
Feed Forward Initialization of Hysteretic Systems
camera ready version submitted at 30 Aug 2010 to 49th IEEE Conference on Decision and Control, December 15-17, 2010

Atlanta, Georgia USA.

P.J. van Bree, C.M.M. van Lierop, P.P.J. van den Bosch

Abstract— The paper analyzes a strategy to force step-
convergent dynamical hysteretic systems to a well-defined
output value using only feed forward. Due to the multi-valued
input-output relation of hysteresis, the relation between a
constant input and the corresponding steady-state output is
not unique. By using a well-designed input trajectory, based
on qualitative system behavior only, such a system can still
be forced to a predefined output value. Moreover, for reasons
of performance the initialization time has to be as short
as possible. The rate-independent Duhem and the multi-play
hysteresis models are used to illustrate, analyze and synthesize
an appropriate initializing input to obtain the required ou tput
without any sensor information. Dynamics are included using
the nonlinear feedback model with dead-zone.

I. INTRODUCTION

Feed forward control of dynamical hysteretic systems with
transient inputs is complicated since sufficiently accurate
predictive models are still lacking. However, with the helpof
feed forward initializing input trajectories such systemscan
still be forced to a unique output value. The design of such
trajectories is based on the qualitative behavior of hysteresis,
not on inverse modeling. Consequently, this allows for a
well-defined reset of the system. In automated processes such
a reset should take as less time as possible.

The physical systems considered are dynamical hysteretic
step-convergent systems as explained in section II. Examples
are piezoelectric and ferromagnetic systems. Feedback con-
trol of such systems is an option if the sensor information
is accurate enough. Hysteresis is then still a performance
limiting factor [1], [2], [3]. However, in a system where the
accuracy, bandwidth and/or noise properties of the sensor are
the bottlenecks, a feed forward approach is required.

An example is found in electron microscopy where con-
siderable hysteresis is present owing to the massive ferro-
magnetic yoke of the electromagnetic lenses [4]. Images
are recorded with a constant magnetic field. The reference
profile is non-periodic. Any deviation of this field larger
than 0.01% of the total magnetic field range results in
an unacceptable image quality. Magnetic field sensors are
currently not available in these machines. The search for such
a sensor is complicated by the challenging requirements:
a resolution ofµT versus an amplitude range of about a
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Tesla. And a time range that varies from10ms transition-
time between setpoints versus drift requirements over hours.
Next to that the sensor has to fit into the 3d lens geometry
without disturbing the electron optic behavior. Feedback
control based on microscopy-images is limited by the image
processing-rate and the limited range in which the image con-
tains enough information for control. Consequently, feedback
strategies are not trivial.

However, the input of the magnetic lens system (current)
can be measured and controlled very accurately. Since im-
ages in electron microscopy are recorded in steady state, the
reproducibility of fixed points in steady state using only feed
forward is under study. Reproducibility of the lens settings,
is essential for automated microscopy procedures to work
fast, accurate and without intervention of the operator.

In [4] an experimental start is made by testing with feed
forward initialization trajectories on a magnetic lens system
of a commercially available electron microscope. With the
use of these trajectories, the state of the lens system is
forced to a pre-defined value such that experiments are
made reproducible. Although the presented trajectories are
sufficiently accurate, its duration is rather long (up to 20s).
For scientific experiments this needs not be a problem.
However, for automated procedures in the industry less time
is beneficial.

With the use of models that are both hysteretic and
dynamic, the relevant parameters for optimization of ini-
tialization trajectories are obtained. Section II starts with
the required definitions. In the case of quasi-static inputs
the hysteresis effect can be considered independent from
dynamics. The Duhem and multi-play model are taken as
examples to provide the initialization requirements for this
situation in section III. The approach for the dynamical
situation is introduced by the nonlinear feedback model with
dead-zone [5] in section IV-A.

