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Summary

Fast and reliable autofocus techniques are an important topic
for automated scanning electron microscopy. In this paper,
different autofocus techniques are discussed and applied to
a variety of experimental through-focus series of scanning
electron microscopy images with different geometries. The
procedure of quality evaluation is described, and for a variety of
scanning electron microscope samples it is demonstrated that
techniques based on image derivatives and Fourier transforms
are in general better than statistical, intensity and histogram-
based techniques. Further, it is shown that varying of an extra
parameter can dramatically increase quality of an autofocus
technique.

Introduction

Nowadays, scanning electron microscopy (SEM) still requires
an expert operator to obtain in-focus and astigmatism-free
images. To obtain sharp images, the operator uses his eyes (to
estimate defocus and astigmatism) and his hands to adjust the
controls. For the next SEM generations, the manual operation
has to be automated, at least to an extent that a non-expert can
efficiently obtain sharp images. One of the reasons is that the
work of a human operator has a low repeatability level. After
focusing of hundreds of images manually, a human gets tired
and loses concentration, which can influence output image
quality; and a lot of automated SEM application nowadays
requires hundreds and thousands of high-quality images.
Therefore, a robust and reliable autofocus algorithm is a
necessary tool for the automation of SEM operation.

The existing autofocus techniques can be divided into
five groups, viz. based on the image derivatives, statistical
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information (image variance or autocorrelation), histogram,
image intensity or Fourier transform. In the literature, a
number of autofocus techniques have been compared for
different microscopy forms. For fluorescence microscopy, the
Vollath autocorrelation algorithm (Vollath 1987, 1997) was
found to be the best (Santos et al. 1997). For non-fluorescence
microscopy, it has been shown by Sun et al. (2004) and Liu
et al. (2007) that the normalized variance algorithm leads
to optimal results. However, the Fourier transform-based
autofocus techniques were not taken into account (Santos
et al. 1997; Sun et al. 2004; Liu et al. 2007). These techniques
were mentioned (Santos et al. 1997) but not evaluated due
to the slow computations of the image Fourier transform.
For the scanning transmission electron microscopy, statistical
and Fourier transform-based techniques have been discussed
(Van den Broek 2007). The application of derivative, variance,
autocorrelation and Fourier transform-based techniques to
SEM were examined (Batten 2000), but not subjected to
rigorous statistical testing.

The goal of this paper is to find an appropriate autofocus
technique for SEM that will work for a large variety of samples.
To this end, we exploit the full range of autofocus techniques
that were earlier evaluated for fluorescence microscopy
in classical paper on autofocus (Santos et al. 1997). In
addition, we extend derivative-based and autocorrelation-
based techniques with extra parameters. We show that
varying these parameters leads to improvements. Moreover,
we include a new group of autofocus techniques based
on Fourier transform. With the desktop CPU’s available
nowadays, the calculation of a discrete image Fourier
transform with the Fast Fourier transform algorithm only
takes milliseconds. In particular, in electron microscopy the
Fourier transform computation of an image in a through-focus
series takes less time than the acquisition of the next image.
The image Fourier transform can easily be computed without
slowing down the autofocus procedure.

This paper applies explained autofocus techniques to 14
experimental SEM through-focus series of samples with
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different geometries. Some of the series contain typical
SEM astigmatism effects that usually do not occur in light
microscopy and make the autofocusing more complicated. A
modified procedure for SEM evaluation based on Santos et al.
(1997) and Liu et al. (2007) is discussed and applied to estimate
the quality of each of the listed autofocus techniques. This
paper shows that for a wide variety of SEM samples the best
results are obtained by derivative-based autofocus techniques,
varying the pixel difference parameter. The Fourier transform
techniques score almost equally good as derivative-based
techniques. This result coincides with result of our preliminary
research (Rudnaya et al. 2009).

Section 2 of this paper describes the SEM image formation
and related problems that are encountered by autofocus
techniques. The next section gives an overview of existing
autofocus techniques, including the Fourier transform-
based techniques. Derivative-based and autocorrelation-based
techniques are adorned with an extra parameters. The
Sections 4 and 5 describe the experimental SEM data sets
and the autofocus techniques evaluation procedure. Finally,
Section 6 discusses the experiments and results.

Scanning Electron Microscope

The electron beam in SEM scans a sample spot by spot in
horizontal direction. The electrons reflected from the sample
are captured by a detector. The amount of electrons reflected
from each spot indicates the image intensity in the current
pixel.

