well known in hybrid automata. Consistency transi-
tions in the CIF ensure that when one of the automata does an
action transition in a parallel composition, the initial conditions
and invariants of the automata that do not synchronize hold.

3.2 Operators

Parallel composition operator There are no compatibility
requirements for the parallel composition of interchange au-
tomata: any pair of interchange automata can be composed
by the parallel composition operator. The parallel composition
operator synchronizes on external actions that the arguments
share. CSP actions synchronize on the basis of pairs of send
(h!e) and receive (h?x) actions. The CSP communication action
h!?x := e is the result of elimination of parallel composition as
defined in Beek et al. [2007b]. All other actions may be inter-
leaved (under the condition that they maintain the consistency
of the other automaton). Time transitions must be synchronized,
and consistency is established only if both automata agree on
it. The external state variables that are shared by the argument
automata need to have the same values (all the time).

Hiding operators The action hiding operator applied to an
automaton,hideactLh(α), hides (abstracts from) the actions
from set Lh by replacing them by the internal actionτ . This
only affects the action behavior ofα; its delay behavior and
consistency remain unchanged. Transitions contain, amongst
others, information about the variables, such as their values
or, in case of a time transition, their trajectories. The variable
hiding operator applied to an automaton,hidevarXh(α, σh),
hides the variables from setXh by removing the information
about them from the transitions ofα. The values of the hidden
state variables after a transition are stored in valuationσh.

Urgent action operator The urgent action operator applied
to an automaton,urgentLu

(α), gives actions from the setLu
priority over time passing. The action behavior and consistency
of α are not affected by the urgent action operator. Time
transitions are allowed only if at the current state, and at each
intermediate state while delaying, no actions from the setLu
are possible.

Action encapsulation operator The action encapsulation
operator applied to an automaton,encapLe

(α), blocks ac-
tions from the setLe. The delay behavior and consistency
behavior of α are not affected. Send and receive actions
on channels from a setHe can be blocked by means of
encap{h!cs,h?cs|h∈He,cs∈3∗}(α). In this way, only the the syn-
chronous execution of matching send and receive actions via
channels from the setHe can take place.

4. CONCRETE SYNTAX DEFINITION

In this section, the concrete syntax of CIF models is defined
using a Backes-Naur (BNF) like notation. The symbol| defines
choice, and notation [Z] definesZ as being optional.

spec ::= [autDefs] model[autDefs]
autDefs ::= autDef | autDefs autDef
autDef ::= automaton autId [‘(’paramDecls‘)’] =

closedScope
paramDecls ::= paramDecl| paramDecls, paramDecl
paramDecl ::= varIds : type
varIds ::= varId | varIds, varId
closedScope ::= |[[cScopeDecls::] automaton]|
cScopeDecls::= cScopeDecl| cScopeDecls, cScopeDecl
cScopeDecl ::= extern decls

| input var inputVarDecls
| output var varDecls
| intern decls
| connect connectSets

decls ::= decl| decls, decl
decl ::= var varDecls

| clock clockIds
| chan chanDecls
| act actIds

varDecls ::= varDecl| varDecls, varDecl
varDecl ::= varIds : (disc | cont | alg) type

[= (expr| ‘(’ exprs‘)’)]
exprs ::= expr| exprs, expr
clockIds ::= clockId | clockIds, clockId
chanDecls ::= chanDecl| chanDecls, chanDecl
chanDecl ::= chanIds[! | ?] : type
chanIds ::= chanId| chanIds, chanId
actIds ::= actId| actIds, actId
inputVarDecls::= varDecl| varDecls, varDecl
inputVarDecl ::= varIds : type
connectSets ::= {connectors} | connectSets, {connectors}
connectors ::= connector| connectors, connector
connector ::= [autId.] (varId | clockId | chanId| actId)
automaton ::= cAutomaton

| oAutomaton
cAutomaton ::= [autId:] closedScope

| [autId:] autInst
| cAutomaton‖ cAutomaton

autInst ::= autId [‘(’ exprs‘)’]
oAutomaton ::= atomicAut

| [autId:] openScope
| oAutomaton‖ oAutomaton

atomicAut ::= |([init,] mode modes:: modeId)|
init ::= init preds
preds ::= pred| preds& pred
modes ::= mode| modes, mode
mode ::= modeId = [dyns] [edges]
dyns ::= dyn| dyns dyn