II. DEFINITIONS

A. Convergence

Given a (non-)linear stable, time invariant, and controllable
dynamical system:

ẋ(t) =F (x(t), u(t), x0), x0 = x(t0)

y(t) =G(x(t), u(t))
(1)

Where u(t) ∈ R
m, x(t) ∈ R

n, y(t) ∈ R
l represent the

input, the state and the output. The system (1) fulfills the
step convergence property [6], which implies that the state



converges to a constantx̄ for all combinations(ū, x0).

x̄ =argx {F (x, ū, x0) = 0}

ȳ =G(x̄, ū)
(2)

If the difference between two trajectories starting from
two different initial conditionsx0, x0 + δ vanishes for all
perturbationsδ ∈ R

n, the system has thefading memory
property, [7, p.74]:

lim
t→∞

{F (x(t), u(t), x0)− F (x(t), u(t), x0 + δ)} = 0 (3)

Condition (3) implies, that the steady state valueȳ only
depends on the applied constant inputū and not on the
initial condition. In case of feed forward setpoint regulation
of a system that satisfies (3), any fixed pointȳ(ū) can be
reproduced by applying the constant input̄u at any timet0
for any initial conditionx0.

The time it takes for the output of the system to converge
to within a distanceε1 of the limit value ȳ from a specific
x(t0) and ū is defined as convergence timetc:

tc = min
t

{t− t0} ,

s.t. |y(τ) − ȳ| ≤ ε1, ∀τ ≥ t ≥ t0
(4)

If both the initial conditions and the input are in a bounded
set,x0 ∈ X , ū ∈ [umin, umax] = U an upper bound on
the convergence time is defined as:

t̂c = max
x0∈X ,ū∈U

tc(ū, x0) (5)

B. Systems with Hysteresis

The notion of step-convergence (2) is introduced in [6]
for dynamical systems with hysteresis. The fading memory
property (3) does, however, not hold for hysteretic systems.
The steady state output valueȳ is then a function of both the
constant input̄u and the initial conditionx0. Consequently,
a fixed pointȳ(ū) can not be reproduced by applyinḡu for
t̂c seconds. To study the possibility of reproducing a fixed
point, the convergence of nonlinear dynamical systems with
hysteresis is studied for a wider class of inputs.

C. Periodic Trajectories

Consider a class of periodic inputsuT defined as:

uT (t) = uT (t+kT ) = a0+a1Φ(2πt/T + θ), k ∈ N (6)

uT is defined by functionΦ, ||Φ||∞ = 1, periodT , phase
θ, offset a0 and peak to peak amplitude2a1. The response
to uT is periodic if

lim
t→∞

(y(t+mΓ, uT , x0)−y(t, uT , x0)) = 0, ∀m ∈ N (7)

When the smallest possibleΓ for which (7) holds equals
T , the period of the output is equal to the period of the
source,yΓ = yT .

If (7) holds for alluT , x0, the state of system (1) converges
to a periodic trajectory, independent ofx0 and independent
of the parameters ofuT . The trajectory(uT (t), yT (t)) is
then a closed orbit and is further referred to asφ(uT (t), x0).
This orbit is considered as a continuous periodic set

of points irrespective of its phase. Therefore, two orbits
φ1(uT (t1), x0), φ2(uT (t2), x0) are considered being equal
if there exists a time shift0 ≤ |τ | ≤ T such that the set
of points described by both is the same and is evaluated in
the same order:

{yT (t1, uT (t1), x0)− yT (t2 + τ, uT (t2 + τ), x0)} = 0 (8)

If the system converges to the same orbit for all perturba-
tions δ ∈ R on x0 thenφ(uT (t)) is only determined by the
input and is independent ofx0:

φ(uT (t), x0) = φ(uT (t), x0 + δ), ∀uT (t), x0, δ (9)

In [8] the terminology(non-) local memory is introduced
which is widely used in literature about hysteresis. Although
the formulation in this paper is different, any hysteretic
system for which (9) holds is said to have local memory.
Otherwise it has non-local memory.

If the orbit depends on the initial condition, it is still
possible that for a limited setX and specific parameters of
uT a unique orbit is obtained. A periodic input trajectory that
forces the system into a unique closed orbitφ(uT ), ∀x0 ∈
X is called aninitialization trajectory, uini.

