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Abstract— The paper analyzes a strategy to force step- Tesla. And a time range that varies froims transition-
convergent dynamical hysteretic systems to a well-defined time between setpoints versus drift requirements oversour
output value using only feed forward. Due to the multi-valuel Next to that the sensor has to fit into the 3d lens geometry

input-output relation of hysteresis, the relation between a . . . . .
constant input and the corresponding steady-state outputsi without disturbing the electron optic behavior. Feedback

not unique. By using a well-designed input trajectory, basé control based on microscopy-images is limited by the image
on qualitative system behavior only, such a system can still processing-rate and the limited range in which the image con
be forced to a predefined output value. Moreover, for reasons  tains enough information for control. Consequently, fesako

of perfqrmance the |rj|t|allzat|on time has to be as short strategies are not trivial.

as possible. The rate-independent Duhem and the multi-play . .
hysteresis models are used to illustrate, analyze and syrekize However, the input of the magnetic lens system (current)
an appropriate initializing input to obtain the required ou tput ~ can be measured and controlled very accurately. Since im-

without any sensor information. Dynamics are included usily  ages in electron microscopy are recorded in steady stae, th

the nonlinear feedback model with dead-zone. reproducibility of fixed points in steady state using onlgde
forward is under study. Reproducibility of the lens setsing
I. INTRODUCTION is essential for automated microscopy procedures to work

Feed forward control of dynamical hysteretic systems witltuaSt’ accurate a”‘?' without |nte_rvent|on of the (_JperaFor.
transient inputs is complicated since sufficiently aceurat In [4] an experimental start is made by testing with feed

predictive models are still lacking. However, with the hefp forward |n|t|aI|z_at|on trayectones on a mggnet'c Ienstgm
feed forward initializing input trajectories such systeoas of a commercially available electron microscope. With the

still be forced to a unique output value. The design of sucSe ©f these trajectories, the state of the lens system is
trajectories is based on the qualitative behavior of hgsigr 10rced to a pre-defined value such that experiments are
not on inverse modeling. Consequently, this allows for J12de reproducible. Although the presented trajectories ar

well-defined reset of the system. In automated processés S&gmme.ntly.gccurate,. Its duratlpn is rather long (up 10)20s

a reset should take as less time as possible. For scientific experiments this needs not be a problem.

The physical systems considered are dynamical hystereﬁ'@weve_r’ _for automated procedures in the industry less time
step-convergent systems as explained in section II. E>mnplIS bgneﬂual. .
are piezoelectric and ferromagnetic systems. Feedback conW'th, the use of models that are bOth hystgretlc {md
trol of such systems is an option if the sensor informatioﬂynam'c' the_ rele\{ant paramet.ers for opt|m|zat|on ,Of ni-
is accurate enough. Hysteresis is then still a performangél'zat'on trajectpr_u_as are obtained. Section I_l sta_rtﬂ;hw
limiting factor [1], [2], [3]. However, in a system where the the required definitions. In the case of quasi-static inputs

accuracy, bandwidth and/or noise properties of the semsor 4"€ hysteresis effect can be considered independent from
the bottlenecks, a feed forward approach is required. dynamics. The Duhem and multi-play model are taken as

An example is found in electron microscopy where COn(_axamples to provide the initialization requirements fais th
%iguation in section Ill. The approach for the dynamical

siderable hysteresis is present owing to the massive ferr : Lation is introduced by th ' teedback moddh wit
magnetic yoke of the electromagnetic lenses [4]. Imag uation 1s introduced by the nonlinear feedback modeahwi
gad-zone [5] in section IV-A.

are recorded with a constant magnetic field. The referen
profile is non-periodic. Any deviation of this field larger
than 0.01% of the total magnetic field range results in
an unacceptable image quality. Magnetic field sensors age Convergence
currently not available in these machines. The search fdr su

a sensor is complicated by the challenging requirements: X
a resolution ofuT versus an amplitude range of about glynamical system:

z(t) =F(x(t),u(t),zo), xo = x(to)

