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In this paper we investigate which probe size maximizes the throughput when measuring the radius of

nanoparticles in high angle annular dark field scanning transmission electron microscopy (HAADF STEM).

The size and the corresponding current of the electron probe determine the precision of the estimate of a

particle’s radius. Maximizing throughput means that a maximum number of particles should be imaged

within a given time frame, so that a prespecified precision is attained. We show that Bayesian statistical

experimental design is a very useful approach to determine the optimal probe size using a certain amount

of prior knowledge about the sample. The dependence of the optimal probe size on the detector geometry

and the diameter, variability and atomic number of the particles is investigated. An expression for the

optimal probe size in the absence of any kind of prior knowledge about the specimen is derived as well.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we investigate the optimal probe settings for high
angle annular dark field scanning transmission electron micro-
scopy (HAADF STEM). It is common practice to optimize the
resolution of the coherent probe contribution in some respect,
see for example Ref. [1] for a derivation of the Scherzer settings or
Ref. [2] for a derivation of the settings when the limiting aberra-
tions are of higher order. In these studies the incoherent probe
contribution due to a finite source size is ignored, assuming a
purely coherent point source. However, a point source emits no
current, so that no electrons would be present for the actual
imaging. Introducing a finite source size broadens the probe in a
way that is well parameterized by Barth and Kruit in Ref. [3]. The
optimal probe size will depend on a trade-off between the probe
width and the beam current. A large width increases the beam
current and augments the signal-to-noise ratio, although at the
expense of reduced resolution. In practice, operators balance these
two effects by adjusting the so-called spot size of the microscope.
However, this choice may be somewhat subjective and therefore
operator dependent. In this paper we provide a sound theoretical
basis for this choice. The problem we investigate, is maximizing
the throughput when measuring the radii R of spherical nanopar-
ticles deposited on a uniform support. That is, given a prespecified
precision of the estimates of R, we seek the probe size that yields
ll rights reserved.
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the minimum required recording time needed to reach that
precision.

The images are considered as data planes from which structural
information has to be estimated quantitatively. For this we use a
model for the object and for the imaging process, including
electron–object interaction, microscope transfer and image detec-
tion. This model describes the expectations of the intensity
observations and it contains the parameters that have to be
measured. These parameters are determined by fitting the model
to the experimental data by the use of a criterion of goodness-of-fit,
such as least squares or maximum likelihood. In this way structure
determination becomes a statistical parameter estimation pro-
blem. The precision with which structure parameters can be
estimated is limited by the presence of noise. Use of the Fisher
information [4] allows to derive an expression for the best
attainable precision with which the structure parameters can be
estimated. This expression, which is called the Cramér–Rao lower
bound (CRLB), is a function of the object parameters, the micro-
scope parameters and the electron dose.

Statistical optimal design is a discipline that if applied to
electron microscopy, searches the set of microscope parameters
that yields the highest attainable precision on the estimates of one
or several of the structure parameters of the sample. In Ref. [5] for
example, the CRLB on the variance with which atom column
positions can be estimated is used as a performance measure in
the optimization of STEM experiments. This methodology has been
applied to optimize the design of other microscopy experiments as
well, see Refs. [6–9] for examples. In this article, a lower bound s2

CR

on the variance of the estimate of R is derived. In our current
problem, s2

CR is a function of R, the parameter that has to be
(2010), doi:10.1016/j.ultramic.2010.11.025
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Fig. 1. Three curves relating the beam current I to d50, with microscope parameters

summarized in Table 1. The solid curve is derived from Eq. (1) with Cc¼1 mm. The

dotted curve depicts the approximation in Eq. (3), and the dashed curve shows the

approximation given by Eq. (5) and used throughout the paper.
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estimated and thus is unknown a priori. This problem is common
for any optimal experimental design model involving a non-linear
statistical model [10]. For this reason, we adopt a Bayesian
approach in which we use a prior probability distribution, p(R),
which reflects the distribution of R and seek the probe size that is
optimal over the entire distribution of radii. In order to derive an
overall optimal probe size, we define s2

B as the average s2
CRðRÞ

weighted by p(R). It is explained in Section 4 that the probe size
optimizing s2

B also accomplishes maximum throughput. Therefore,
in the remainder of this paper we will look for the probe optimizing
s2

B with constant recording time per unit area whilst keeping in
mind that this same probe also maximizes throughput.

The outline of this paper is as follows. In Section 2, we introduce
the models for the probe, the particles and the support and combine
them into a model for the images. In Section 3, we specify the joint
probability function, and explain how it leads to the Fisher
information matrix, and the CRLB. In Section 4, we introduce the
Bayesian optimality criterion, show the equivalence between
minimum s2

B and maximum throughput, give analytical results
and rules of thumb for the optimal probe sizes, and carry out a
simulation study to check the influence of the particles’ atomic
numbers, the detector geometry, and the mean and variance of the
prior distribution p(R). In Section 5, we summarize the final
conclusions.
Table 1
Microscope parameters used in the simulations.

