
RTSS 2004 Work-In-Progress Proceedings, Lisbon, 5-8 December 2004 41

FPGAs as versatile configurable I/O devices in
 Hardware-in-the-Loop Simulation*)

Peter M. Visser, Marcel A. Groothuis and Jan F. Broenink

Twente Embedded Systems Initiative,
Cornelis J. Drebbel Institute for Mechatronics and Control Engineering,

Dept. of Electrical Engineering, University of Twente,
P.O.Box 217, NL-7500 AE Enschede, The Netherlands

Phone: +31 53 489 2788 Fax: +31 53 489 2223
E-mail: p.m.visser@utwente.nl

*) This work has been carried out as part of the Boderc project under the responsibility of the Embedded Systems Institute. This
project is partially supported by the Netherlands Ministry of Economic Affairs under the Senter TS program.

Abstract – This paper describes the use of FPGAs as versatile
reconfigurable devices in Hardware-in-the-Loop Simulation.
Advantages of software development (flexibility, short design
cycles) now also apply to the I/O hardware development.

 The development method considers the implementation proc-
ess as a stepwise refinement from physical system models and
control laws to efficient control computer code, and that all
phases are verified by simulation or HIL Simulation.

Experiments with a basic mechatronic set-up show that the
HIL Simulated system behaves as the real system, and can be
considered a useful addition in Systems Design. This can shorten
the development time considerable, especially when the mecha-
tronic product to be developed is complex, as is the case in our
Boderc project.

Keywords – Embedded control systems, real-time, model-
based approach, Hardware-in-the-Loop, Rapid Prototyping,
FPGA, I/O, Simulation

I. INTRODUCTION
Hardware-in-the-Loop Simulation is used as an aid in de-

signing and testing complex, multidisciplinary engineering
systems (in our case, mechatronic systems). Besides a more
thorough means of testing, it can also support concurrent en-
gineering in the design, allowing for an efficient use of human
resources, and a shorter time to market.

 Futhermore, it is posed that the flexibility of using FPGAs
for the I/O allows for a software approach for developing I/O
hardware. This means that advantages of software develop-
ment (flexibility, short design / implementation cycles, and
versatile functionality) can be applied to the development of
the I/O hardware.

The work described here is carried out in the context of the
Boderc project (Beyond the Ordinary, Design of Embedded
Real-time Control). In this project, academia and industry
work together to derive sophisticated methods for embedded
controller design of complex mechatronic systems.

First, a brief introduction is given of Hardware-In-the-Loop
Simulation (HIL Simulation or HILS), a kind of real-time
simulation [1]. Then, HIL Simulation is applied in the context
of a structured approach to embedded control systems software
implementation as presented in [2]. A benefit in this case is

that it allows for concurrent engineering in an early stage. Sec-
tion four elaborates on the use of FPGAs as I/O devices.

 A demonstration set-up shows a sample configuration
and its results.

II. HARDWARE-IN-THE-LOOP SIMULATION
Testing and simulation of control algorithms is an impor-

tant phase in the development of embedded control systems
(ECSs). Different types of simulation are possible during the
design process of a controller, ranging from simulation without
time limitations, to partial real-time simulation in which only
some parts of the complete control loop are simulated (see
Figure 1). Real-time simulation means here that the simulation
is performed such that the input and output signals show the
same time-dependent values as the real component [1].

In this research, Hardware-In-the-Loop simulation (HILS)
involves connecting the actual ECS to a computing unit with a
real-time simulation model of the plant, the middle situation of
Figure 1. The architecture of the actual experimental set-up is
shown in Figure 2.

Real-time simulation

real process,
simulated control

system

simulated process,
simulated control

system

simulated process,
real control

system

control prototyping hardware in the loop software in the loop

ECS PlantI/O

I/O

ECS PlantI/O

I/O

ECS PlantI/O

I/O

Real-time simulation

real process,
simulated control

system

simulated process,
simulated control

system

simulated process,
real control

system

control prototyping hardware in the loop software in the loop

Real-time simulation

real process,
simulated control

system

simulated process,
simulated control

system

simulated process,
real control

system

control prototyping hardware in the loop software in the loop

ECS PlantI/O

I/O

ECS PlantI/O

I/O

ECS PlantI/O

I/O

ECS PlantI/O

I/O
Figure 1: Real-time simulation methods (from [1]).