The image post-processing in SEM is more complicated and
challenging than in light microscopy. Ideally, SEM image
formation can be considered as a linear model (Erasmus &
Smith 1982), the same way as in light microscopy (Nayar &
Nakagawa 1994)

fp(x) = ψ0(x) ∗ h(x, p) =
�

�
ψ0(x′)h(x − x′, p)d x′. (1)

In Eq. (1), ∗ denotes the convolution, x = [x, y]T ∈ � the
spatial coordinates, p ∈ R

n the SEM parameters, ψ0(x) the
object function that describes the sample geometry and f p(x)
the SEM image. The point spread function h(x, p) that describes
electron beam satisfies�

�
h(x, p)d x = 1. (2)

The SEM point spread function can be approximated with a
Gaussian function (Erasmus & Smith 1982)

h(x, p) = 1
2πσx(p)σy(p)

e
− x2

2σ2
x (p)

− y2

2σ2
y (p) , (3)

where astigmatism aberration of the magnetic lens leads
to σx(p) �= σy(p). In light microscopy where the lenses are
astigmatism-free it is assumed that (Nayar & Nakagawa 1994)

σx(p) = σy(p). (4)

Next to astigmatism the other aberrations, such as spherical
and chromatical aberrations, affect the SEM point spread
function. The more aberrations are present, the worse is the
Gaussian approximation (3) of the point spread function.
In particular, it is important to find an astigmatism-stable
autofocus technique, because existing astigmatism correction
algorithms rely on the fact that the in-focus image parameter
can be found in a robust way (Erasmus & Smith 1982; Ong
et al. 1997).

The SEM’s signal-to-noise ration is worse than in light
microscopy due to the limited electron dose that can be
applied to the specimen. Also to obtain a sufficient signal-to-
noise ratio, the microscope exposure time has to be increased.
Normally, this is not acceptable for automated applications
that require fast image acquisition. The low signal-to-noise
ratio causes difficulties for the proper functioning of autofocus
techniques. We consider two noise factors n1(x, p) and n2(x,
p) in Eq. (1)

fp(x) = (ψ0(x) + n1(x, p)) ∗ h(x, p) + n2(x, p). (5)

During the image formation process, the SEM sample can be
damaged, contaminated or charged. This is another limiting
factor for the number of images that we can take. The other
problem is that due to the microscope stage drift the geometry
of the images in through-focus series can slightly change.
Thus, the object function ψ0(x) is a function of time t. Due to
instability of the electron beam, the condition (2) is not always
true and the function h(x, p) is a function of time

fp,t(x) = (ψ0(x, t) + n1(x, p, t)) ∗ h(x, p, t) + n2(x, p, t). (6)

The mean value of the image

f̄ p,t =
�

� fp,t(x)d x�
� d x

(7)

also changes in time.
The existing autofocus techniques are usually based on the

assumptions (1)–(4). As we have explained, these assumptions
do not always hold for electron microscopy, thus, the autofocus
techniques can fail. Further, we investigate which of the
existing autofocus techniques can be successfully adopted for
electron microscopy.

Sharpness functions

The microscopy images are discrete images that can be
represented by the matrix

F = (
( fi , j )N

i=1

)M
j=1 with the discrete image mean value

F̄ =
∑

fi , j

N M
. (8)

We focus on iterative autofocus techniques with the use of
a sharpness function (SF), a real-valued estimation of the
discrete image’s sharpness. For a through-focus series, the
ideal SF should reach its maximum for the in-focus image
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and have no other maximum. The ideal SF should change
monotonically according to the change of defocus absolute
value. The dotted line in Fig. 4 shows the ideal SF for the Gold-
on-Carbon SEM through-focus series plotted versus defocus.

The autofocus procedure can be established in two different
ways, which are as follows:
• The static approach: An amount of images is taken within a

wide defocus range and the SF maximum is found (course
focusing). The same procedure is done within the smaller
defocus range around the maxima, found on the previous
step (fine focusing).

• The dynamic approach: After taking two images with different
defocus values, we use a search algorithm to reach the
maximum of the SF (Liu et al. 2007, use the Fibbonachi
algorithm to this end).
The goal of the second approach is to minimize the amount

of images necessary to perform the autofocus procedure. The
disadvantage of this approach is that it requests an almost
perfect SF shape, which is often not the case in SEM. As it will
be shown further, SF in SEM can obtain local optima due to the
presence of astigmatism. Also, due to the low signal-to-noise
ratio, the SF can be very noisy (has a lot of local minima and
maxima). In this case, search algorithms often end up in one
of the local maxima, which can be far away from the actual in-
focus value. In this paper we focus only on the first approach
(the static approach). It will still work in the case of noisy SF.
To get a more precise output in this case, SF can be fitted with
an analytical function (e.g. Gaussian). Both aproaches will
fail, if the SF does reach its global maximum far away from
the in-focus image. Thus, it is important to find an SF that will
reach its maximum at the in-focus image for a wide variety of
SEM samples.