dyn ::= (inv | flow | tcp) preds
edges ::= edge| edges edge
edge ::= [guard] [now] [action] [update]

goto modeId
guard ::= when preds
action ::= act (actId| comLabel)
comLabel ::= chanId ! [exprs]

| chanId ? [varIds]
| chanId ! ? [varIds := exprs]

update ::= do varClockIds(:= exprs| : preds)
varClockIds ::= varClockId

| varClockIds, varClockId
varClockId ::= varId

| clockId
openScope ::= |([oScopeDecls::] oAutomaton)|
oScopeDecls::= oScopeDecl| oScopeDecls, oScopeDecl
oScopeDecl ::= intern decls
model ::= model modelId = closedScope

Here, modelId denotes a model identifier, autId denotes an
automaton identifier, varId denotes a variable identifier, clockId
denotes a clock identifier, chanId denotes a channel identifier,
actId denotes an action, modeId denotes a mode identifier,
pred denotes a predicate, expr denotes an expression and type
denotes a static type. It is not allowed to use a dot (‘.’) in an
identifier. An expression can also contain a tuple of expressions,
syntactically denoted by a comma separated list of expressions
surrounded by round braces, for example(1 + 3, 2). Similar to
an expression, a variable (clock) identifier can contain a tuple
(x, y) of variable (clock) identifiersx andy.

4.1 Input and output variables

Input variables and output variables are special classes of ex-
ternal variable declarations. The semantics ensures that, under
the assumption that an automaton does not restrict the behav-
ior of its own input variables, the input variables can change
arbitrarily in action and time transitions when that automaton
is composed in parallel with another automaton, as long as the
inputs are unconnected, or connected to other input variables
only. In this way, when input variables are connected to an
output variable, the behavior of the connection is completely
determined by the output variable. Output variables cannot be
connected to output variables of parallel automata. An output
variable can be connected to an output variable of an outer
block.

4.2 Closed and open scopes

The building blocks that support hierarchy and modularity are
the closed scope|[cScopeDecls:: automaton]| and open
scope|(oScopeDecls:: automaton)|. Here, the double colon
acts as a separator between the declarations of variables, action
labels and channels on the one hand, and the specification of the
behavior on the other hand. Declarations can be internal (intern
keyword) or external (extern, input or output keyword). The
main difference between closed and open scopes is that open
scopes may havefree variables, that is variables that are not
bound in the open scope itself, but in an outer, more global,
encompassing scope. A closed scope, on the other hand, may
not contain free variables: all variables must be bound in the
closed scope.

Both concepts of scoping can be found in modeling languages.
The concept of open scopes is often used in different syntactic
forms, such as the “for loop” used in many programming
and modeling languages. It uses a local iterator that can be
used in the body of the for loop together with the variables
that are declared at a more global level. This local iterator is
essentially a local variable declared in an open scope in which
the body of the for loop is executed. The concept of closed
scopes can be found in many modeling languages, such as
Modelica (see Modelica Association [2002]), where interfaces
specify the interaction points (ports) of components explicitly,
and connectors are used to connect these ports. The ports and
connectors can be mapped to the external variables and connect
sets, respectively, of the CIF.

When scopes are nested, inner scopes may declare variables
using a name (identifier) that is already used in a variable
declaration in an outer scope. A variable used in an automaton
binds to the declaration of that variable in the smallest enclosing
scope that declares the variable. The search for this variable
declaration starts in the smallest enclosing scope of the automa-
ton. If the variable declaration is not found in an open scope, the
search proceeds one level up in the scope hierarchy. If it is not
found in a closed scope, the model is erroneous, because closed
scopes may not have free variables.

By means of connect sets, variables from different(!) closed
automata (BNF non-terminalcAutomaton) may be connected
such that the connected variables refer to the same variable.
The following connections are possible:

• Hierarchical connections: The internal and external vari-
ables of a closed automaton can be connected to external
variables of the contained closed automata.

• Parallel connections: In a parallel composition of closed
automata, the external variables of each closed automaton
can be connected to external variables of the other closed
automata.