III. QUASI-STATIC BEHAVIOR

An important subset of hysteresis models is the class
of rate-independent models. A system is rate independent
if the set of points connected by(u(t), y(t)) is the same
for any time scaling on the input. Consider a continuous
increasing functionη : [0, T ] → [0, T ] satisfyingη(0) = 0
andη(T ) = T is an admissible time transformation [2]. For
a given piecewise-monotone inputu the systemE is rate-
independent if:

x(η(t)) = E(u(t), x0)(η(t)) = E(η(u(t)), x0) (10)

This property is often illustrated by the characteristic that
the state only depends on the extremums in the input (the
points whereu̇ changes sign, often called the amplitude
trajectory), [8].

For dynamical systems with hysteresis, a rate-independent
approximation can be made forquasi-static inputs. Variation
of the signals is then so slow that the influence of the
dynamics of the system can be neglected. Every point of
the trajectory(u, y) can then be considered a fixed point
(ū, ȳ).

Two examples of initialization trajectories for rate-
independent hysteresis models will be given as an illustra-
tion.

A. Duhem Hysteresis Model

1) Model Description: As an example an implementation
of a Duhem model is considered, [9],[10]:

ẋ =h1|u̇| [h2u− x] + h3u̇, x(t0) = x0

=u̇ (h1sign(u̇) [h2u− x] + h3)

y =x

(11)



The three parameters are all constantsh1 > 0, 0 < h3 <
h2 < 2h3. Equation (11) can be rewritten such that it only
depends on sign(u̇) and not onu̇ itself:

dx

du
= h1sign(u̇) [h2u− x] + h3, x(t0) = x0 (12)

The set of possible initial conditionsx0 ∈ X is bounded
by xllim = (h2u−

h2−h3

h1

) ≤ x0 ≤ xulim = (h2u+
h2−h3

h1

).
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Fig. 1. Simulation of the Duhem model (12) for different initial conditions.
a. The input-output plot(u, y). The dashed line shows the closed orbit
φ(uT ). b. The response foruT = sin(2π/T ), T = 10s in the time-
domain. c. The difference between trajectories|y1(t) − y2(t)| on a
logarithmic scale.

2) Available initialization trajectories: Differential equa-
tion (12) becomes linear for piecewise monotonically in-
creasing or monotonically decreasing input segments, since
sign(u̇) is then equal to either±1. The analytic solution is
formulated as follows:

y = h2u (13a)

− sign(u̇)
h2 − h3

h1

(1− exp (−sign(u̇)h1(u − u0)))

(13b)

+ (x0 − h2u0) exp (−sign(u̇)h1(u− u0)) (13c)

The main term of the response is a line (13a). The larger
the amplitude of the increasing (or decreasing) segment
(u−u0)) (13b), the morey approaches the lower asymptote
xllim. The third component (13c), takes into account the
initial condition which vanishes exponentially.

The difference between two trajectories starting from
different initial conditions,x1(t0) = x01, x2(t0) = x02

subject to the same inputu is:

|y1 − y2| = |x01 − x02| exp (−sign(u̇)h1(u↑ − u0)) (14)

The larger the magnitude|u − u0|, the smaller the differ-
ence betweeny1 and y2 is. From analysis of the analytic
expression for periodic inputs it can be derived (as is done
in [10]) that the solution converges to a periodic orbitφ that
is independent ofx0. The position of the resulting orbit is
always around the liney = h1u. All possible uT (6) can
serve as initializing trajectories. This is a general property
of models with local memory. From the notion of a quasi-
static input and a rate-independent model structure, it makes

no sense to express the rate of convergence in time. However,
from the analysis it follows that the higher the amplitudea1,
the lower the number of periods that is required to initialize
the model to a certain degree. The period timeT has no
influence on the resulting orbit, where the offseta0 controls
its position. The number and sequence of extremums in the
functionΦ influences the set of points described by the orbit.
The phaseθ is such that the trajectory starts atu0.