The later sections present different existing SFs. Most of them
are based on the assumptions (1)–(4). The goal of the described
experiment is to investigate which of them is more stable for
the real SEM situations (6)–(7). To stabilize the SFs, they are
applied to scaled images

F̂ = (
( f̂ i , j )N

i=1

)M

j=1 , where f̂ i , j = fi , j

F̄
, (9)

as a consequence, the mean value of a scaled image

¯̂F = 1

is a constant, which does not change in time. This brings the
situation closer to Eqs (1) and (2), when a mean value of a final
image does not depend on time and microscope parameters.

Further we use the notation s(name)
par , where s denotes the SF

value, par denotes the SF parameters and name denotes the
SF name.

Derivative-based sharpness functions

Derivative SFs are based on the fact that due to the image blur
the intensity difference between neighbouring pixels in the

defocused image decreases. Derivative-based SFs, described by
Brenner et al. (1976) and Santos et al. (1997) are of the form

s(dhor)
p,k,θ =

∑
i , j

| fi , j − fi , j+k |p , where | fi , j − fi , j+k |p > θ,

p ∈ {1, 2}, k ∈ N , θ ∈ R
+,

(10)

where k (pixel difference) and θ (threshold) adjust the
sensitivity of the SF to the noisy images. For the particular
parameter values k = 1, p = 1 in Eq. (10), we obtain SF,
known in literature as an absolute gradient; for k = 1, p = 2—
squared gradient; for k = 2, p = 2—Brenner function. The SF
(10) for θ > 0 is also known as a threshold gradient. In Eq. (10),
only the difference between the pixels in horizonal direction is
taken into account, because the SEM scanning is performed in
horizontal direction and therefore the noise is correlated there.
This SF can fail for certain image geometries (e.g. a number
or uniform horizontal stripes). Let s(dver)

l,k,θ be the function that
computes the norm of the pixel difference in vertical direction.
Then the form that generalizes derivative-based SFs is

s(d )
p,k,θ,v = 1

2

(
s(dhor)

p,k,θ + vs(dver)
p,k,θ

)
, v ∈ {0, 1}. (11)

Brenner et al. (1976) and Santos et al. (1997) used only pixel
difference parameters k = 1, 2. Batten (2000) considered k =
1, . . . , 10. Later we experimentally show that the larger values
of k often give more satisfactory results.

The other derivative-based SF used by Santos et al. (1997)
was proposed and discussed by Tenenbaum (1970), makes
use of Sobel operators

S1 =

⎛
⎜⎝

−1 0 1

−2 0 2

−1 0 1

⎞
⎟⎠ , S2 =

⎛
⎜⎝

1 2 1

0 0 0

−1 −2 −1

⎞
⎟⎠ ,

s(d t)
θ =

∑
i , j

(
(F ∗ S1)2

i , j + (F ∗ S2)2
i , j

)
,

where
(

(F ∗ S1)2
i , j + (F ∗ S2)2

i , j

)
> θ. (12)

In Eq. (12), ∗ denotes discrete convolution.

Statistical sharpness functions

Statistical SFs are variance-based and autocorrelation-based
SFs (Sun et al. 2004). The autocorrelation C of the image F is
given by C = F ∗ (−F∗), where ∗ is a complex conjugate. We
deal with a real-valued image, as a consequence F∗ = F, and
discrete autocorrelation C = ((ck,l)N

k=1)M
l=1 is defined (Vollath

1987)

ck,l =
∑
i , j

fi , j fi+k−1, j+l−1. (13)

The autocorrelation difference SF is defined (Vollath 1987;
Vollath 1997)

s(acrh )
k,l = c1,k − c1,k+l . (14)
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The use of these SFs is based on the fact that the autocorrelation
peak of the in-focus image is sharper than autocorrelation peak
of the defocused one. If in Eq. (14), k = 2, l = 1 then the second
term can be approximated (Vollath 1987)

s(sdh ) = c1,2 − N MF̄ . (15)

Similarly to derivative-based SF (11) deviations in both vertical
and horizontal directions can be considered

s(sd )
v = 1

2
(s(sdh ) + vs(sdv )), v ∈ {0, 1}, (16)

s(acr )
k,l,v = 1

2
(s(acrh ) + vs(acrv )), v ∈ {0, 1}. (17)

The image variance SFs are based on the fact that the in-
focus image has higher contrast than the defocused one. Image
variance and normalized variance SFs are defined by Vollath
(1987), Santos et al. (1997) and Liu et al. (2007) as

s(v) =
∑
i , j

( fi , j − F̄ )2, (18)

s(vn) = 1

F̄
s(v). (19)

For the scaled discrete image (9), SFs (18) and (19) are
equivalent.