Variablesx andy are connected if they both occur in a connect
set{x, y} or if they occur in different connect sets for which the
intersection is non-empty, for example{x, z}, {y, z}. Within a
connect set declaration, it is not allowed that two or more vari-
ables that are declared in the same scope are connected. Action
labels and channels can be connected to other action labels and
channels, respectively, in a similar way as connections between
variables are specified.

Section 5 presents several examples of the use of open and
closed scopes, together with examples of the use of connect
sets, internal and external variables and channels.

5. EXAMPLE: BOTTLE FILLING SYSTEM

The bottle filling system as shown in Figure 1 consists of a
liquid storage tank, two identical bottle filling lines, and a bottle
supply (see Man and Schiffelers [2006]).

The bottles are filled with liquid from the storage tank. A
control system keeps the volumeVT in the storage tank between
2 and 10, and the pH level (acidity) of the liquid in the storage
tank between 7 and 7.1. The liquid in the storage tank slowly
becomes less acidic (pH level increases). To correct this, a
strong acid is dribbled into the storage tank when the acidity
of the liquid becomes too low (pH ≥ 7.1).

QFl QFr

VT, n, c, pH

Qu, cu Qa, ca

Fig. 1. The bottle filling system.

The acid and liquid supply processes are not modeled, since we
consider the acid and liquid always to be available, and we are
not interested in the amount of acid or liquid that is used.

The storage tank and the two bottle filling lines are connected
by means of the variablesQFl, and QFr, respectively. The
volume of the storage tank is available in both bottle filling lines
(variableVT) to prevent filling of the bottles when the storage
tank is empty.

The molar quantity and molar concentration of the acid in
the storage tank are denoted byn and c, respectively, where
n = cV. The incoming flows of liquid and acid of the liquid
storage tankT are denoted byQu and Qa, respectively. Acid
leaves the tank in outgoing flowsQFl and QFr. The gradual
reduction of the acidity of the liquid is modeled by means of
a constantK loss, which leads tȯn = cuQu + caQa − cQFl −

cQFr − K lossV , wherecu andca denote the concentrations of
acid in the flowsQu andQa. Taking into account that the units
of c are in [mol/m3] instead of [mol/l], the pH is given by
pH = − logc/1000.

In the CIF specification of the liquid storage tank, symbols
Qseta, Qsetu, ca, cu, andKloss denote constants. The behavior
of the liquid storage tank is explained as follows. Initially, the
pH of the liquid in the storage tank equals 7. It is assumed
that the pH level of the incoming liquid is 7 or more, since
the acidity controller can only make the acidity of the storage
tank increase, causing the pH to decrease. If the pH value ex-
ceeds the maximum value (pH >= 7.1), the acid valve is opened
(alpha:=1) so that acid is dribbled into the tank. Dribbling of
the acid continues until the pH value comes back at 7, and the
valve is closed (alpha:=0). In a similar way, the controller tries
to keep the level of the storage tank between 2 and 10.

The behavior of the filling controller is explained as follows.
When a new crate of bottles arrives, (bottles?n), where n

denotes the number of bottles in a crate) the bottle volume is
reset to 0, and filling a bottle is started ((VB,gamma) := (0,1)).
The valve switching the flowQF is modeled by means of the
discrete variablegamma. Filling stops when the volume in the
storage tank drops below 0.5 (when VT<=0.5 now do gamma:=0).
Filling resumes when the volume in the storage tank is at least
0.7. Filling also stops when the bottle is full (when VB>=1 now do

(gamma,n) := (0,n-1)).

model Bottle_Filling_System =

|[connect {tank.V, left.VT, right.VT}

, {tank.QF, left.QFl}

, {tank.QF, right.QFr}

, {bs.bottles, left.bottles, right.bottles}

:: tank:

|[output var V: cont real

, extern var QFl, QFr: alg real

, intern var alpha, beta: disc nat = (0,0)