E0 l Cs Br

300 kV 1.97 pm 1 mm 5�107 A m�2 sr�1 V�1
2. The image model

2.1. Probe model

In Ref. [3], Barth and Kruit propose a root-power-sum algorithm
that relates the probe current I to the probe size dp, where dp is the
diameter of the disc containing p% of the total probe current. In this
paper, we choose d50 as a resolution measure, as suggested in Refs.
[3,11].

The dependence of d50 on the microscope settings is given by

d2
50 ¼ ðd

1:3
I þðd

4
Aþd4

s Þ
1:3=4
Þ
2=1:3
þd2

c ð1Þ

with

dI ¼
2

p
1

a

ffiffiffiffiffiffiffiffiffiffi
I

BrE0

s
,

dA ¼ 0:54
l
a ,

ds ¼ 0:18Csa3

and

dc ¼ 0:34Cc
dE

E0
a:

In these expressions, Br is the reduced brightness [12] of the
electron gun, E0 is the acceleration voltage, a is the semi-angle of
the aperture selecting the spot size, l the electron wavelength, Cs

the spherical aberration, Cc the chromatic aberration, anddE the full
width at half the maximum of the electrons’ energy distribution.

Eq. (1) can be used to produce ðd50,IÞ�curves by fixing I at
different values and minimizing d50 numerically with respect to a
for each of the I values. The solid curve in Fig. 1 was calculated in
this way, with the microscope parameters used throughout this
paper and given in Table 1. This approach is somewhat unwieldy.
Therefore, we will derive an analytical, albeit approximate, expres-
sion for the ðd50,IÞ�curves, providing more insight in the problem at
hand, that is, the maximization of throughput of particle radius
measurements through optimization of the probe size d50.
Please cite this article as: W. Van den Broek, et al., Ultramicroscopy
Various terms in Eq. (1) can be neglected for certain microscope
settings. This is shown, for instance, in Ref. [12], where various
approximations for low values of E0 are given. In this paper, a
similar derivation is given. The acceleration voltage E0 equals
300 keV, while dE is only 0.4 eV, as a consequence the d2

c�term can
be neglected. In addition, numerical calculations showed that the
angle a minimizing d50 for a given I increases monotonically with
d50. This suggests that, for large I and large d50, the d4

A�term can be
dropped from the model as well. The model then simplifies to

d1:3
50 ¼ d1:3

I þd1:3
s : ð2Þ

It can be shown analytically that, in this case, d50 is minimized with
respect to a if

I¼ 0:25p2BrE0C�2=3
s d8=3

50 : ð3Þ

This function is shown as the dotted line in Fig. 1. It is clear that for
large probe sizes, it provides an excellent approximation to the
original model. For smaller probe sizes, however, the simplified
model behaves qualitatively different from the exact model.

A better approximation is obtained by incorporating the geo-
metrically limited probe size dg,50. It is defined as the probe size in
the limit of zero probe current. For higher values of E0, it is
approximated by

d4
g,50 ¼ d4

Aþd4
s :

Analytically minimizing dg,50 with respect to a yields

dg,50 ¼ 0:47C1=4
s l3=4: ð4Þ

By definition it holds that I tends to 0 if d50 approaches dg,50. We
therefore propose to incorporate dg,50 in Eq. (3) in the following
way:

I¼ 0:25p2BrE0C�2=3
s ðd8=3

50 �d8=3
g,50Þ: ð5Þ
(2010), doi:10.1016/j.ultramic.2010.11.025
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This results in an approximation that is excellent for large probe
sizes and behaves qualitatively correct for small probe sizes too.
This is shown by the dashed curve in Fig. 1.

We model the shape of the probe h(r) using a Gaussian function
with resolution d50 and with an integrated intensity equal to the
total number of electrons [13]. The required function is

hðrÞ ¼
It
e

1

2ps2
d50

exp
�r2

2s2
d50

ð6Þ

with

s2
d50
¼

d2
50

8ln2
, ð7Þ

r the radial distance from the centre of the probe, t the dwell time
and e the elementary charge.

2.2. Specimen model

We model the particles as homogeneous spheres with radius R.
The projection q’(r) of such a sphere is

quðrÞ ¼ 2g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�r2

p
for rrR,

¼ 0 for r4R,

where r is the radial distance from the centre of the particle’s
projection and g1 is a proportionality factor accounting for the
percentage of electrons in the beam that are counted at the
detector. This means that g1 accounts for the particle’s atomic
number, the detector geometry and the detector’s efficiency.