1. DEFINITIONS

Given a (non-)linear stable, time invariant, and contiuba

This work is carried out as part of the Condor project, a mtojgder the (1)
supervision of the Embedded Systems Institute (ESI) antdl Rl company y(t) =G(x(t), u(t))
as the industrial partner. This project is partially supgdrby the Dutch
Ministry of Economic Affairs under the BSIK program. Where u(t) e R™, x(t) e R, y(t) c R! represent the

P.J. van Bree, C.M.M. van Lierop and P.P.J. van den Bosch dhethe . .
Department of Electrical Engineering, Eindhoven Univgrsif Technology. Input, the state and the output. The system (1) fulfills the

p.j.v.bree@ue. nl step convergence property [6], which implies that the state



converges to a constamtfor all combinations(a, x). of points irrespective of its phase. Therefore, two orbits
o1 (ur(t1), o), p2(ur(te), zo) are considered being equal
B i (2) if there exists a time shifo < |7| < T such that the set
y=G(z,u) of points described by both is the same and is evaluated in
If the difference between two trajectories starting fronthe same order:
two different initial conditionszg,zg + d vanishes for all B
perturbationss € R”, the system has thtading memory {yr(ty, ur(tr), wo) — yr(tz + 7 ur(tz + 7),20)} = 0 (8)
property, [7, p.74]: If the system converges to the same orbit for all perturba-

lim {F(2(t), u(t), 7o) — F((t),u(t),z0 +8)} =0 (3) Fionsd € R on o then ¢(ur(t)) is only determined by the
t—o0 input and is independent afy:

T =arg, {F(x,u,xz) = 0}

Condition (3) implies, that the steady state vajuenly
depends on the applied constant inputand not on the ¢ur(t), xo) = Plur(t),zo +96), Vur(t),z0,6  (9)
initial condition. In case of feed forward setpoint regidat
of a system that satisfies (3), any fixed poiritz) can be
reproduced by applying the constant input at any timet,
for any initial conditionz.

The time it takes for the output of the system to converg
to within a distance:; of the limit valuey from a specific
x(tp) and @ is defined as convergence time

In [8] the terminology(non-) local memory is introduced
which is widely used in literature about hysteresis. Althlou
the formulation in this paper is different, any hysteretic
system for which (9) holds is said to have local memory.
Btherwise it has non-local memory.

If the orbit depends on the initial condition, it is still
possible that for a limited set’ and specific parameters of
te =min {t —to}, ur a unique orbit is obtained. A periodic input trajectory that
! (4)  forces the system into a unique closed orgit.r), Vo €

X is called aninitialization trajectory, w;;.
If both the initial conditions and the input are in a bounded

stly(t) —yl<e, Vr>t>tg

set,zg € X, U € [Umin, Umaz] = U an upper bound on I1l. QUASI-STATIC BEHAVIOR
the convergence time is defined as: An important subset of hysteresis models is the class
fo= max t(a,z0) (5) of rate-independent models. A system is rate independent
zoe X ucld if the set of points connected bfu(t),y(t)) is the same
B. Systems with Hysteresis for any time scaling on the input. Consider a continuous

The notion of step-convergence (2) is introduced in [6 . T . i
for dynamical systems with hysteresis. The fading memo nd.n(T) . r IS an adm|SS|bIe_ time transformathn [2]. For
given piecewise-monotone inputthe systemE is rate-

property (3) does, however, not hold for hysteretic system "
The steady state output valges then a function of both the independent if.
constant inputz and the initial conditiontg. Consequently, 2(n(t)) = E(u(t), z0)(n(t)) = E(n(u(t)), zo) (10)
a fixed pointg(a) can not be reproduced by applyimgfor
t. seconds. To study the possibility of reproducing a fixed This property is often illustrated by the characteristiatth
point, the convergence of nonlinear dynamical systems witihe state only depends on the extremums in the input (the
hysteresis is studied for a wider class of inputs. points wherew changes sign, often called the amplitude
. . . trajectory), [8].
C. Periodic Trajectories For dynamical systems with hysteresis, a rate-independent
Consider a class of periodic inputs- defined as: approximation can be made fquasi-static inputs. Variation
_ _ of the signals is then so slow that the influence of the
ur(t) =ur(t+kT) = ao+a®Q2mt/T+6), keN (6) dynamics of the system can be neglected. Every point of
ur is defined by functiord, ||®||., = 1, periodT’, phase the trajectory(u,y) can then be considered a fixed point
0, offseta, and peak to peak amplitudk;. The response (w,y).
to ur is periodic if Two examples of initialization trajectories for rate-
tlggo(y(t+mF,uT,xo)—y(t,uT,xo)) —0, YmeN (7) L?odnependent hysteresis models will be given as an illustra-