, n: cont real

, pH: alg real = 7

, c, Qa, Qu: alg real

:: |(mode physics =

inv dot V = Qu + Qa - QFl - QFr

& dot n = cu*Qu + ca*Qa - c*QFl

- c*QFr - Kloss*V

& n = c*V

& pH = - log c/1000

& Qa = alpha*Qseta

& Qu = beta*Qsetu

:: physics

)|

|| |(mode closed = when pH >= 7.1

now do alpha := 1 goto opened

, opened = when pH <= 7

now do alpha := 0 goto closed

:: closed

)|

|| |(mode closed = when V <= 2

now do beta := 1 goto opened

, opened = when V >= 10

now do beta := 0 goto closed

:: closed

)|

]|

|| left : Bottle_Filling_Line

|| right : Bottle_Filling_Line

|| bs : Bottle_Supply

]|

automaton Bottle_Filling_Line =

|[input var VT: real

, extern var QF: alg real

, chan bottles?: nat

, connect {fp.gamma, fc.gamma},

{fp.VB, fc.VB},

{bottles, fc.bottles}

:: fp : Filling_Physics

|| fc : Filling_Controller

]|

automaton Filling_Physics =

|[input var gamma: nat

, output var VB: cont real

, extern var QF: alg real

:: |(mode m = inv dot VB = QF

& QF = gamma*QsetF

:: m

)|

]|

automaton Filling_Controller =

|[input var VB, VT: real

, output var gamma: disc nat = 0

, extern chan bottles?: nat

, intern var n: disc nat = 0

:: |(mode start =

when n = 0 act bottles?n

do (VB,gamma) := (0,1) goto filling

when n > 0

now do (VB,gamma) := (0,1) goto filling

, filling =

when VT <= 0.5

now do gamma := 0 goto stopped,

when VB >= 1

now do (gamma,n) := (0,n-1) goto start

, stopped =

when VT >= 0.7

now do gamma := 1 goto filling

:: start

)|

]|

automaton Bottle_Supply =

|[extern chan bottles!: nat

, intern clock t

:: |(mode m = when t >= 2 act bottles!24

do t:= 0 goto m

:: m

)|

]|

Figure 2 shows a graphical representation of (a part of) the CIF
model of the bottle filling line. Solid (dashed) boxes represent
closed (open) scopes, where the internal declarations are listed
in the upper left corner, and the external declarations are repre-
sented as boxes (for variables) or triangles (for channels) on the
borders of the box. Modes are visualized by means of circles,
urgent (nonurgent) edges are represented as double (single)
arrows between modes, and labelled with their guard, action,
and update.

6. MAPPING CONCRETE TO ABSTRACT SYNTAX

This section defines the formal semantics of a CIF model
specified in concrete syntax by means of a mapping to the
abstract format. First the concrete syntax is preprocessed as
described in Section 6.1. The mapping of the concrete syntax to
the abstract syntax is defined by means of functionT . It takes
the preprocessed CIF model as input, and returns an automaton
specified in the abstract syntax. This function is defined in
Section 6.2.

6.1 Preprocessing

First, declarations of the forminput var varIds : type are
replaced byextern var varIds: alg type and declarations of the
form output var varDeclsare replaced byextern var varDecls.
All closed scopes, open scopes and automaton instantiations
that occur in the body of the top-level closed scope which are
not prefixed with an automaton identifier are prefixed with a
fresh identifier.

Using a bottom-up approach, each closed scope prefixed with
an automaton identifier is replaced with the same closed scope
in which all variables, clocks, channels and actions (includ-
ing those in nested scopes) are prefixed with the automaton
identifier and a dot (‘.’). The automaton identifier is removed
from the closed scope. A similar approach is used for replac-
ing open scopes and automaton instantiations. In this way, all
variables, clocks, channels and actions occurring in the body
of the top-level closed scope are made unique. The exter-
nal variable declarations are grouped w.r.t. their dynamic type
into three different lists. The listsdiscvarsext, contvarsext, and
algvarsext denote a comma seperated list of external variables
declared with dynamic typedisc, cont, andalg, respectively.
Each entry in such a list is of the formx : t = e, where x
denotes a variable,t denotes its static type, ande denotes its
initial value if the initial value is specified at the declaration.
The declared external channels are grouped in listchansext,
where each entry in the list is either of the formc ! : t ,
c ? : t , or c : t , wherec denotes a channel , andt denotes its
type. Notationx0 : t0 = e0, . . . , xn : tn = en denotes the list
x0, . . . , xn, notation{x0 : t0 = e0, . . . , xn : tn = en} denotes