Histogram-based sharpness functions

In most applications, the unscaled image F is a matrix of
natural intensity values. Let

f̃ = ( f̃ k )L
k=1, f̃ k−1 < f̃ k,

be a set of all the pixel values in the image F, that is f i,j ∈ F ⇔
∃k such that fi , j = f̃ k ∈ F̃. The vector h = (hk)L

k=1, where hk is
the amount of pixels with the value f̃ k in the image F, is called
the histogram of the image F. Then the probability of the pixel
with the value f̃ k is equal to hk

N M .
Histogram-based SFs are the range and the entropy (Santos

et al. 1997)

s(hr ) = max
k,hk �=0

hk − min
k,hk �=0

hk . (20)

s(he) = −
∑

k,hk �=0

hk

N M
log2

hk

N M
. (21)

Another histogram-based function is threshold image count
(Santos et al. 1997)

s(ht)
θ =

n∑
k=1

hk, where n is such that f̃ n ≤ θ and f̃ n+1 > θ.

(22)

Intensity-based sharpness functions

Erasmus & Smith (1982) used the modified version of variance
(18) with neglected term F̄ for SEM simultaneous autofocus

and astigmatism correction. Santos et al. (1997) extended this
SF with a power p and threshold parameter

s(vm)
p,θ =

∑
i , j

| fi , j |p , where fi , j > θ, p ∈ {1, 2}. (23)

Fourier transform-based sharpness functions

Fourier transform sharpness functions are based on the fact
that the magnitudes of the high frequencies in the in-focus
image are higher than in a defocused one. For our evaluation,
we choose an SF based on work of Ong et al. (1997) and Vladar
et al. (1998)

s( f t)
l,h =

∑
i , j

|gi , j |, where i ∈ [h, n0 − l] ∩ [n0 + l, n − h],

j ∈ [h, m0 − l] ∩ [m0 + l, m − h], (24)

where l and h are the low- and the high-band frequencies,
n0 = mod(n/2) + 1, m0 = mod(m/2) + 1. G = ((g i,j)N

i=1)M
j=1

is the discrete Fourier transform of the image f , multiplied by
the window function to avoid the Gibbs phenomenon due to
the discontinuity and non-periodicity.

Experimental images

Figures 1 and 2 show the images from experimental through-
focus series of typical SEM samples. They were obtained
with an FEI Strata SEM (Eindhoven, The Netherlands) at
magnifications from 15.000 to 25.000. The size of each image
is 442 × 442 pixels. The number of images in a through-focus
series varies from 11 to 53. The images with a pixel depth of
both 8- and 16-bit were tested. The images shown in Fig. 1
are from through-focus series which are free of astigmatism,
Those in Fig. 2 are from stigmatic through-focus series.

Figures 1(c–e) and 2(c) and (d) show the images of tin balls
samples; Figs 1(a) and (b) and 2(a) and (b)—the images of cross
sections; Figs 1(f) and (g)—the images of integrated circuits;
Figs 1(h) and (i)—the images of the hard disk heads; Fig. 2(e)—
an image of Gold-on-Carbon sample.

The images contain different amounts of details. Series of
images, such as in Figs 1(b) and (b), contain fine details, that
is the difference between neighbouring objects in an image
is several pixels. Other series, such as in Figs 2(b) and 1(h),
contain only course details (the difference between two objects
is more than 100 pixels). There are also samples with periodic
structure, such as Fig. 1(a).

Evaluation procedure

In the recent work with evaluation of SFs (Liu et al. 2007)
several evaluation criteria, based on the previous works
(Santos et al. 1997; Sun et al. 2004) are explained. For
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Fig. 1. Images from experimental SEM through-focus series without astigmatism.

Fig. 2. Images from experimental SEM through-focus series with astigmatism.
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evaluation of earlier defined SFs, we estimate four evaluation
criteria described in the recent work (Liu et al. 2007):
• Accuracy estimates the distance between the best focus

position, determined by a professional human operator and
the maximum of an SF.

• Local maxima estimates the number of local (false) maxima
in an SF.

• Range estimates the monotonicity interval range on both
sides of an SF global maximum.