When the smallest possiblé for which (7) holds equals .
T, the period of the output is equal to the period of théA" Duhem Hysteresis Model
sourceyr = yr. 1) Model Description: As an example an implementation
If (7) holds for allur, ¢, the state of system (1) convergesof a Duhem model is considered, [9],[10]:
to a periodic trajectory, independent &f and independent . . .
of the parameters ofiy. The trajectory(ur(t), yr(t)) is & =ha [ Uwu — @]+ hsti, - 2(to) = 20
then a closed orbit and is further referred togéar (t), zo). =t (hysign(u) [hou — ] + h3) (11)
This orbit is considered as a continuous periodic set Yy =x

'gcreasing functiom : [0, 7] — [0, 7] satisfyingn(0) = 0



The three parameters are all constalis> 0,0 < hs < no sense to express the rate of convergence in time. However,
ha < 2hs3. Equation (11) can be rewritten such that it onlyfrom the analysis it follows that the higher the amplitude
depends on sigr) and not onu itself: the lower the number of periods that is required to initializ
" o the model to a certain degree. The period tiffichas no
e hisign(i) [hou — a] + hs,  x(to) =20  (12) influence on the resulting orbit, where the offagtcontrols
its position. The number and sequence of extremums in the
function® influences the set of points described by the orbit.
The phaséd is such that the trajectory starts @j.
ah =Th =1h,06 N 3) Example: As an illustration, Fig. 1 shows the response
AR to up = sin(27/T') plot for three different initial conditions.
05 N oy All three converge ta(ur). The differencey; — 2| in time
A is shown on a logarithmic scale in subptotNote that at the
Do WA v points wherei: changes sign, convergence towadds ) is
R T L slower.

The set of possible initial conditions, € X’ is bounded
bY Ziim = (hou — hzh_lhB) < x0 < Tylim = (hou+ hz_lh?’)-

h
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10" [ B. Multi-play Hysteresis Model

PN 1) Model Description: Another common way of modeling

rate-independent hysteresis is a multi-play approachisins

; / , b NG ing of a parallel connection a¥ weighted play (or backlash)

T T o 10 20 30 operator®(u, xo, A) where2A is the width of the play (e.g.
‘ e [11], [12]). This model is also called the Prandtl-Ishliisk

model of which an extended analysis is presented in [13],
Fig. 1. Simulation of the Duhem model (12) for different iaitconditions. [14] [15]

a. The input-output plo{w,y). The dashed line shows the closed orbit
¢(ur). b. The response four = sin(27/T),T = 10s in the time-
domain. c. The difference between trajectorigs (t) — y2(¢)| on a a b.

logarithmic scale.
—

2) Available initialization trajectories:. Differential equa- 05 =%, 05
tion (12) becomes linear for piecewise monotonically in- — %
creasing or monotonically decreasing input segmentsesing  ° > 0
sign(a) is then equal to eithet-1. The analytic solution is
formulated as follows:

-0.5 -0.5

y = hau (13a) - 0 1 o5 o0 o5 1

. . ha—h N
= sign(ii) =— (1 — exp (~sign(i)ha (u — uo)))
1
(13b) Fig. 2. lllustration of the multi-play hysteresis model{1®ith A; =
0.25,A2 = 0.5,A3 = 0.75, wi23 =1, ®o1 = zo2 = To3 = 0,

+ (zo — haug) exp (—sign(a)hy (u — ugp)) (13c) up = 0.9sin(mt).