In order to gain physical insight we approximate the image
model to make it analytically tractable, but note that an exact and
purely numerical treatment is possible as well. The function q’(r) is
therefore approximated by a Gaussian function q(r) that has the
same variance, and the same total intensity 4pg1R3=3. This is
achieved using

qðrÞ ¼
2

3
g1

R3

s2
R

exp
�r2

2s2
R

ð8Þ

with

s2
R ¼

1

5
R2: ð9Þ

The particles are deposited on an amorphous support that is
modeled as a constant additive background g0 that accounts for the
support’s thickness and atomic number, and the detector’s geo-
metry and efficiency.

2.3. The image model

In Ref. [14] it is stated that the image formation in HAADF STEM
can be assumed incoherent. Therefore, the expected image inten-
sity lðrÞ is a convolution of the Gaussian probe with the Gaussian
particle projection. The result is a new Gaussian function with a
variance equal to the sum of the variances of h(r) and q(r), and an
integrated intensity that is the product of those of h(r) and q(r):

lðrÞ ¼ g0

It
e
þ

2

3
g1

It
e

R3

s2
d50
þs2

R

exp
�r2

2ðs2
d50
þs2

RÞ
ð10Þ

withsd50
depending on d50 according to Eq. (7) andsR depending on

R according to Eq. (9).
In practice, one rarely has prior knowledge about the para-

meters g0, g1 or I. Therefore, we carry out the coordinate transfor-
mation

A¼ g0

It
e

, ð11Þ
Please cite this article as: W. Van den Broek, et al., Ultramicroscopy
B¼
2

3
g1

It
e

R3

s2
d50
þs2

R

, ð12Þ

R¼ R, ð13Þ

such that the model in Eq. (10) simplifies to

lðrÞ ¼ AþBexp
�r2

2ðs2
d50
þs2

RÞ
: ð14Þ

A and B are nuisance parameters that have to be estimated together
with R, but which are not of primary interest. The interdependence
between the three variables R, A and B is ignored and will not be
used in the estimation process. This reflects the common case that
one has too little knowledge to extract information out of the
absolute value of A or any ratio between R, A and B. One is therefore
forced to estimate R, A and B separately, as if they are independent.
For estimation of the model parameters, typically a finite region
around the particle’s projection, i.e. the field of view (FOV), is
selected. In this paper, the FOV is chosen as a square with sides
equal to 4Reff , where Reff is the effective radius of the model, defined
analogously to Eq. (9):

R2
eff ¼ 5ðs2

d50
þs2

RÞ: ð15Þ

In STEM, the probe scans the specimen in a raster fashion. The
image is thus recorded as a function of the probe position. Without
loss of generality, the image magnification is ignored. Therefore the
probe position directly corresponds to an image pixel at the same
position. The image is assumed to consist of M�M equidistant
pixels of area D2, where D is the probe sampling distance. Without
loss of generality, the FOV is chosen to be centred about the centre
of the particle’s projection. It is convenient to index the pixels with
a single number i that enumerates them column-wisely. If ri is the
distance between the centre of pixel i and the centre of the FOV,
then the model becomes

lðriÞ ¼ AþBexp
�r2

i

2ðs2
d50
þs2

RÞ
: ð16Þ

In Refs. [5,15,16] it is stated that the precision is independent of
the sample distance D, if D is small compared to the Gaussian
distribution’s width and if the number of counts per unit area is
kept constant. To ensure that D is small enough for all values of d50

and R, we use a fixed number of pixels M2 inside the 4Reff � 4Reff

region of interest. As a consequence, D will vary as a function of d50

and R according to

D2
¼
ð4Reff Þ

2

M2
¼

80

M2
ðs2

d50
þs2

RÞ, ð17Þ

where Eq. (15) is used. Since in this paper the recording time per
unit area is kept fixed, we must adjust the dwell time accordingly,

t¼ t0D2, ð18Þ

where t0, the recording time per unit area, is a fixed constant.
Evidently, in experimental practice a fixed sampling distance must
be chosen. Since a sampling distance small enough for a particular
radius will also be sufficiently small for larger radii, specimen
containing particles with different radii can be treated by setting
the sampling distance small enough for the smallest particle
present.
3. The Cramér–Rao lower bound

The Cramér–Rao lower bound (CRLB) is a lower bound on the
variance of any unbiased estimator. Suppose that an experimen-
talist wants to estimate the radius R of a particle. Then he can
choose between many estimators, such as least squares, least
(2010), doi:10.1016/j.ultramic.2010.11.025
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absolute values or maximum likelihood estimators. The precision
of an estimator is represented by the variance or the standard
deviation of the estimates. In general, different estimators will have
different precisions. However, the variance of an unbiased esti-
mator will never be lower than the CRLB. Fortunately, there exists a
class of estimators, including the maximum likelihood estimator,
that achieves this bound at least asymptotically, that is, for the
number of observations going to infinity, see [17] for details.