3) Example: As an illustration, Fig. 1 shows the response
to uT = sin(2π/T ) plot for three different initial conditions.
All three converge toφ(uT ). The difference|y1−y2| in time
is shown on a logarithmic scale in subplotc. Note that at the
points whereu̇ changes sign, convergence towardsφ(uT ) is
slower.

B. Multi-play Hysteresis Model

1) Model Description: Another common way of modeling
rate-independent hysteresis is a multi-play approach consist-
ing of a parallel connection ofN weighted play (or backlash)
operatorsp(u, x0,∆) where2∆ is the width of the play (e.g.
[11], [12]). This model is also called the Prandtl-Ishlinskii
model of which an extended analysis is presented in [13],
[14] [15] .
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Fig. 2. Illustration of the multi-play hysteresis model(15) with ∆1 =
0.25,∆2 = 0.5,∆3 = 0.75, w1,2,3 = 1, x01 = x02 = x03 = 0,
uT = 0.9 sin(πt).

xi =p(u, x0i,∆i) = max(min(x0i, u+∆i), u−∆i),

y =P (u, x0,∆) =
1

N

N
∑

i=1

wip(u, x0i,∆i),

∆i ≥ 0, wi ≥ 0
(15)

2) Available Initialization Trajectories: In this section it
will be shown that a multi-play model with an arbitrary set
of ∆’s can be initialized by a sequence that contains both the
maximum and minimum input. Since this model contains a
parallel connection there is no interaction among the different
operators. To establish the parameter conditions of a periodic
input (6), such that it is an initialization trajectory of the
multi-play model, it is sufficient to study the properties for
a single element.

The play operator is defined symmetric around the origin.
The setX is bounded byu −∆ ≤ x0 ≤ u + ∆ for |u| ≤
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Fig. 3. Illustration of two play operatorsa.um ≥ ∆, b.um < ∆

um. Fig. 3 representsp(u, x0,∆) for um ≥ ∆ (a.) and for
um < ∆ (b.).

In each case, three regions (I, II, III) are indicated. For
both casesa and b it holds that if (x0, u0) ∈ I then x
stays inI, ∀|u| ≤ um. Considerp1(u, x01 ∈ II,∆1), and
p2(u, x02 ∈ III,∆2). For ∆ < um it follows from (15)
that uini = [u0, um, um − 2∆] or uini = [u0,−um,−um +
2∆] is the minimal sequence of points that initializes both
p1 and p2. For the situation thatum ≤ ∆ (caseb) the
initialization sequences becomesuini = [u0, um,−um] or
uini = [u0,−um, um].

This result implies that only a trajectory containing both
um and−um initializes the multi-play model. However, a
single period is sufficient. This condition is known as the
1st-order wiping out property.

The resulting orbitφ is the sum of the orbits of the
individual elements. IfmaxuT = um, minuT = −um and
Φ has only 1 maximum and 1 minimum, then for casea
φi is the boundary of regionI. For caseb φ is a line with
offsetx0 if x0 ∈ I, offsetum if x0 ∈ III and offset−um if
x0 ∈ II. The phaseθ is again such that the trajectory starts
at u0.

IV. DYNAMICAL HYSTERETIC SYSTEMS

In this section the combination of dynamics and hystere-
sis is introduced, which results in so-calledrate-dependent
models of hysteresis.

A. Nonlinear Feedback Model with Dead-zone

The rate-independent play operator (15) is a nonlinear el-
ement with memory, which makes the analysis of (feedback)
systems with such an element complicated. A possible way
to avoid this, is to introduce similar behavior using building
blocks of linear dynamical systems and (sector bounded)
static nonlinearities. In [5] this class is called nonlinear
feedback models of hysteresis. An example of a framework
for analysis is found in [16].