The main term of the response is a line (13a). The larger
the amplitude of the increasing (or decreasing) segment
(u—wup)) (13b), the morey approaches the lower asymptote .
ZTiim- The third component (13c), takes into account the 1
initial condition which vanishes exponentially. y=Pu,z0,8) =% Z wip(u, Zoi, Ai),

The difference between two trajectories starting from =t
different initial conditions,x(t9) = xo1,22(to) = o2
subject to the same inputis:

x; =p(u, roi, A;) = max(min(zo;, u + A;), u — A;),

Ay >0,w; >0
(15)

S 2) Available Initialization Trajectories: In this section it

1 = 2l = [wor = oz exp (=sign(@)hn (ur —uo))  (14) i’ shown that a multi-play model with an arbitrary set
The larger the magnitudg: — uo|, the smaller the differ- of A’s can be initialized by a sequence that contains both the
ence betweeny; and gy, is. From analysis of the analytic maximum and minimum input. Since this model contains a
expression for periodic inputs it can be derived (as is dorgarallel connection there is no interaction among the dfie
in [10]) that the solution converges to a periodic obithat operators. To establish the parameter conditions of a gierio
is independent of:y. The position of the resulting orbit is input (6), such that it is an initialization trajectory ofeth
always around the lingg = hyu. All possibleur (6) can multi-play model, it is sufficient to study the properties fo
serve as initializing trajectories. This is a general prgpe a single element.
of models with local memory. From the notion of a quasi- The play operator is defined symmetric around the origin.
static input and a rate-independent model structure, itemakThe setX is bounded byu — A < 29 < u+ A for |u| <



EADN R .
wj G(s) Uil ea, [ Yi

] Dy Gt

Fig. 4. Block diagram of a nonlinear feedback model. Lefthe general
version with static nonlinearity®. Right b. The specific implementation
with dead-zone analyzed in this paper.

A=0.7, a=2n10rad/s
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Fig. 3. lllustration of two play operatorg.u,, > A, b.upy, < A P /S %::I
>0 7 )| | —t=oshz
7/ i || -f=3Hz
. —021 F E - - f=10Hz
um. Fig. 3 represents(u, zp, A) for u,, > A (a.) and for J ;
um < A (). 04, I 0 05 i
In each case, three regionk (I, 111) are indicated. For um ! um

both cases: and b it holds that if (xo, uo) € I thenz Fig. 5. Convergence of a single section of the nonlineardaekl model

stays inl,V|u| < u,,. Considerp (u,_ xo1 € I1,A1), and (o an orbite. The initial condition is set to 0. In all three cases a siesav
po(u,x02 € II1,Az). FOr A < u,, it follows from (15) excitation is used.

that win; = [wo, Um, Um — 2A] OF Uipi = (U, — U, —Um +

2A] is the minimal sequence of points that initializes both ) o ) )

p1 and ps. For the situation that,, < A (caseb) the quasi-static inputs [11] is the nonlinear feedback model
. m —

initialization sequences becomes,; = [uo, U, —m] OF where the nonlinearity is a dead-zone:

Wini = [uo, —Um; um]. ) o w = daoa(v) = max(min(0,v + A),v — A) (16)
This result implies that only a trajectory containing both
um and —u,, initializes the multi-play model. However, a Here,2A > 0 is the width of the dead-zone. In a similar

single period is sufficient. This condition is known as thevay as with the multi-play model, a parallel connection of

1%t-order wiping out property. multiple sections of nonlinear feedback models with a dead-
The resulting orbit¢ is the sum of the orbits of the zone can be defined, [11]:

individual elements. limaxur = u,,, minur = —u,, and

® has only 1 maximum and 1 minimum, then for case  i;(t) =Ax;(t) + Bdaa, (u(t) — yi(t)), xi(to) = zo;

¢; is the boundary of regior. For caseb ¢ is a line with yi(t) =Ca;

offsetxg if xg € I, offsetu,, if xg € 111 and offset—u,,, if N
xo € I1. The phase is again such that the trajectory starts 1
e s >
at up. z(t) N ;wlyz(t), w; >0
a7)