• Noise estimates the noise amplitude in an SF.
We do not consider dynamic evaluation criteria (Liu et al.
2007), because in this paper we discuss only static autofocus
approach, for the reason that it is more robust to the local
optima in SF, which is often the case in SEM due to the noise
and astigmatism. Instead dynamic accuracy (Liu et al. 2007)
we use a static accuracy described in (Santos et al. 1997; Sun
et al. 2004). We also neglect the evaluation criteria, which
estimate the width of an SF peak (Sun et al. 2004; Liu et al.
2007). The narrow SF peak is not always beneficial for SEM
autofocusing. If defocus step in through-focus series is large
(like in the course focusing) and the SF is noisy due to the noise
in the images, then the SF peak can be skipped and autofocus
procedure will fail. Earlier the computational time required by
an SF was also considered as an evaluation criterion (Santos
et al. 1997). Nowadays, the computational time of any of the
SFs described earlier is lower, then an SEM image acquisition
time. Thus, the SF value for a current image in a focus series can
be computed in parallel with the acquisition of the next image
in the focus series, which costs overall no time. Also, for this
reason of available computational power, the time evaluation
criteria was neglected in later works (Sun et al. 2004; Liu et al.
2007).

Figure 3 shows five different simulated SFs. Before
evaluation the SF values are scaled between 0 and 1

s̄ = s − min s
‖s − min s‖∞

. (25)

We imagine that these SFs are computes for one focus series of
seven images, with the fourth image determined to be in-focus

Table 1. Evaluation scores for simulated SFs.

SF Accuracy False maxima Range Noise Overall score
zacc zlm zran znoise ztot

SF1 1.00 1.00 1.00 1.00 1.00
SF2 1.00 0.00 0.00 0.45 0.58
SF3 0.67 0.506 0.25 0.68 0.57
SF4 1.00 0.00 0.00 0.00 0.50
SF5 0.00 1.00 1.00 1.00 0.50

by an experienced human operator. Based on these simulated
SFs, we are going to illustrate how our evaluation procedure
works. In the evaluation, procedure criteria described earlier
are represented by the real numbers zacc, zran, zlm, znoise ∈ [0,
1]. The numbers are equal to 1 in the ideal situation and equal
to 0, if the situation is as far from ideal as possible. All z-values
between 0 and 1 are achieved in respect to the two boundary
cases. The evaluation criteria values for SFs from Fig. 3 are
shown in Table 1.

Accuracy

The accuracy of SF1, SF2 and SF4 is equal 1, because the
maxima of SF1, SF2 and SF4 coincides with the position,
identified by the human operator. The accuracy of SF5 is
equal 0, because the maximum of SF5 is as far from the
maximum, determined by the human operator, as possible:
δmax

acc = 3 defocus steps. For SF3, the amount of defocus steps
between SF maximum and the in-focus image is δacc = 1, thus

zacc = 1 − δacc

δmax
acc

= 2
3

.

Local maxima

Analogically for the local maxima criterion. Maximum amount
of false maxima in SF for seven images is δmax

lm = 3, because we
do not consider a global maximum as a false maximum and
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Fig. 3. Simulated SFs for the focus series of seven images with the fourth image considered to be in-focus. The functions are ordered according to the
computed evaluation score, that is SF1 is a function of the best quality and SF5 is the worst from the five represented functions.
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we do not consider boundary values. Thus, for SF1 and SF5
zlm = 1, for SF2 and SF4 zlm = 0 and for SF3 with the amount
of false maxima δlm = 1

zlm = 1 − δlm

δmax
lm

= 1
2

.

For the general case of SF for a focus series of K images

δmax
lm =

⌊
K − 1

2

⌋
− 1.

If the global maximum coincides with a boundary point,
δmax

lm = 
 K −1
2 � − 1.

Range

SF1 and SF5 have zran = 1, because they are monotone
around the global maximum. SF2 and SF4 have zran = 0,
because because their monotonicity interval around the global
maximum is minimal (2 defocus steps). By subtraction 2 from
the amount of steps

δmax
ran = (K − 1) − 2

we get the area of the largest possible domain size outside the
monotonicity range around the global maximum. If the global
maximum is located in the boundary point (like in SF5), we
consider δmax

ran = K − 2. For SF3, this area is δran = 3 defocus
steps, then for SF3

zran = 1 − δran

δmax
ran

= 1
4

.

Noise level

The noise evaluation criteria estimates amplitude of local
maxima and minima. SF1 and SF5 have znoise = 1, because
they do not have local maxima and minima. SF4 have znoise =
0, because it has as much maxima and minima as possible,
with the highest sum amplitude possible

δmax
noise = K − 3,

because the SF values are scaled between 0 and 1 (25), and
we do not consider the global maximum or boundary points
as local maxima or local minima. If the global maximum is
located in the boundary point (like in SF5),δmax

noise = K −2. Then
for SF3, the total amplitude of global minima and maxima is
δnoise = 0.8 + (1 − 0.5) = 1.3

znoise = 1 − δnoise

δmax
noise

= 1 − 1.3
4

= 0.675.

