
RTSS 2004 Work-In-Progress Proceedings, Lisbon, 5-8 December 2004 41 

FPGAs as versatile configurable I/O devices in  
 Hardware-in-the-Loop Simulation*) 

 
Peter M. Visser, Marcel A. Groothuis and Jan F. Broenink 

Twente Embedded Systems Initiative, 
Cornelis J. Drebbel Institute for Mechatronics and Control Engineering, 

Dept. of Electrical Engineering, University of Twente, 
P.O.Box 217, NL-7500 AE Enschede, The Netherlands 

Phone: +31 53 489 2788   Fax: +31 53 489 2223 
E-mail: p.m.visser@utwente.nl 

 

 
*) This work has been carried out as part of the Boderc project under the responsibility of the Embedded Systems Institute. This 
project is partially supported by the Netherlands Ministry of Economic Affairs under the Senter TS program. 

Abstract – This paper describes the use of FPGAs as versatile 
reconfigurable devices in Hardware-in-the-Loop Simulation.  
Advantages of software development (flexibility, short design 
cycles) now also apply to the I/O hardware development.  

 The development method considers the implementation proc-
ess as a stepwise refinement from physical system models and 
control laws to efficient control computer code, and that all 
phases are verified by simulation or HIL Simulation.  

Experiments with a basic mechatronic set-up show that the 
HIL Simulated system behaves as the real system, and can be 
considered a useful addition in Systems Design. This can shorten 
the development time considerable, especially when the mecha-
tronic product to be developed is complex, as is the case in our 
Boderc project. 
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I. INTRODUCTION 
Hardware-in-the-Loop Simulation is used as an aid in de-

signing and testing complex, multidisciplinary engineering 
systems (in our case, mechatronic systems). Besides a more 
thorough means of testing, it can also support concurrent en-
gineering in the design, allowing for an efficient use of human 
resources, and a shorter time to market.  

 Futhermore, it is posed that the flexibility of using FPGAs 
for the I/O allows for a software approach for developing I/O 
hardware. This means that advantages of software develop-
ment (flexibility, short design / implementation cycles, and 
versatile functionality) can be applied to the development of 
the I/O hardware. 

The work described here is carried out in the context of the 
Boderc project (Beyond the Ordinary, Design of Embedded 
Real-time Control). In this project, academia and industry 
work together to derive sophisticated methods for embedded 
controller design of complex mechatronic systems.  

First, a brief introduction is given of Hardware-In-the-Loop 
Simulation (HIL Simulation or HILS), a kind of real-time 
simulation [1]. Then, HIL Simulation is applied in the context 
of a structured approach to embedded control systems software 
implementation as presented in [2]. A benefit in this case is 

that it allows for concurrent engineering in an early stage. Sec-
tion four elaborates on the use of FPGAs as I/O devices.  

   A demonstration set-up shows a sample configuration 
and its results. 

II. HARDWARE-IN-THE-LOOP SIMULATION 
Testing and simulation of control algorithms is an impor-

tant phase in the development of embedded control systems 
(ECSs). Different types of simulation are possible during the 
design process of a controller, ranging from simulation without 
time limitations, to partial real-time simulation in which only 
some parts of the complete control loop are simulated (see 
Figure 1). Real-time simulation means here that the simulation 
is performed such that the input and output signals show the 
same time-dependent values as the real component [1].  

In this research, Hardware-In-the-Loop simulation (HILS) 
involves connecting the actual ECS to a computing unit with a 
real-time simulation model of the plant, the middle situation of 
Figure 1. The architecture of the actual experimental set-up is 
shown in Figure 2. 
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Figure 1: Real-time simulation methods (from [1]). 
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Figure 2: Used HILS set-up. 

Compared to ‘ordinary’ simulation, extra computer hard-
ware is needed: the simulation has to run in real time, the I/O 
interfaces have to be available. Furthermore, conversion from 
the I/O-signals back to computer numbers must be constructed 
(the blocks “Sensor simulation” and “Actuator simulation” in 
Figure 2). These interfaces are not commonly available, and 
thus might be costly to produce. 