42

Signal
conditioning Controller

Sensor
simulation

Output
driver

Embedded Control System

Model of
the plant

Hardware-In-the-Loop simulator

A/D, PWM, etc.D/A, encoder, etc.

Actuator
simulation

Electrical interface Electrical interface

Signal
conditioning

Signal
conditioning ControllerController

Sensor
simulation

Sensor
simulation

Output
driver
Output
driver

Embedded Control System

Model of
the plant
Model of
the plant

Hardware-In-the-Loop simulator

A/D, PWM, etc.D/A, encoder, etc.

Actuator
simulation
Actuator

simulation

Electrical interface Electrical interface

Figure 2: Used HILS set-up.

Compared to ‘ordinary’ simulation, extra computer hard-
ware is needed: the simulation has to run in real time, the I/O
interfaces have to be available. Furthermore, conversion from
the I/O-signals back to computer numbers must be constructed
(the blocks “Sensor simulation” and “Actuator simulation” in
Figure 2). These interfaces are not commonly available, and
thus might be costly to produce.

The main advantages of HIL Simulation are:
• Plant models used during off-line design and simulation for

the controller development can now be used for the ECS
testing. This implies that, at software testing, the stubs repre-
senting the plant now can be proper models instead of simple
signal generators. The system to be tested is now closed
loop, which better resembles the final situation. This results
in better quality of the ECS tests, allowing for a less compli-
cated integration phase.

• Software design and testing can be moved to an earlier de-
sign phase, i.e. before a first physical/mechanical prototype
is available, allowing concurrent engineering between the
different design disciplines. This results in a shorter time to
market.

• The ECS software updates can easily be checked for consis-
tency with the design. Test benches written in the control de-
sign stage can be reused easily.

An additional benefit is that plant models used for off-line
design and simulation during the control development can be
reused for the when testing the ECS in the final stage.

III. DESIGN TRAJECTORY
The design trajectory proposed in [2] is used, see Figure 3.

Figure 3: Design trajectory for embedded control systems

The trajectory is summarized into the following steps:
• Model the plant and controller; verify them by simulation.
• ECS implementation; verify by simulation.
• Realization: real prototype or plant with real ECS: validate,

measure and test.

In combination with hardware-in-the-loop simulation this
trajectory is not a waterfall approach (followed from the left to
the right) but iterated in a micro-cycle fashion [3]. A simple
physical model is made, which is based on basic physical prin-
ciples. A corresponding simple control law is designed. A sim-
ple ECS implementation is made. This will be run on the
hardware-in-the-loop simulation and tested. Next the physical
model is extended, the control law is extended and the ECS
implementation is extended and so on. This allows concurrent
engineering in an early stage and tries to avoid the pitfall of
system integration problems.

By using FPGAs as I/O devices, there are two distinct
modes for the HIL-Simulation to run: a direct I/O link mode
and a hardware compatible I/O mode. In the former case there
is no real I/O, the controller and plant are connected through
signals in the exact same manner as in the model. In the latter
case effects due to non-idealness of computer hardware [2] are
taken into account by fully implementing the I/O as depicted in
Figure 2. Also the HILS and the plant can be exchanged with-
out making changes to the ECS.

So starting with a simple design the direct I/O link mode is
used and iterating to a more detailed, and final design the
hardware compatible I/O mode is used.

IV. USE OF FPGA’S AS I/O DEVICES
Figure 2 shows four blocks that represent the I/O devices be-
tween the controller and the model of the plant. (signal condi-
tioning, output driver, sensor simulation and actuator simula-
tion) All these hardware I/O devices can be emulated by soft-
ware configuration in the FPGAs. A tremendous advantage of
FPGAs over standard I/O devices is their high configurability.
Another advantage of FPGAs is that it replaces the design of
dedicated HILs I/O hardware, specific for one kind of plant,
with general purpose hardware that can be configured by soft-
ware. A disadvantage is that the implementation of FPGA con-
figuration takes time. However, this is a “one-time” issue; once
configurations are implemented they can be easily reused.