Overall score

For the total overall score of SF values, we use the weighted
sum of criteria described earlier

ztot = 1
2

(
zacc + 1

3
(zran + zlm + znoise)

)
∈ [0, 1].

We choose the weight in such a way that we give equal
importance to the criteria zacc and the sum of criteria zran,
zlm and znoise. The reasoning for this choice is the importance
of accuracy for static autofocus algorithms and the fact, the
criteria zran, zlm and znoise are related. If SF does not have false
maxima then zran = zlm = znoise =1, and the overall score could
be high. However, if the maximum of such SF is far away from
in-focus position (see SF5, Fig. 3), such SF is meaningless for
the autofocus, and it should not get high overall score. For
ideal SF, like SF1, ztot = 1.

Evaluation systems described previously are comparative
(Santos et al. 1997; Sun et al. 2004; Liu et al. 2007; Rudnaya
et al. 2009), that is each criteria is set to a value with one
of the boundaries that cannot be estimated in advance, and
further results are compared between each other, to find the
best quality SF. For example, the accuracy evaluation criteria
would be equal to the difference between SF maximum and in-
focus image in steps. The minimal value would be equal to zero
and considered to be the best. The maximal value here would
be limited by amount of images in focus series, which could
be different in different cases. In our evaluation procedure we
know in advance that every criteria lies in the range [0, 1]
independently of amount of images in the focus series.

Results and discussion

SFs defined in Section 3 are applied to each of the SEM through-
focus series described in Section 4. The results are evaluated
according to the procedure described in the previous section,
and averaged for all given through-focus series. Parameterized
SF are applied with different parameter values. For example,
the gradient-based SF (11) is applied to the Gold-on-Carbon
through-focus series (Fig. 2e). We fix function parameters v =
0, p = 2, θ = 0 and vary the pixel difference parameter k =
1, . . . , 441. For each k, we get an SF, and each SF is evaluated.
As we have discussed before, the higher overall evaluation
criteria ztot ∈ [0, 1], the higher we estimate SF. The results with
the highest overall score ztot is chosen. The same procedure
is repeated for each through-focus series. Evaluation scores
obtained for each focus series are averaged, and the final
result can be seen in the first row (N = 1) of Table 2. Table 2
shows the performance of derivative-based SFs with varying
of different parameters separately (for the details, see columns
SF parameters). The results for each of the five SF families are
shown in five different tables Tables 2–6. Table 7 summarizes
the results according to the highest overall scores ztot from
Tables 2 to 6. The derivative-based and Fourier transform-
based SFs have shown the best overall performance.
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Table 2. Derivative-based SFs (11) and (12) average evaluation score for all through-focus series combined.

SF parameters Evaluation scores

Vertical direction Power Pixel difference Threshhold Accuracy False max. Range Noise Overall
N v p k θ (%) zacc zlm zran znoise ztot

1 0 2 1, . . . , 441 0 0.9767 0.9627 0.9033 0.9591 0.9592
2 1 1 1, . . . , 441 0 0.9940 0.9449 0.8766 0.9485 0.9587
3 1 2 1, . . . , 441 0 0.9583 0.9565 0.9033 0.9569 0.9486
4 0 1 1, . . . , 441 0 0.9767 0.9140 0.8376 0.9291 0.9351
5 1 1 1 0, . . . , 100 0.8773 0.8081 0.5574 0.8297 0.8045
6 0 2 1 0, . . . , 100 0.8267 0.8449 0.5589 0.8471 0.7885
7 0 1 1 0, . . . , 100 0.8273 0.8068 0.5856 0.8331 0.7846
8 1 2 1 0, . . . , 100 0.8178 0.8506 0.5186 0.8427 0.7776
9 – – – 0, . . . , 100 0.7809 0.8277 0.5744 0.8554 0.7667

Note: The squared gradient without threshold that takes into account the difference between pixels in vertical and horizontal directions has the highes
overall score. Tenenbaum gradient has the lowest overall score.

Table 3. Fourier transform-based SFs (24) average evaluation score for all through-focus series combined.

SF parameters Evaluation scores

Low-frequency band High-frequency band Accuracy False max. Range Noise Overall
N l h zacc zlm zran znoise ztot

1 0 1,. . . ,219 0.9708 0.9472 0.9070 0.9604 0.9545
2 2 1,. . . ,219 0.9734 0.9416 0.8850 0.9518 0.9498
3 1 1,. . . ,219 0.9734 0.9241 0.8725 0.9421 0.9432

Note: Fourier transform-based SF without low-frequency band has the highest overall score.