1) Model Description: The general block scheme is
shown in Fig. 4 a whereΘ represents the static nonlinearity.
A subset that approaches the behavior of play models for
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Fig. 4. Block diagram of a nonlinear feedback model. Left a. the general
version with static nonlinearityΘ. Right b. The specific implementation
with dead-zone analyzed in this paper.
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quasi-static inputs [11] is the nonlinear feedback model
where the nonlinearityΘ is a dead-zone:

w = d2∆(v) = max(min(0, v +∆), v −∆) (16)

Here,2∆ ≥ 0 is the width of the dead-zone. In a similar
way as with the multi-play model, a parallel connection of
multiple sections of nonlinear feedback models with a dead-
zone can be defined, [11]:

ẋi(t) =Axi(t) +Bd2∆i
(u(t)− yi(t)), xi(t0) = x0i

yi(t) =Cxi

z(t) =
1

N

N
∑

i=1

wiyi(t), wi ≥ 0

(17)

A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n, with A,B,C minimal

and given in the controllable canonical form. Each section
can have its own∆. z(t) is the output of the weighted
sections. A single section is shown in Fig. 4b. The specific
structure of a section approaches the behavior of a single play
operator for quasi-static excitation. Therefore,∆ for the play
operator and for the nonlinear feedback model are described
by the same symbol. The memory of the play operator is now
captured by the memory of the dynamical systemG(s). For
the case∆ = 0, the system (17) is a linear system denoted
by H(s) = (G+ I)−1G.

For sake of clarity, one of the most simplified examples is
taken.G(s) represents a gain and an integrator,G(s) = α

s

in (17) A = 0, B = α,C = 1. The transfer function of the
linear versionH(s) = α

s+α
with ∆ = 0 is a first order low-

pass filter of which the output in the time-domain is denoted
with yH(t).
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Fig. 5 shows the convergence to an orbit starting from
initial condition x0 = 0 for three different sine wave
frequencies. Due to the low-pass nature of the system, the
area enclosed by the orbit displayed in the input output
plot gets smaller with higher frequency. For quasi-static
signals the boundary of areaI of a single play operator is
approached.

2) Stepwise Initialization: First the step response of a
single section of a nonlinear feedback model with dead-zone
is considered. The maximum magnitude of an applied step
is 2um. If, as in (4), an allowed deviation from the steady
state output valuēy is defined asε1, then in worst case it
takes the linear systemtH seconds to converge:

yH(t) =2um(1− e−αt)

|yH − ȳH | =2um(e−αt) ≤ ε1

⇒ tH ≥
1

α
ln

(

2um

ε1

)
(18)

u_0 u_m-u_m

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

u

y

∆=0.7 

−1 0 1
u

 

 
∆=0.7 

u_0 u_m-u_m

I
II
III
y
1

y
2

y
3

Fig. 8. Input-output plot for the simulation of Fig. 6. The trajectories start
at u0, [x01, x02, x03]. They end atue, ye. Eachx0 starts in a different
region (I, II, III)

The step response of a system with∆ > 0 can be rewritten
as the step-response ofH with magnitudeu−∆ for u−y >
∆ or u +∆ for u − y < ∆. This magnitude is always less
than2um and, therefore, the convergence time for the linear
system is the upper bound for systems with all possible dead-
zone widths. For|v| = |u − y| < ∆ the system’s response
remains constant. Note that in this modelx0 = y0.

From the analysis of the multiplay a stepwise initialization
profile was established:u0 → um → −um. Since, the
nonlinear feedback model approaches the multiplay model
for quasi-static inputs the sequence will be successful if
steady state is reached in between switching from one value
to another. From the upper bound for a single step, the
convergence time for this initialization approach is:

tc = 2tH =
2

α
ln

(

2um

ε1

)

(19)

The left columns of Fig. 6, 7 and 8 shows the response of
the model to the sequence for 3 different initial conditions.
Since the first applied step is towardsum, all trajectories
starting from regionsI and II are initialized. However,
the status of trajectories starting from regionIII remains
constant. In Fig. 7 the difference between the trajectories
starting in the different regions are displayed along with the
upper bound provided by the linear system.