 Many different types of I/O can be used with the same de-
vice. The software of the ECS can remain the same and only
the configuration of the FPGAs need to be altered. In the con-
text of the proposed design trajectory this is beneficial, differ-
ent design choices can be easily simulated and analyzed.

The FPGAs in this set-up are chosen to be fast enough for
I/O conversion in the field of mechatronic control applications.
The FPGAs are on a PCB board which is available in both a
PCI and a PC104-PCI bus. The FPGA has 200.000 system
gates and 56k blockram and can run up to 200MHz. The PCB
board, anything I/O board, has 72 general purpose digital I/O
pins [4].

V. DEMONSTRATION SET-UP
A set-up, called Linix, is used as mechatronic platform.

Linix consists of one motor and one encoder which are both on
the same axis. The motor drives a wheel which is connected by
a rubber band to another wheel, the load. Both the model of
Linix and a controller are modeled in 20-SIM [5]. Via auto-
matic code generation the HILS or the real plant can be created
and run. Figure 4 depicts this process.

 43

Controller

Controller

Quantize

A
D

PWM Linix

Plant

20-sim

Code generation
HILs

PC/104
ECS

PC/104
or

Linix

Controller

ControllerController

Quantize

A
D

A
D

PWM Linix

Plant

20-sim

Code generation
HILs

PC/104
HILs

PC/104
ECS

PC/104
ECS

PC/104
or

LinixLinix
Figure 4: Code generation for HILS

As proof of concept the simulation results of the model are
compared with the real-plant and the HILS. An x86-
compatible PC is used as HILS. A PC/104 board is used for the
ECS.

A. The plant model
The model of the plant is depicted in Figure 5 below:

!
DAC1

?
ADC1

P
MotorPosition

ME q

output

input

Figure 5: The Linix plant model

The plant was simulated as a separate entity before design-
ing the controller conform the design trajectory. The and

special blocks reflect the I/O, which is necessary for code
generation.

B. The Controller

The controller for the Linix set-up is a discrete PID control-
ler. Figure 6 shows the internals of this controller. The control-
ler inputs are the reference position and a feedback of the real
position. The output is the motor steering signal which will be
converted into a corresponding PWM duty cycle.

PID
MotionProfile1

?
ENC1

SignalLimiter1

!
PWM1

PWM_Out

EIU_input

Figure 6: The discrete PID controller of Linix

C. Simulation and results
All state-variables and other signals both of the plant and

the controller can be inspected in the simulation environment.
The most interesting signals are the angular positions of the
motor and the load, hence the signals from the position sensors
in the model. On the HIL simulator only the input and output
of the ECS were monitored, in order to compare the results
with the real plant (on the real plant, only the inputs and out-
puts can be captured). Additional signals can be inspected but
have to be added by special blocks, in the model. The same
holds for the controller. When the controller was run on the
Embedded Control System only the input and output signals
were inspected. Additional signals can also be monitored if
special code blocks are added. The monitoring of these signals
are soft real-time and will not influence the real-time behavior
of the ECS. Currently slack-time cannot be measured yet. (Ei-
ther on the HILS or ECS).

As proof of concept, first a simulation and a measurement
of the controller with the real plant is carried out and as second
step the real plant is replaced by a simulation of the Linix set-
up on the HIL Simulator PC. The controller uses the same
hardware and software in both cases. Only the external I/O
connection cable will be replaced from the real set-up to the
simulation PC. The controller software is the exactly the
same.

Simulation versus real set-up
The first experiment has been performed to compare the

20-SIM simulation results with the results from the real plant
using code generation for the controller. Figure 7 shows the
course of the PWM and encoder signals when applying a mo-
tion profile as reference signal. This test is performed with a
sample rate of 1 kHz for the controller. Euler was used as the
integration method. The position error depicts the error be-
tween the simulated position and the position of the real set-
up.