Table 4. Statistical SFs (17) and (18) average evaluation score for all through-focus series combined.

SF parameters Evaluation scores

Vertical direction Autocorrelation coefficient Autocorrelation coefficient Accuracy False max. Range Noise Overall
N v k l zacc zlm zran znoise ztot

1 0 1 1,. . ., 50 0.9311 0.9208 0.8587 0.9450 0.9197
2 1 1 1,. . ., 50 0.9726 0.8839 0.7801 0.8868 0.9115
3 0 1,. . ., 50 1 0.9264 0.8840 0.8226 0.9097 0.8992
4 1 1,. . ., 50 1 0.9482 0.8579 0.7131 0.8839 0.8832
5 – – – 0.8713 0.9038 0.7383 0.9191 0.8625

Note: Autocorrelation-based SF has the highest overall score. Variance-based SF has the lowest overall score.

Table 5. Histogram-based SFs (20) and (22) average evaluation score for all through-focus series combined.

SF parameters Evaluation scores

SF name Threshhold Accuracy False max. Range Noise Overall
N θ (%) zacc zlm zran znoise ztot

1 Threshold count 0, . . . , 100 0.8787 0.8855 0.5671 0.8811 0.8283
2 Entropy – 0.7359 0.8273 0.4769 0.8662 0.7297
3 Range – 0.2856 0.6944 0.1954 0.7367 0.4139

Note: Histogram-based SF has the highest overall score. Range SF has the lowest overall score.
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Table 6. Intensity-based SFs (23) average evaluation score for all through-focus series
combined.

SF parameters Evaluation scores

Power Threshhold Accuracy False max. Range Noise Overall
N p θ (%) zacc zlm zran znoise ztot

1 2 0, . . . , 100 0.8207 0.8376 0.6294 0.8679 0.7995
2 1 0, . . . , 100 0.1304 0.8110 0.3574 0.8045 0.3940

Note: Squared intensity has the highest overall score. Absolute intensity has the lowest overall
score.

For derivative-based SFs it is clear that varying the pixel
difference parameter gives much better results, then varying
the threshold. Two SFs with pixels difference parameters k =
1 and 10, corresponding to the N = 1 in Table 2 are plotted
for the Gold-on-Carbon through-focus series with astigmatism
(Fig. 2e). We can see that for k = 1 the SF has a double-peak
effect. The double-peak effect in an SF was shown analytically
earlier (Erasmus & Smith 1982) for certain types of samples
and SFs. In Fig. 4 for k = 1 ztot = 0.7431 due to the
error in accuracy, one local maxima, noise amplitude and
low monotonicity range. For k = 10, the double-peak effect
disappears and ztot = 1. Figures 5 and 6 show the SF surface
for k ∈ [1, 441] for the Gold-on-Carbon series with astigmatism
present (Fig. 2e). In Fig. 5, the SFs are not scaled. In Figs 6 and
4, the SF values are scaled between 0 and 1 (25) for each

parameter k. Fig. 7 shows SF values for several defocus values
plotted versus pixel difference k.

The size of each image in the through-focus series is 442 ×
442 pixels. Evaluation shows that for k ∈ [6, 421] ztot = 1.
This effect was observed for most of the other experimental
through-focus series as well. The derivative-based SF does not
fail even if we take the differences between the pixels located
far from each other. For low values of k, it can be explained as
noise robustness growth. It was also shown by Batten (2000)
that the derivative-based SF performs better with k = 10 than
for smaller k < 10, for the Gold-on-Carbon SEM through-
focus series. However, the possibilities of using larger k were
not explored. To give an idea about the reasoning behind this
phenomena, we will look at derivative based SFs (11) closer.
Assuming that the threshold parameter θ = 0, the power

Table 7. Average evaluation score for all through-focus series combined.