The pixel values in the projections are electron counts and are
recorded consecutively, they thus suffer from Poisson noise and are
uncorrelated. Therefore, the probability Pðg; hÞ of obtaining a set of
measurements g ¼ ðg1, . . . ,gM2 Þ

T , with parameters defined by the
vector h¼ ðR,A,BÞT , is given as

Pðg; hÞ ¼
YM2

i ¼ 1

lðriÞ
gi

gi!
expð�lðriÞÞ: ð19Þ

This function is called the joint probability density function of the
observations. It is a function of the observations g. The parameters h

to be estimated enter Pðg,hÞ via lðriÞ.
Next, the so-called Fisher information matrix F can be com-

puted. The ðu,vÞth element of F is defined as [4,5,17]

Fuv ¼�E
@2lnPðg; hÞ

@yu@yv

� �
, ð20Þ

where E denotes the expectation operator, and yu the uth element
of h. From Eqs. (19) and (20), it follows that

Fuv ¼
XM2

i ¼ 1

1

lðriÞ

@lðriÞ

@yu

@lðriÞ

@yv
: ð21Þ

If the pixel size D is small enough, and if the summation over the
4Reff � 4Reff square is replaced by an integral over a disc with the
same area, then F can be approximated by

Fu,vC
2p
D2

Z rFOV

0

1

lðrÞ
@lðrÞ
@yu

@lðrÞ
@yv

r dr, ð22Þ

where pr2
FOV ¼ ð4Reff Þ

2.
The Cramér–Rao inequality states that for any unbiased esti-

mator ĥ of h,

covðĥ,ĥÞZF�1, ð23Þ

where covðĥ,ĥÞ is the 3�3 covariance matrix of ĥ [18]. The matrix
F�1 is called the Cramér–Rao lower bound (CRLB) on the variance of
ĥ. Eq. (23) expresses that the difference between the left-hand and
right-hand member is positive semi-definite. A property of a
positive semi-definite matrix is that its diagonal elements cannot
be negative. Therefore, the diagonal elements of F�1 define lower
bounds on the variances of the elements of ĥ,

varðŷuÞZ ½F
�1
�uu: ð24Þ
4. Optimal experimental design

Our objective is to find the probe size d50 that ensures the
highest throughput. As we explain below, that probe size also
allows the most precise measurement of the particle radius R.

4.1. Optimality criterion

The precision with which R can be estimated, is represented by
the first diagonal element of the CRLB, i.e. by ½F�1�1,1, which we
denote by s2

CR. The variance s2
CR depends on d50 and R. Therefore,

minimizings2
CR with respect to d50 yields the probe size that allows

the most precise estimate of R for that particular value of R.
Please cite this article as: W. Van den Broek, et al., Ultramicroscopy
We now face the problem that, in general, R is not known a
priori—to the contrary, it is the parameter that we want to
estimate. We circumvent this problem with a Bayesian approach
[10], in which any prior information is summarized in a so-called
prior distribution p(R). That distribution expresses our uncertainty
about the exact value of R prior to the data collection. Rather than
minimizing s2

CR, the Bayesian approach minimizes the expected
value of s2

CR over the prior distribution. In this paper, we therefore
seek the probe size that minimizes

s2
B ¼

Z 1
0

s2
CRðRÞpðRÞ dR: ð25Þ

We refer to the probe size that minimizes s2
B as the Bayesian

optimal probe size dB,50. The Bayesian approach to optimal
experimental design for non-linear models is common practice,
for instance, in industrial experimentation, medical trials and
choice experiments in marketing [19,20].

The main challenge in the Bayesian approach is to specify a
suitable prior distribution p(R). It turns out that, for the present
problem, it is not hard to find a sensible prior distribution. In
Ref. [21], it is argued that the radii of ground particles typically
follow a Weibull distribution, which is well approximated by a log-
normal distribution. Often, particles produced with aerosol tech-
niques follow a log-normal distribution as well [22]. Therefore, it is
natural to choose a log-normal distribution for the prior p(R):

pðRÞ ¼
1ffiffiffiffiffiffi

2p
p

Rlns
exp �

ln2
ðR=rÞ

2ln2
ðsÞ

 !
, ð26Þ

where r is the geometric mean radius and s is the geometric
standard deviation, with r40 and s41 [22]. The geometric mean
and standard deviation are defined as

lnðrÞ ¼
Z 1

0
lnðRÞpðRÞ dR,

ln2
ðsÞ ¼

Z 1
0

ln2
ðR=rÞpðRÞ dR:

In the remainder of this paper the terms ‘‘mean’’ and ‘‘standard
deviation’’ refer to the geometric mean and geometric standard
deviation as defined here. For a log-normal distribution, the
interval ½r=s,rs� contains 68.3% of the total intensity, while the
interval ½r=s3,rs3� contains 99.7%. The log-normal distribution
becomes sharply peaked around r as s tends to 1. To avoid
numerical difficulties in our computations, we used 1.01 as the
smallest value for s.