Ae Rnxn’B c RRXI,C c Rlxn’ with A7B7C minimal

. In_ th|s section the _comb|nat|or_1 of dynamics and hystereand given in the controllable canonical form. Each section
sis is introduced, which results in so-calleate-dependent ... 1ave its ownA =(1) is the output of the weighted

models of hysteresis. sections. A single section is shown in Figh4The specific
A Nonlinear Feedback Moddl with Dead-zone structure of asec'Fion a_pproqch_es the behavior of a single pl
operator for quasi-static excitation. Therefafefor the play
The rate-independent play operator (15) is a nonlinear ebperator and for the nonlinear feedback model are described
ement with memory, which makes the analysis of (feedback)y the same symbol. The memory of the play operator is now
systems with such an element complicated. A possible wayaptured by the memory of the dynamical syst6iis). For
to avoid this, is to introduce similar behavior using builgli the caseA = 0, the system (17) is a linear system denoted
blocks of linear dynamical systems and (sector bounde@y H(s) = (G + I)~'G.
static nonlinearities. In [5] this class is called nonlinea For sake of clarity, one of the most simplified examples is
feedback models of hysteresis. An example of a framewotkken.G(s) represents a gain and an integratGfs) = <
for analysis is found in [16]. in (17) A =0,B = «,C = 1. The transfer function of the
1) Model Description: The general block scheme islinear versionH (s) = - with A =0 is a first order low-
shown in Fig. 4 a wher® represents the static nonlinearity.pass filter of which the output in the time-domain is denoted
A subset that approaches the behavior of play models ferth yg(t).

IV. DYNAMICAL HYSTERETIC SYSTEMS
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Sttt ST == =""""1 oV, The step response of a system with> 0 can be rewritten
M b R I ) ¢V as the step-response Bf with magnitudeu — A for u —y >
A oru+ A for u —y < A. This magnitude is always less
0 01 0-t2[S] 03 04 0 01 0-t2[S] 03 04 than2u,, and, therefore, the convergence time for the linear
system is the upper bound for systems with all possible dead-
Fig. 6.  Simulation of the nonlinear feedback model for thisgial ~ zone widths. Foljv| = |u — y| < A the system’s response
conditions with equalA and equala. Begin and end conditions arey remains constant. Note that in this modgl= Yo.
and ue. All intermediate signalg;, w,v are shown. Subplot a. shows the = th lvsis of th ltiol t ise initializati
response of the linear case; where A = 0. rom the analysis of the multiplay a stepwise initializatio
profile was establisheduy — u,, — —u,,. Since, the
nonlinear feedback model approaches the multiplay model

05 o B B
2
w 0 O w, Fig. 8. Input-output plot for the simulation of Fig. 6. Thajectories start
05 at uo, [zo1, o2, zo3]. They end atue,ye. Eachzg starts in a different
d1. A=0.7

— il for quasi-static inputs the sequence will be successful if
3 N T :y1_y2: steady state is reached in between switching from one value
@ | S S I | ¥17%1 to another. From the upper bound for a single step, the
- L TTH convergence time for this initialization approach is:
0 0.2 04, 0 02 orbit 04
t[s] tls] reached '© 2 2u
tc=2tH=—ln( ’”) (19)

Fig. 7. Difference between the trajectories on a logarithsuiale.|y1 — y2| @ €1
vanishes foru = um, |y1 — y3| for u = —u.m,. (Compare with Fig. 6.). .
The error signalys — u| denotes the linearized case, which provides the 1Ne left columns of Fig. 6, 7 and_8 ShOW_S the response of
initialization time.¢1 denotes the allowed error. the model to the sequence for 3 different initial conditions