SF family Accuracy False maxima Range Noise Overall score
N zacc zlm zran znoise ztot

1 Derivative 0.9767 0.9627 0.9033 0.9591 0.9592
2 Fourier transform 0.9708 0.9472 0.9070 0.9604 0.9545
3 Statistical 0.9311 0.9208 0.8587 0.9450 0.9197
4 Histogram 0.8787 0.8855 0.5671 0.8811 0.8283
5 Intensity 0.8207 0.8376 0.6294 0.8679 0.7995

Note: For each SF family the results with the highest overall scores are chosen from Tables 2–6.
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Fig. 4. Derivative-based SF (11) for experimental Gold-on-Carbon through-focus series with astigmatism. Then horizontal axis represents the defocus in
arbitrary units. The solid line is the function related to parameters k = 1, p = 2, θ = 0 and the dotted line is a the function related to k = 10, p = 2, θ =
0. The SF values are scaled between 0 and 1.
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Fig. 5. Scaled derivative-based SF (11) for Gold-on-Carbon through-focus series with astigmatism. The axes represent the defocus in arbitrary units, the
pixel difference parameter k and the SF values for parameters p = 2, θ = 0.

parameter p =2 andv=0, we get an SF that takes into account
the difference between pixels only in horizontal direction with
the highest overall score from table Table 2 (N = 2)

s(dhor)
2,k,0 =

N∑
i=1

M−k∑
j=1

( fi , j − fi , j+k )2 =
N∑

i=1

M−k∑
j=1

f 2
i , j

+
N∑

i=1

M∑
j=k+1

f 2
i , j − 2

N∑
i=1

M−k∑
j=1

fi , j fi , j+k . (26)

The first two terms of Eq. (26) are simply SF (26),
applied to the parts of the image. The third term is

an autocorrelation coefficient. When k is increasing the
autocorrelation coefficient tends to zero. Thus, derivative SF
(26) tends to the sum of SF (26) applied to small parts of
discrete image. We can clearly see it in Figs 5 and 7, which
with increasing of the pixel difference parameter k the width
of the SF peak first increases and then decreases. This could
be also explained by Eq. (26). It was shown by Erasmus &
Smith (1982) that the SF (26) has a local minimum in the
in-focus position in the case of astigmatism for amorphous
samples. Due to non-amorphous nature of most of the samples,
this minimum could be shifted to left or right. Because the
first and the second terms of (26) are the SF (26) applied to
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Fig. 6. The same results as in Fig. 5, but SF values are scaled between 0 and 1 for every k value.
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Fig. 7. Derivative-based SF (11) for experimental Gold-on-Carbon
through-focus series with astigmatism. The horizontal axis shows pixel
difference k. The vertical axis shows SF values. The several plots correspond
to the different defocus values.

different parts of an image, there is a high chance that the
local minimum of both functions will be obtained in different
positions. Thus, the composition of the two will average the
local minimum effect or even will help to get reed of it.

Figure 8 shows Fourier transform-based SFs for a low-
frequency band equal to 2 with different high-frequency
bands for Gold-on-Carbon series with astigmatism. The high-
frequency band is changing from 1 to 219. For certain high
frequencies, the similar double peak effect, as for the derivative-
based SF is observed. It clearly shows, how the SF parameter
varying can influence the SF quality.

According to Table 4 variance-based SF (N = 5) has much
lower overall evaluation score than autocorrelation based SFs
(N = 1, . . . , 4). It is important to note that the variance-
based SF is applied without varying any parameter. Probably,

a smart parameter choice for this function could lead to
higher evaluation results. Through Table 5 we can see the
histogram-based SF with threshold count (22) has much
higher evaluation score then entropy (21) and range (20). It
is remarkable, that enthropy and range functions are as well,
as variance, are applied without an extra parameter. Table 6
shows that the intensity-based SF has higher quality with the
power parameter p = 2.

A number of autofocus techniques has been applied to
variety of the SEM through-focus series, including through-
focus series with astigmatism. The modified evaluation
score procedure has been introduced. We have seen that
Fourier transform-based autofocus techniques with varying
frequency band parameter and derivative-based autofocus
techniques with varying pixel difference parameter show
better performance, compared to most of the other autofocus
techniques.

It has been shown earlier that the Fourier transform-
based SFs perform as well as the variance-based SFs, and the
derivative-based SFs fail due to the noise in SEM. However, our
research has shown that by extra variation of SF parameter the
sensitivity to noise can dramatically increase. Not only Fourier
transform and derivative, but also the autocorrelation-based
SFs show better performance for certain parameters than the
variance-based SFs. These techniques with a wide parameter
variation were not evaluated before, neither for the variety of
SEM samples, nor for light microscopy.

The varying parameters influence the SF quality (e.g. in
the case of astigmatism) and the SF peak width. However,
the quantification of this influence has still to be studied
in order to develop robust and independent SEM autofocus
algorithm. Surprisingly, satisfactory results were achieved for
large values of the pixel difference parameter with derivative-
based autofocus techniques. This can be explained through the
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Fig. 8. Scaled Fourier transform-based SF for Gold-on-Carbon through-focus series with astigmatism.
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fact, that derivative-based SF can be seen as a combination of
intensity and autocorrelation-based SFs.
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