As the integral in Eq. (25) cannot be solved analytically, we
approximate it numerically. This is customary in Bayesian optimal
experimental design [10,19,20]. We evaluate the integrand in 21
points in the interval ½r=s3,rs3�, these points are chosen to be
equidistant on the logarithmic scale. Integration is carried out by
approximating the integrand by a piecewise linear function.
Twenty-one points were sufficient for convergence.

4.2. Maximum throughput

The Bayesian optimal probe size dB,50 does not depend on the
recording time per unit area t0. This can be seen as follows. Eqs. (10)
and (18) show that the expectation model lðrÞ is proportional to t0.
Therefore, it follows from Eq. (21) that all elements of the Fisher
information matrix are proportional to t0 as well. As a result, s2

CR

ands2
B are inversely proportional to t0, which means that t0 affects

the absolute value of s2
B, but not the position of its minimum, i.e.

dB,50.
This is an important result since it means that the probe size

dB,50 that minimizes s2
B also maximizes the throughput. Suppose

one minimizes s2
B with respect to d50 while keeping t0 fixed. Then,
(2010), doi:10.1016/j.ultramic.2010.11.025
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one can tune t0 such thats2
BðdB,50Þ equals a prespecified variance on

the estimates of the radii. Sinces2
B attains a minimum in dB,50, other

probe sizes will not attain the required variance. If t0 would be
reduced, even s2

BðdB,50Þwould be too large. Hence, dB,50 is the probe
diameter at which s2

B attains the prespecified precision with the
lowest t0. Therefore, in the remainder of this paper we will look for
the probe minimizing s2

B whilst keeping in mind that this same
probe also maximizes throughput.
4.3. Analytical results

To gain physical insight and to give rules of thumb, we carry out
an analytical evaluation. The details are given in Appendix A. To
make the problem analytically tractable, the background term A in
Eq. (14) is neglected. This assumption is often justified, especially
for heavy element particles deposited on a light element support
since in HAADF STEM the image intensity approximately scales
with the atomic number raised to a power of typically 1.7 [14].
Ignoring the background term results in a model with only two
unknown parameters, h¼ ðR,BÞT . The Fisher information matrix F is
then given by

F¼

16pB

25D2

R2

s2
d50
þs2

R

4pR

5D2

4pR

5D2

2pðs2
d50
þs2

RÞ

BD2

0
BBBB@

1
CCCCA: ð27Þ

This matrix can be analytically inverted, yielding the following
expression for s2

CR:

s2
CR ¼ ½F

�1
�1,1 ¼

75

16p
ðs2

d50
þs2

RÞ
2

R5

1

g1

e

It0
: ð28Þ

This expression is used to compute s2
B in two limiting cases: (i) a

sharply peaked prior distribution p(R), and (ii) a very wide prior
distribution.

For a sharply peaked prior distribution, the optimal probe size
dB,50 is independent of the particles’ atomic number and of the
microscope settings. In that case, dB,50 linearly increases with the
mean particle size r,

dB,50 ¼ 1:49r, for narrow pðRÞ: ð29Þ

For a wide prior distribution, dB,50 is independent of the mean
radius of the particles and their atomic number, and depends only
on the microscope parameters. It is proportional to the geome-
trically limited probe size dg,50:

dB,50 ¼ 1:51dg,50, for broad pðRÞ: ð30Þ

This analytical approach reveals the functional dependence of
the optimal probe size on the microscope parameters and on the
specimen properties. It provides rules of thumb (Eqs. (29) and (30))
and proportionality constants that have the right order of magni-
tude. However, if exact values are needed, for distributions of
arbitrary width, numerical simulations like in Section 4.4 are
required.
4.4. Computational results

We carried out three simulation studies. First, we used a Monte
Carlo simulation to verify that the variance of the estimated radii
reaches s2

B. Second, we investigated the influence of the particle’s
atomic number and the detector geometry on the optimal probe
size. Third, we studied the relation between the mean of the
distribution of the radii and the optimal probe size.
Please cite this article as: W. Van den Broek, et al., Ultramicroscopy
4.4.1. Setting the model constants

The modeled systems are spheres of aluminium (Al), zinc (Zn)
and gold (Au). For each of these, we assume a log-normal
distribution for the radii with mean r of 2.5, 5.0 or 10 nm. The
particles are dispersed on a 10 nm thick uniform support of carbon
(C). The microscope parameters in the simulations are summarized
in Table 1.