Since the first applied step is towards,, all trajectories
starting from regions/ and I7 are initialized. However,
Fig. 5 shows the convergence to an orbit starting frorthe status of trajectories starting from regidéhl remains
initial condition 2o = 0 for three different sine wave constant. In Fig. 7 the difference between the trajectories
frequencies. Due to the low-pass nature of the system, tRearting in the different regions are displayed along wité t
area enclosed by the orbit displayed in the input outputpper bound provided by the linear system.
plot gets smaller with higher frequency. For quasi-static Atthe moment that the linear system has converged for the
signals the boundary of argaof a single play operator is step towards-u,,, all possible trajectories for systems with
approached. um > A are initialized to the pointu, y) = (—tm,, —Um, +
2) Stepwise Initialization: First the step response of aA). Now for further quasi-static variation the resulting arbi
single section of a nonlinear feedback model with dead-zorie again the border of regioh Higher frequencies are dealt
is considered. The maximum magnitude of an applied stepith next.
iS 2u,,. If, as in (4), an allowed deviation from the steady 3) Square Wave Initialization: If the time between the
state output valug is defined as;, then in worst case it initialization steps is less tharmy, initialization is not
takes the linear systemy; seconds to converge: guaranteed within a single period. This is the case for a
square wave input in the formy = w,, ®(27t/T + 0) =
ot umSign{sin(2xt/T + 6)}, with T/2 < ty.
ya (t) =2um(l —e™) However, b i i i i
, by the use of multiple periods a unique orbit can
lyr — G| =2um(e”*) < e (18) still be reached. For the case < u,, this is actually bene-
oy >l In (Qum> ficial, since depending on the exact valuexgf trajectories
H=0 starting from/I and 11 can be initialized at the same time

€1



(4, —y > A and —u,,, —y < —A). For A > u,, multiple VI. CONCLUSIONS
periods and a decreasddresult in equal total duration as  The notion of feed forward initialization for dynami-
with the single period case. cal hysteretic systems is presented. The systems are step-

This scenario is presented in the right columns of Fig. 6, Gonvergent; the output converges to a constant for every
8. The periodic orbit is reached sooner than in the stepwig®nstant input. Due to hysteresis the steady state value for
case. However, if the source is switched to a constant valug,specific constant input depends on the initial conditions,
in order to obtain a unique steady state output value, thgstead of only the input as is the case with fading memory
system needs time to converge again (Fig. 7). systems.

4) High Frequent Initialization: Despite the fact that the  For different hysteresis models the properties of periodic
overall transfer fromu to y has a low-pass behavior, there isinput signals are determined such that they force the system
no limit on 1/7" concerning initialization. From the structureinto a unique orbit irrespective of the initial conditiofnce
of the model, high frequencies in the input will directly ent on this orbit the influence of initial conditions is erased.
the dead-zonev = daa(u — y). For a very short time (the  For quasi-static inputs the rate-independent Duhem and
time thatv > A) the system will respond. However, duemulti-play hysteresis models are analyzed. Dynamic effect
to the high frequency the sum of all these moments is whate included by the hysteretic nonlinear feedback model
initializes the system. A very high frequent excitationtisd  with dead-zone. Analysis using well established framework
capable of initializing the nonlinear feedback model withs possible since this model-class consists only of linear
dead-zone. dynamics interconnected with static nonlinearities.

All models agree on the points that an initialization tra-
jectory should have maximum amplitude and should contain
at least both the maximum and the minimum input. For
dynamical hysteretic systems, multiple periods are reguir
if period time of the excitation to small compared to the
model’s time-constants.

V. DISCUSSION

A. Resulting Initialization Trajectories

Initialization of the Duhem model requires multiple pe-
riods. For two trajectories starting from different initia
conditions the difference shrinks piecewise exponentiall REFERENCES
However, the rate of convergence is slowed down by changg) B. Jayawardhana, H. Logemann, and E. P. Ryan, “Pid cbritfo
of sign(u)_ This supports the use of the maximum amplitude second-order systems with hysteresisfernational Journal of Con-

S trol, vol. 81, no. 8, pp. 1331-1342, 2008.
for initialization. ’ : i
. L [2] R. lyer and X. Tan, “Control of hysteretic systems thrbuigverse

On the other hand, the multi-play model can be initialized = compensation,'Control Systems Magazine, IEEE, vol. 29, no. 1, pp.
with a single sequence containing both the maximum and_ 83 -99, 2009. - _ ,

. B t The same holds for the nonlinear feedbaclgs] K. Kuhnen and P. Krejci, “Compensation of complex hysss and
mlmmum_ Input. - . . creep effects in piezoelectrically actuated systems;a pesisach
model with dead-zone. Multiple periods are only required
if the time in between the steps is too short to converge

modeling approach/EEE Transactions on Automatic Control, vol. 54,
no. 3, pp. 537 -550, 2009.