At the moment that the linear system has converged for the
step towards−um, all possible trajectories for systems with
um ≥ ∆ are initialized to the point(u, y) = (−um,−um +
∆). Now for further quasi-static variation the resulting orbit
is again the border of regionI. Higher frequencies are dealt
with next.

3) Square Wave Initialization: If the time between the
initialization steps is less thantH , initialization is not
guaranteed within a single period. This is the case for a
square wave input in the formuT = umΦ(2πt/T + θ) =
umsign{sin(2πt/T + θ)}, with T/2 < tH .

However, by the use of multiple periods a unique orbit can
still be reached. For the case∆ < um this is actually bene-
ficial, since depending on the exact value ofx0, trajectories
starting fromII andIII can be initialized at the same time



(um − y > ∆ and−um − y < −∆). For ∆ ≥ um multiple
periods and a decreasedT result in equal total duration as
with the single period case.

This scenario is presented in the right columns of Fig. 6, 7,
8. The periodic orbit is reached sooner than in the stepwise
case. However, if the source is switched to a constant value,
in order to obtain a unique steady state output value, the
system needs time to converge again (Fig. 7).

4) High Frequent Initialization: Despite the fact that the
overall transfer fromu to y has a low-pass behavior, there is
no limit on 1/T concerning initialization. From the structure
of the model, high frequencies in the input will directly enter
the dead-zonew = d2∆(u − y). For a very short time (the
time that v ≥ ∆) the system will respond. However, due
to the high frequency the sum of all these moments is what
initializes the system. A very high frequent excitation is thus
capable of initializing the nonlinear feedback model with
dead-zone.

V. DISCUSSION

A. Resulting Initialization Trajectories

Initialization of the Duhem model requires multiple pe-
riods. For two trajectories starting from different initial
conditions the difference shrinks piecewise exponentially.
However, the rate of convergence is slowed down by change
of sign(u̇). This supports the use of the maximum amplitude
for initialization.

On the other hand, the multi-play model can be initialized
with a single sequence containing both the maximum and
minimum input. The same holds for the nonlinear feedback
model with dead-zone. Multiple periods are only required
if the time in between the steps is too short to converge
within the required error bound. Multiple periods and a
smaller period time is beneficial if∆ < um, since trajectories
starting in regionII andIII can converge at the same time.

All models agree on two points: Initialization trajectories
should have maximum amplitude, and the initialization se-
quence should contain both the maximum and the minimum.

B. Model Artifacts

The properties of the initialization trajectories also reveal
model artifacts. For the Duhem model this is the possibility
to initialize the system using periodic signals with arbitrary
small amplitude. For a large class of physical systems con-
taining magnetic hysteresis this property does not correspond
to the observed behavior, e.g. [17].

On the other hand, the state of nonlinear feedback models
can be reset by signals with arbitrary high frequency. This
will not be valid for e.g. spatially distributed ferromagnetic
systems which deal with a limited skin depth for high
frequent magnetic fields; It is not possible to initialize
ferromagnetic objects withdm3-volumes using a ultra-high
frequent source with limited amplitude which results in skin
depths<< dm.

VI. CONCLUSIONS

The notion of feed forward initialization for dynami-
cal hysteretic systems is presented. The systems are step-
convergent; the output converges to a constant for every
constant input. Due to hysteresis the steady state value for
a specific constant input depends on the initial conditions,
instead of only the input as is the case with fading memory
systems.

For different hysteresis models the properties of periodic
input signals are determined such that they force the system
into a unique orbit irrespective of the initial conditions.Once
on this orbit the influence of initial conditions is erased.

For quasi-static inputs the rate-independent Duhem and
multi-play hysteresis models are analyzed. Dynamic effects
are included by the hysteretic nonlinear feedback model
with dead-zone. Analysis using well established frameworks
is possible since this model-class consists only of linear
dynamics interconnected with static nonlinearities.

All models agree on the points that an initialization tra-
jectory should have maximum amplitude and should contain
at least both the maximum and the minimum input. For
dynamical hysteretic systems, multiple periods are required
if period time of the excitation to small compared to the
model’s time-constants.
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