The model constants g0, g1 and t0 are chosen such that they
reflect the physical properties of the specimen. They are set such
that the expected background count is 1 if one scans a particle with
a radius equal to the mean radius r, laying on a support with a
thickness t of 10 nm, using a probe of diameter d50 equal to
1:25dg,50, and with a dwell time t of 100 ms. The constants are
thus set by the following equations:

t0 ¼ t=D2, ð31Þ

g0 ¼
e

It , ð32Þ

and

g1 ¼ g0

3

5t

Zp

Zs

� �1:7

: ð33Þ

The equations have been derived as follows. Eq. (31) follows from
Eq. (18). Eq. (32) results from setting the A-term in Eq. (14) to (1).
Eq. (33) expresses that in HAADF STEM the intensity is proportional
to the projection of the specimen’s atomic number raised to a
power of typically 1.7. The ratio between the maximum of the
intensity of the projected particle, q(0), and the background, g0, is
thus qð0Þ=g0 ¼ ð2R=tÞðZp=ZsÞ

1:7, with Zp and Zs the atomic numbers
of the particle and the support, respectively.

4.4.2. Monte Carlo simulation

The CRLB is the lower bound on the variance of any unbiased
estimator. This means that in general the variance of an unbiased
estimator will be higher than the CRLB. Optimal experimental
design by minimizing the CRLB therefore only makes sense if there
exists an estimator of which the variance equals the CRLB. The
maximum likelihood (ML) estimator has this property at least
asymptotically, that is, for the number of observations going to
infinity. In this section we verify if this asymptotical property holds
for the finite sample sizes one is confined to in practice.

The ML method for estimating the parameters h is as follows.
The available observations g are substituted in the probability
density function in Eq. (19). Since the observations are numbers,
the resulting expression depends only on the elements of the
parameter vector h. The elements of h, the hypothetical true values,
are now considered to be variables. To express this, they are
replaced by t. The logarithm of the resulting function, lnPðg; tÞ, is
called the log-likelihood function. The ML-estimate ĥML of the
parameter vector h is defined as the vector that maximizes the log-
likelihood

ĥML ¼ argmax
t

lnPðg; tÞ, ð34Þ

i.e. it is the parameter vector that is most likely to have produced
the observed measurement vector g.

This is tested with a Monte Carlo (MC) simulation for Au
particles with radius r¼ 5 nm dispersed on a carbon support of
10 nm thickness. The settings for this experiment are given in the
last column of Table 2. The variance varðR̂MLÞ is calculated out of
100 estimates for 50 values of d50 between 0.173 and 30 nm. As can
be seen from Fig. 2 the experimental variance follows s2

CR over the
entire range of probe sizes.

The absolute values of sCR in Fig. 2 are quite low. This is because
an expected count of 1 in the background at the lowest probe
diameter will yield very high counts at larger probes because the
(2010), doi:10.1016/j.ultramic.2010.11.025
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Table 2
Values for the constants in the model for three different elements when the mean of

the radii equals 5.0 nm.

Al Zn Au

Zp 13 30 79

ðZp=ZsÞ
1:7 3.72 15.4 80.0

t0 (s m�2) 6.50�1014 6.50�1014 6.50�1014

g0 1.03�10�4 1.03 �10�4 1.03�10�4

g1 (m�1) 2.30�104 9.50�104 49.4�104
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Fig. 2. The solid line shows sCR as a function of d50. The circles give the standard

deviation on the ML-estimate, as found by a MC simulation. The variance on R̂ML

follows s2
CR over the entire range of probe sizes.
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Fig. 3. Relation between s, the width of p(R), and the Bayesian optimal probe size

dB,50. For a narrow p(R), dB,50 approximately equals the mean radius, while for broad

p(R) dB,50 is 1:25dg,50. The atomic number of the particles is only of minor

importance.

Table 3
Values for the constants in the model for three different means of the radii when the

spheres are made of Al.

r (nm) 2.5 5.0 10.0

t0 (s m�2) 25.9�1014 6.50�1014 1.63�1014

g0 1.03�10�4 1.03�10�4 1.03�10�4

g1 (m�1) 2.30�104 2.30�104 2.30�104
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probe intensity relates to the probe diameter according to a power
of 8/3, as follows from Eq. (5). However, here we are concerned with
showing that the variance of a ML-estimate equalss2

CR, irrespective
of the absolute values.