the set{x0, . . . , xn}, and notationc0♦0t0, . . . , cn♦ntn, where
♦i ∈ {! :, ? :, :} for i ∈ {0, . . . , n} denotes denotes the list
c0, . . . , cn. The clocks and actions are grouped into respective
lists clocksext, and actsext. A similar notation is used for the
internal declarations. Connect set declarations are combined
into new connect set declarations that specify the same connec-
tions between the identifiers such that each identifier occurs at
most in one connect set (for example the connect set declaration
connect {x, z}, {y, z} is replaced byconnect {x, y, z}. Finally,
all automaton instantiations occurring in the model are flattened
using the automaton definitions of the specification: Let

automaton l(p0 : t0, . . . pn : tn) =

|[extern var discvarsext, contvarsext, algvarsext
, clock clocksext, chan chansext, act actsext
, intern var discvarsint, contvarsint, algvarsint
, clock clocksint, chan chansint, act actsint
, connect set1, . . . , seth
:: automaton
]|

be the automaton definition associated with automaton defini-
tion identifier l , then automaton instantiationl (e0, . . . en) de-
notes the following automaton:

|(extern var discvarsext, contvarsext, algvarsext
, clock clocksext, chan chansext, act actsext
, intern var discvarsint, p0 : t0 = e0, . . . , pn : tn = en,
, contvarsint, algvarsint
, clock clocksint, chan chansint, act actsint
, connect set1, . . . , seth
:: automaton
)|

The parameter variablesp0, . . . , pn of the automaton definition
are declared as internal discrete variables inside the closed
scope automaton, with initial valuese0, . . . , en. Then, the
possibly incomplete atomic automaton constructs that occur
in automatonare made complete according to the following
defaults/transformations:

• an omitted invariant denotes the invariant true,
• an omitted flow denotes the flow true,
• an omitted tcp predicate denotes the tcp predicate true,
• an omitted guard denotes the guard true,
• for each urgent edge, the time can progress predicate of

the source mode is augmented with the disjunction of
negation the guard of this edge. Then, the keywordnow
is removed from the edge.

• an omitted label denotes the (non-synchronizing) labelτ ,
• an update assignmentx := e is replaced by{x} : x = e−,

an omitted update denotes the empty update∅ : true, i.e.
the values of the discrete and continuous variables and the
clocks are not changed.

6.2 FunctionT

Model The translation of a specification is defined as follows:
T (model m = closedScope) = encapLcom

(

T ′

(∅,∅,∅,∅,true)(closedScope)).
FunctionT ′ takes two parameters: the first parameter contains
variables, the dynamic type of variables, clocks, actions, and
an initialization predicate over variables that are defined at a
higher level than the second parameter. The second parameter
contains elements of the preprocessed concrete syntax.

Bottle_Filling_Line

left

VT

bottles?

QF

Bottle_Supply

bs

bottles!

Bottle_Filling_Line

right

VT

bottles!

QF

physics

inv

n = c*V,

dot V = Qu + Qa - QFl - QFr &

dot n = cu*Qu + ca*Qa - c*QFl

- c*QFr - Kloss*V &

pH = - log c/1000 &

Qa = alpha*Qseta &

Qu = beta*Qsetu

closed opened

when pH >= 7.1

now do alpha:= 1

when pH <= 7

now do alpha:= 0

closed opened

when pH >= 7.1

now do alpha:= 1

when pH <= 7

now do alpha:= 0

tank

var alpha, beta: disc nat = (0,0),

n: cont real,

pH: alg real = 7

c, Qa, Qu: alg real

QFl: alg real QFr: alg real
V: cont real

model Bottle_Filling_System

Fig. 2. Graphical representation of the CIF model representing the bottle filling system.