The simulation signals are comparable with the measured
signals on the real set-up. A small steady state error exists on
the position of the real plant. This is due to an unmodeled
dead-zone in the PWM steering of the real motor. When the
controller output (PWM duty cycle) is smaller than ±6% the
Linix motor does not turn.

 Figure 7: Comparing the simulated Linix with the real Linix

?

!

44

Simulation versus HIL simulation
The second test has been performed to compare the 20-SIM

simulation results with the HIL simulation results. Code has
been generated for both the controller and the plant and the
input and output signals were logged and imported into 20-
SIM.

Figure 8 shows a comparison between the 20-SIM simula-
tion results and the ECS-HIL simulator results. The most im-
portant difference between simulation and HIL simulation is
the physical I/O interconnection. A comparison between the
20-SIM motor position and the HIL simulator motor position
(position error line in Figure 8) shows that the PWM I/O and
encoder I/O ports are accurate enough for the HIL Simulation.
The error is almost zero and shows only some quantization
noise. The HIL simulator is able to convert in real-time the
controller output signals into the corresponding plant signals.
For the test set-up, the HIL simulator can run in real-time at a
sample frequency up to 50 kHz.

The tests have been performed with the controller running
at 1 kHz and the HIL Simulator running at 10 kHz. The HIL
Simulator runs at a 10 times higher sample frequency for better
emulation of the continuous-time system (the real plant has its
current state always available, it determines it infinitely fast).
The controller and the HIL simulator are not synchronized, i.e.
there is no common master clock. The controller computation
scheme used here is the measure steer calculate method, for
both the controller and the HIL simulator to get a precisely
periodic steering. This means that at every sample, first a value
is measured and the resulting steering value of the previous
sample is send to the actuator before the new value is calcu-
lated.

The results from both tests show that the principle of
Hardware-In-the-Loop Simulation is working. More simula-
tions and measurements need to be performed, e.g. to check
whether there is a possible delay at the HIL simulation out-
puts compared with the real plant status. One sample delay
can introduce a significant error in the position calculation.
For example, if the HIL simulator is running at 10 kHz and
a the wheel is rotating with an angular velocity of 10 m/s,
one sample delay (0,1 ms) will cause an error in the position
1 mm. Experimenting with encoder resolutions, PWM fre-
quencies and controller and HILS sample rates is also de-
sired.

VI. CONCLUSIONS AND RECOMMENDATIONS
Conclusions:

• Using FPGAs as configurable versatile I/O devices
works and is a cheap means to performing a range of
tests.

• The HIL simulation approach as in the proposed design
trajectory allows for concurrent engineering in an early
phase.

• A disadvantage is that the implementation of FPGA
configuration takes time. However, this is a “one-time”
operation; once configurations are implemented they
can be easily reused.

Recommendations:
• More testing of different I/O configurations to check

differences in details of behavior and to precisely indi-
cate in which situation a specific HIL Simulation can
benefit.

• Refining the design trajectory of [2] in order to optimally
benefit from the versatility provided by the FPGAs and
the design support given by HIL Simulation.

• Performance measurements are necessary to study to real-
time behavior and hence the applicability. An important
issue is to determine when the code running on the FPGA
becomes the limiting factor of the total HIL Simulator.
Also a comparison with traditional HIL Simulators is rec-
ommended.

REFERENCES
[1] R. Isermann, J. Schaffnit, and S. Sinsel, “Hardware-in-the-loop

simulation for the design and testing of engine control
systems,” Control Engineering Practice, vol. 7, pp. 643-653,
1998.

[2] J. F. Broenink and G. H. Hilderink, “A structured approach to
embedded control systems implementation”, In M. W. Spong,
D. Repperger, and J. M. I. Zannatha, Eds., 2001 IEEE
International Conference on Control Applications. México
City, México, 2001.

[3] B. P. Douglass, Doing Hard Time, Developing Real-Time
Systems with UML, Objects, Frameworks, and patterns:
Addison Wesley Longman Inc., 1999.

[4] Mesa Electronics, “Mesa Electronics”,
http://www.mesanet.com, 2004.

[5] CLP, “20-SIM” http://www.20sim.com: Controllab Products,
2002.

Figure 8: Comparing Simulation and HIL Simulation