4.4.3. Influence of the atomic number

The relation between the standard deviation s of the prior
distribution p(R), and the Bayesian optimal probe size dB,50 is found
by minimizing s2

B with respect to d50 for values of s between 1.01
and 5. The mean particle radius r is set at 5.0 nm. In Fig. 3, the
results for Al, Zn and Au are displayed. The behavior of the curves
depends little on the atomic number of the particles. For sharply
peaked distributions (s¼ 1:01), dB,50 is approximately equal to the
mean particle radius: 5.22, 5.66 and 6.21 nm for Al, Zn and Au,
respectively. For very wide distributions, the optimal diameter is
constant and equal to 0.173 nm, or 1.25 times the geometrically
limited probe size dg,50. The input parameters are summarized
in Table 2.

These results are in qualitative correspondence with the approach
in Section 4.3, where the functional dependence of the optimal probe
size on the microscope parameters and on the specimen properties
has been revealed analytically. Moreover, the proportionality con-
stants found here, are in the same order of magnitude as those given
by the analytical rules of thumb. However, for exact values, for
distributions of arbitrary width, numerical simulations like in this
section are required.

4.4.4. Influence of the detector geometry

The results in Section 4.4.3 can be extended to treat the
influence of the detector geometry as well. In Ref. [14] it is shown
that the image intensity in HAADF STEM scales with the atomic
Please cite this article as: W. Van den Broek, et al., Ultramicroscopy
number raised to a power of n, where n depends on the detector’s
inner and outer radius. For a wide range of inner and outer radii, n
lays between 1.5 and 1.9. In Eq. (33) we have chosen n equal to the
mean of these two extremes, i.e. n¼ 1:7.

Section 4.4.3 shows that the optimal probe size depends little on
the atomic number of the particle. This is mathematically equiva-
lent with stating that it depends little on the exact value of
the factor ðZp=ZsÞ

1:7 in Eq. (33), since it is only here that the
Z-dependence is taken into account. Furthermore, it makes no
difference whether this factor changes due to a change in atomic
number, or a change in the exponent. Therefore, the optimal probe
size depends little on the detector geometry. Consequently, one
should choose the inner radius as small as possible to maximize the
electron count, but big enough to permit incoherent image forma-
tion. In the remainder of this paper n equals 1.7.
4.4.5. Influence of the mean radius

In this section we investigate the influence of the mean radius r
of the particles. The mean radii equal 2.5, 5.0 and 10.0 nm. In
Section 4.4.3, it was shown that the atomic number of the particles
is only of minor influence, so the Bayesian optimal probe size dB,50 is
determined for values of s between 1.01 and 6 for Al only. In
Table 3, the parameters are summarized. It can be seen that the
recording time per unit area, t0, is different for different mean radii,
making the absolute values of s2

B not comparable. However, as
pointed out in Section 4.2, dB,50 is independent of t0. The result is
depicted in Fig. 4. For sharply peaked p(R), the optimal probe size is
approximately equal to the particle radius, i.e. 2.52, 5.22 and
10.8 nm for r equal to 2.50, 5.00 and 10.0 nm, respectively. For
wide prior distributions p(R) (large s), the probe size converges to
(2010), doi:10.1016/j.ultramic.2010.11.025
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Fig. 4. Optimal probe sizes as a function ofs. For a narrow p(R), the Bayesian optimal

probe size dB,50 approximately equals the mean radius, while for broad p(R) dB,50 is

1:25dg,50. A comparison with Fig. 3 shows that the mean radius of p(R) is far more

important than the atomic number.

Table 4

Bayesian optimal probe sizes dB,50 (nm) for three different elements and three

different mean radii r. The standard deviation of p(R) is 1.01.

r (nm) 2.5 5.0 10.0

Al 2.52 5.22 10.8

Zn 2.72 5.66 11.8

Au 2.99 6.21 12.8
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0:173 nm¼ 1:25dg,50, and becomes independent of the actual
width of p(R).

A wide distribution p(R) is equivalent to having little prior
information about the sample. So by taking the limit of infinitely
broad distributions, we find the optimal probe size for an unknown
sample. This is reflected in the fact that then the optimal probe size
is proportional to dg,50, and thus depends on the microscope
parameters l and Cs only, and not on the mean radius or atomic
number of the particles.

In Table 4, it is confirmed that the atomic number only has a
minor influence on the optimal probe size. Values for dB,50 are listed
for Al, Zn and Au in the case of s¼ 1:01. In all cases dB,50 is
approximately equal to r.
5. Conclusion

We used Bayesian experimental design to determine the probe
size at which the throughput for measuring particle radii is
maximized. The dependence of the probe size on the current
determining the signal-to-noise ratio is explicitly taken into
account, using the algorithm given in Ref. [3]. In addition, we
provide a closed form approximation for this existing algorithm in
the case of high acceleration voltages. The particles are modeled as
spheres on a uniform support, and their radii are assumed to follow
a log-normal distribution.