Closed scope A closed scope (BNF non-terminal
closedScope) is mapped to an abstract CIF automaton as
follows:

T ′
env(|[extern var discvarsext, contvarsext, algvarsext

, clock clocksext, chan chansext, act actsext
, intern var discvarsint, contvarsint, algvarsint
, clock clocksint, chan chansint, act actsint
, connect set1, . . . , seth
:: automaton
]|) =

hidevarV\varsext(
hideact(Lbasic∪Lcom)\({actsext}∪chanactsext)(

encapLcom\chanactsext
(Tenv′(automaton′))), σh)

where

• varsext = {discvarsext, contvarsext, algvarsext},
• varsint = {discvarsint, contvarsint, algvarsint},
• chanactsext = {h!cs,h?cs,h!?cs| h ∈ {chansext},cs∈ 3∗

}

• env′ = (vars, dtype, acts, clocks, init),
• vars= varsext ∪ varsint,
• dtype= {x 7→ disc | x ∈ {discvarsext,discvarsint}}∪ {x 7→

cont | x ∈ {contvarsext, contvarsint}} ∪ {x 7→ alg | x ∈

{algvarsext, algvarsint}},
• acts= {actsext} ∪ {actsint},
• clocks= {clocksext} ∪ {clocksint},
• init = ∧x: x∈vars,valuevars(x)6=⊥ : x = valuevars(x),
• automaton′ = automaton[Id1, . . . , Idh/set1, . . . , seth],

• dom(σh) = ∅,

where function application valuevars(x) returns the initial value
for variablex that is specified invarsor ⊥ otherwise. Notation
automaton[Id1, . . . , Idh/set1, . . . , seth] denotes the automaton
where all occurrences of identifiers fromseti in automatonare
replaced with identifierIdi for i ∈ {1, . . . , h}. Identifier Idi is
defined asIdi ∈ seti ∩ (vars∪ acts∪ {chansext} ∪ {chansint}) if
seti ∩ (vars∪ acts∪ {chansext} ∪ {chansint}) 6= ∅, andfreshIdi
otherwise, wherefreshIdi denotes a fresh identifier.

Note that for a closed scope, the environmentenvis irrelevant,
and its elements are not used in the automaton. An automaton
can be a closed scope, an atomic automaton, an open scope, or
a parallel composition of automata. In the next subsections, the
mapping of the latter three is described.

Atomic automaton An atomic automaton (BNF non-terminal
atomicAut), is mapped to an abstract CIF automaton as follows:

T ′

(vars,dtype,acts,clocks,init)(

|(init initaut
, modeV1 = inv i1 flow f1 tcp u1

when g11 act a11 do up11
goto V11

...
when g1k1

act a1k1
do up1k1

goto V1k1
...

, modeVn = inv inflow fntcp un
when gn1 act an1 do upn1

goto Vn1
...
when gnkn

act ankn
do upnkn

goto Vnkn

:: v0
)|) = (X, ∅, dtype, V, v0, init, flow, inv, tcp, acts, E)

where

• X = vars∪ clocks,
• V = {V1, . . . , Vn},
• init = init ∧ initaut ∧ (∧x:x∈clocks : x = 0),
• dom(flow) = dom(inv) = dom(tcp) = V,

∀i :i ∈{1,...,n} : flow(Vi) = fi ∧ (∧x:x∈clocks : ẋ = 1),
inv(Vi) = i i ,
tcp(Vi) = ui ,

• E = {(Vi , gi j , ai j , upi j
, Vi j) | i ∈ {1, . . . , n}, j ∈

{1, . . . , ki }}.

Open scope An open scope (BNF non-terminalopenScope)
is mapped to an abstract CIF automaton as follows: Letenv=

(vars, dtype, acts, clocks, init), then

T ′
env(|(extern var discvarsext, contvarsext, algvarsext

, clock clocksext, chan chansext, act actsext
, intern var discvarsint, contvarsint, algvarsint
, clock clocksint, chan chansint, act actsint
, connect set1, . . . , seth
:: automaton
)|) =

hidevarvarsint(hideact{actsint}∪chanactsint(

encapchanactsint
(Tenv′(automaton′))), σh)

where

• varsint = {discvarsint, contvarsint, algvarsint},
• chanactsint = {h!cs,h?cs,h!?cs| h ∈ {chansint},cs∈ 3∗

}

• env′ = (vars′, dtype′, acts′, clocks′, init ′),
• vars′ = vars∪ varsint,
• dtype′ = dtype∪ {x 7→ disc | x ∈ {discvarsint}} ∪ {x 7→

cont | x ∈ {contvarsint}} ∪ {x 7→ alg | x ∈ {algvarsint}},
• acts′ = acts∪ {actsint},
• clocks′ = clocks∪ {clocksint},
• init = init ∧ (∧x: x∈varsint,valuevarsint (x)6=⊥ : x =

valuevarsint(x)),
• automaton′ = automaton[Id1, . . . , Idh/set1, . . . , seth],
• dom(σh) = ∅.