- ) . . 4] P.J. Bree, C. M. M. Lierop, and P. P. J. d h
within the required error bound. Multiple periods and a ¥ van Bree van LIerop, an van den Bosc
smaller period time is beneficial & < u,,, since trajectories
starting in region// and/I1 can converge at the same time.

All models agree on two points: Initialization trajectaie
should have maximum amplitude, and the initialization se-

“Electron microscopy experiments concerning hysteresithé mag-
netic lens system,” i€onference on Control Applications, CCA 2010,
2010.

5] J. H. Oh, B. Drincic, and D. S. Bernstein, “Nonlinear feadk models

of hysteresis,”Control Systems Magazine, |EEE, vol. 29, no. 1, pp.
100 -119, 2009.

J. H. Oh and D. S. Bernstein, “Semilinear duhem model fate+
independent and rate-dependent hystere$BBEE Transactions on
Automatic Control, vol. 50, no. 5, pp. 631-645, 2005.

; [7] S. Boyd, L. ElI Ghaoui, E. Feron, and V. Balakrishn&mear Matrix
B. Model Artifacts Inequalities in System and Control Theory. Society for Industrial and

. S . . Applied Mathematics (SIAM), 1994.
The properties of the initialization trajectories alsoealv 8] I. Mayergoyz, Mathematical models of hysteresis.  Springer, 1991.

model artifacts. For the Duhem model this is the possibility[9] B. Coleman and M. Hodgdon, “On a class of constitutiveatiehs
to initialize the system using periodic signals with ardniyr for ferromagnetic hysteresisArchive for Rational Mechanics and
small amplitude. For a large class of physical systems cop-. A"@¥ss vol. 99, no. 4, pp. 375-396, 1987.

oo P o ,g ; phy y ELO] R. Banning, W. L. De Koning, H. J. M. T. A. Adriaens, and R.
taining magnetic hysteresis this property does not coomsp Koops, “State-space analysis and identification for a aésgysteretic
to the observed behavior, e.g. [17]. systems,’Automatica, vol. 37, no. 12, pp. 1883-1892, 2001.

. 1] B. Drincic and D. S. Bernstein, “A multiplay model for tea

On the other hand' the S.tate Of.nonl'n?ar feedback mOdéfs independent and rate-dependent hysteresis with nonloeaiary,” in
can be reset by signals with arbitrary high frequency. This  Decision and Control, Proceedings of the 48th IEEE Conference on,
will not be valid for e.g. spatially distributed ferromagice 2009, pp. 8381 -8386. .

hich deal with limited skin d h f hi h[12] M. Al Janaideh, S. Rakheja, and C. Y. Su, “A generalizede r
systems whic _ea_ with a _'mlte S 'n_ ept Or '_g dependent play operator for characterizing asymmetricsgnumetric
frequent magnetic fields; It is not possible to initialize  hysteresis nonlinearities,” ifmerican Control Conference, 2008,
ferromagnetic objects witdm?-volumes using a ultra-high

2008, pp. 1911-1916.
R . . . . [13] M. K I'skii, A. Pokrovskii, and M. Niezgodk&yst ith
frequent source with limited amplitude which results inrski 3] sttt o ana lezgodidsystems wi
depths<< dm.

quence should contain both the maximum and the minimum(8!

hysteresis.  Berlin : Springer, 1989.
[14] A. Visintin, Differential models of hysteresis. Berlin : Springer, 1994.



[15] M. Brokate and J. Sprekelsjysteresis and Phase Transitions. New
York: Springer-Verlag, 1996.

[16] T. Pare, A. Hassibi, and J. How, “A kyp lemma and invaciauprinciple
for systems with multiple hysteresis non-linearitiestiternational
Journal of Control, vol. 74, no. 11, pp. 1140-1157, 2001.

[17] P. J. van Bree, C. M. M. van Lierop, and P. P. J. van den Bosc
“Control-oriented hysteresis models for magnetic electtenses,”
IEEE Transactions on Magnetics, vol. 45, no. 11, pp. 5235-5238,
2009.