In case of a narrow distribution of radii, the Bayesian optimal
probe size is proportional to the geometric mean radius. An
analytical investigation predicted no influence of the element’s
atomic number. The numerical calculations revealed a marginal
dependence on atomic number and detector geometry.
Please cite this article as: W. Van den Broek, et al., Ultramicroscopy
The case of broad radius distributions can be interpreted as
having no prior knowledge about the specimen. Analytical inves-
tigation showed that in that case the Bayesian optimal probe size is
proportional to only the geometrically limited probe size, and that
it is independent of the atomic number of the particles, or the mean
or width of the distribution of radii. Numerical computations
confirmed this and showed that the optimal probe size is inde-
pendent of detector geometry and equal to 1.25 times the
geometrically limited probe size.

The solution of the problem of throughput maximization out-
lined in this paper, is well suited for an adaptive approach. If an
unknown sample is inserted, one can start with measuring the
particle radii with a probe of 1.25 times the geometrically limited
probe. As one’s knowledge of the radius distribution gradually
increases, the probe size can be adapted continuously during the
measurements. Adaptive approaches have been successfully used
in experimental design for non-linear functions, see for example
Ref. [23]. Investigating the added value of such approaches is an
interesting avenue for future research.
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Appendix A. Analytical calculations

In this appendix we give analytical approximations for the
optimal probe diameter dB,50 in the limiting cases of (i) a sharply
peaked prior distribution p(R), and (ii) a very wide distribution.

A.1. Derivation of the Fisher information matrix and the CRLB

In order to derive the results in Eqs. (27) and (28), we assume
that the support’s intensity is negligible with respect to the
particle’s, i.e. A in Eq. (14) is assumed to be 0. In the second row
of Table 2 the ratios of these intensities are listed, and this indicates
that this assumption is reasonable, especially for particles with a
high atomic number. The model then becomes

lðrÞ ¼ Bexp
�r2

2ðs2
d50
þs2

RÞ
: ðA:1Þ

The dimension of the Fisher information matrix F now is 2�2
and h¼ ðR,BÞT . We use Eq. (22) to calculate the elements of F. Since a
Gaussian density function tends to zero quickly, the upper bound
rFOV of the integral in Eq. (22) is replaced by infinity, such that we
can use the equalityZ 1

0
xnexpð�ax2Þ dx¼

k!

2akþ1
, ðA:2Þ

for n¼ 2kþ1, k an integer and a40 [24]. The resulting Fisher
information matrix is

F¼

16pB

25D2

R2

s2
d50
þs2

R

4pR

5D2

4pR

5D2

2pðs2
d50
þs2

RÞ

BD2

0
BBBB@

1
CCCCA: ðA:3Þ
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Inverting F analytically yields

s2
CR ¼ ½F

�1�1,1 ¼
75

16p
ðs2

d50
þs2

RÞ
2

R5

1

g1

e

It0
: ðA:4Þ

We use this expression to compute s2
B with Eq. (25).

A.2. Optimal probe size dB,50 in two limiting cases

To calculate s2
B for a narrow p(R), we approximate p(R) in Eq.

(25) by a Dirac delta function centred on r such that the sift-
property leads to

s2
BC

75

16p
ðs2

d50
þs2

rÞ
2

r5

1

g1

e

It0
: ðA:5Þ

If Eq. (5) is used, then Eq. (A.5) is minimized if

@

@d50

ðs2
d50
þs2

rÞ
2

d8=3
50 �d8=3

g,50

2
4

3
5¼ 0, ðA:6Þ

or

1

16ln2
d8=3

50 �s
2
rd2=3

50 �
3

16ln2
d8=3

g,50 ¼ 0: ðA:7Þ

The last term on the left-hand side is negligible such that

dB,50C4

ffiffiffiffiffiffiffiffi
ln2

5

r
r, ðA:8Þ

¼ 1:49r: ðA:9Þ

To describe the behavior of s2
B for wide p(R), we note in Figs. 3

and 4 that the exact shape of p(R) is of no importance for wide prior
distributions, and we approximate p(R) by a uniform distribution
between r=s and rs. Evaluating Eq. (25) analytically and keeping
only the highest order term in s then yields

s2
BC

75

64

1

g1pr
e

t0I

s4
d50

r4
s3: ðA:10Þ

This is minimized if

@

@d50

s4
d50

d8=3
50 �d8=3

g,50

2
4

3
5¼ 0, ðA:11Þ
Please cite this article as: W. Van den Broek, et al., Ultramicroscopy
where again Eq. (5) is used. Solving Eq. (A.11) yields

dB,50 ¼ 33=8dg,50, ðA:12Þ

¼ 1:51dg,50: ðA:13Þ
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