Parallel composition Function Tenv distributes over
parallel composition: Tenv(automatonl ‖ automatonr) =

Tenv(automatonl) ‖ Tenv(automatonr)

7. CONCLUDING REMARKS

The presented concrete format consists of the major building
blocks required for hybrid system specification. Future work
entails, among others, a further concretization of the syntax,
including the definition of compound data types, and the def-
inition of the syntax of expressions and equations; extending
the concrete format with urgent actions, urgent channels and
OR-super states; and possibly extending the interchange format
with stochastic model primitives. The development of transla-
tions to and from other languages and simulator implementa-
tions will be done by different partners in a) Work Package

3 of the HYCON NoE (see HYCON Network of Excellence
[2005]), and in b) the new FP7 STREPS MULTIFORM project.

REFERENCES

D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda,
and R. R. H. Schiffelers. Syntax and consistent equation
semantics of hybrid Chi.Journal of Logic and Algebraic
Programming, 68(1-2):129–210, 2006.

D. A. van Beek, M. A. Reniers, J. E. Rooda, and R. R. H.
Schiffelers. Foundations of an interchange format for hybrid
systems. In Alberto Bemporad, Antonio Bicchi, and Giorgio
Butazzo, editors,Hybrid Systems: Computation and Control,
10th International Workshop, volume 4416 ofLecture Notes
in Computer Science, pages 587–600, Pisa, 2007a. Springer-
Verlag.

D. A. van Beek, M. A. Reniers, J. E. Rooda, and R. R. H. Schif-
felers. Revised hybrid system interchange format. Technical
Report HYCON Deliverable D3.6.3, HYCON NoE, 2007b.

Stefano Di Cairano, Alberto Bemporad, and Michal Kvasnica.
An architecture for data interchange of switched linear sys-
tems. Technical Report D 3.3.1, HYCON NoE, 2006.

G. Frehse, O. Stursberg, S. Engell, R. Huuck, and
B. Lukoschus. Verification of hybrid controlled processing
systems based on decomposition and deduction. In2001
IEEE International Symposium on Intelligent Control, pages
150–155, Mexico City, 2001. IEEE.

Goran Frehse. PHAVer: Algorithmic verification of hybrid sys-
tems past HyTech. In Manfred Morari and Lothar Thiele, edi-
tors,Hybrid Systems: Computation and Control, 8th Interna-
tional Workshop, volume 3414 ofLecture Notes in Computer
Science, pages 258–273. Springer-Verlag, 2005.

Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani.
Decomposing refinement proofs using assume-guarantee
reasoning. In Ellen Sentovich, editor,2000 IEEE/ACM Inter-
national Conference on Computer-Aided Design, pages 245–
252, San Jose, California, 2000. IEEE.

C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood-Cliffs, 1985.

HYCON Network of Excellence. http://www.ist-hycon.org/,
2005.

Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in
a Nutshell. International Journal on Software Tools for
Technology Transfer, 1(1–2):134–152, 1997.

K. L. Man and R. R. H. Schiffelers. Formal Specification
and Analysis of Hybrid Systems. PhD thesis, Eindhoven
University of Technology, 2006.

MoBIES team. HSIF semantics. Technical report, University
of Pennsylvania, 2002. internal document.

Modelica Association. Modelica - A Unified Object-
Oriented Language for Physical Systems Modeling.
http://www.modelica.org, 2002.

Alessandro Pinto, Luca P. Carloni, Roberto Passerone, and
Alberto L. Sangiovanni-Vincentelli. Interchange format for
hybrid systems: Abstract semantics. In João P. Hespanha
and Ashish Tiwari, editors,Hybrid Systems: Computation
and Control, 9th International Workshop, volume 3927 of
Lecture Notes in Computer Science, pages 491–506, Santa
Barbara, 2006. Springer-Verlag.

The MathWorks, Inc. Using Simulink, version 6.
http://www.mathworks.com, 2005.