The main advantages of HIL Simulation are: 
• Plant models used during off-line design and simulation for 

the controller development can now be used for the ECS 
testing. This implies that, at software testing, the stubs repre-
senting the plant now can be proper models instead of simple 
signal generators. The system to be tested is now closed 
loop, which better resembles the final situation. This results 
in better quality of the ECS tests, allowing for a less compli-
cated integration phase. 

• Software design and testing can be moved to an earlier de-
sign phase, i.e. before a first physical/mechanical prototype 
is available, allowing concurrent engineering between the 
different design disciplines. This results in a shorter time to 
market. 

• The ECS software updates can easily be checked for consis-
tency with the design. Test benches written in the control de-
sign stage can be reused easily. 

An additional benefit is that plant models used for off-line 
design and simulation during the control development can be 
reused for the when testing the ECS in the final stage. 

III. DESIGN TRAJECTORY 
The design trajectory proposed in [2] is used, see Figure 3. 
 

 
Figure 3: Design trajectory for embedded control systems 

The trajectory is summarized into the following steps:  
• Model the plant and controller; verify them by simulation. 
• ECS implementation; verify by simulation. 
• Realization: real prototype or plant with real ECS: validate, 

measure and test. 

In combination with hardware-in-the-loop simulation this 
trajectory is not a waterfall approach (followed from the left to 
the right) but iterated in a micro-cycle fashion [3]. A simple 
physical model is made, which is based on basic physical prin-
ciples. A corresponding simple control law is designed. A sim-
ple ECS implementation is made. This will be run on the 
hardware-in-the-loop simulation and tested. Next the physical 
model is extended, the control law is extended and the ECS 
implementation is extended and so on. This allows concurrent 
engineering in an early stage and tries to avoid the pitfall of 
system integration problems. 

By using FPGAs as I/O devices, there are two distinct 
modes for the HIL-Simulation to run: a direct I/O link mode 
and a hardware compatible I/O mode. In the former case there 
is no real I/O, the controller and plant are connected through 
signals in the exact same manner as in the model. In the latter 
case effects due to non-idealness of computer hardware [2] are 
taken into account by fully implementing the I/O as depicted in 
Figure 2. Also the HILS and the plant can be exchanged with-
out making changes to the ECS. 

So starting with a simple design the direct I/O link mode is 
used and iterating to a more detailed, and final design the 
hardware compatible I/O mode is used.  

IV.  USE OF FPGA’S AS I/O DEVICES 
Figure 2 shows four blocks that represent the I/O devices be-
tween the controller and the model of the plant. (signal condi-
tioning, output driver, sensor simulation and actuator simula-
tion) All these hardware I/O devices can be emulated by soft-
ware configuration in the FPGAs. A tremendous advantage of 
FPGAs over standard I/O devices is their high configurability. 
Another advantage of FPGAs is that it replaces the design of 
dedicated HILs I/O hardware, specific for one kind of plant, 
with general purpose hardware that can be configured by soft-
ware. A disadvantage is that the implementation of FPGA con-
figuration takes time. However, this is a “one-time” issue; once 
configurations are implemented they can be easily reused. 

 Many different types of I/O can be used with the same de-
vice. The software of the ECS can remain the same and only 
the configuration of the FPGAs need to be altered. In the con-
text of the proposed design trajectory this is beneficial, differ-
ent design choices can be easily simulated and analyzed. 

The FPGAs in this set-up are chosen to be fast enough for 
I/O conversion in the field of mechatronic control applications. 
The FPGAs are on a PCB board which is available in both a 
PCI and a PC104-PCI bus. The FPGA has 200.000 system 
gates and 56k blockram and can run up to 200MHz. The PCB 
board, anything I/O board, has 72 general purpose digital I/O 
pins [4]. 

V. DEMONSTRATION SET-UP 
A set-up, called Linix, is used as mechatronic platform. 

Linix consists of one motor and one encoder which are both on 
the same axis. The motor drives a wheel which is connected by 
a rubber band to another wheel, the load. Both the model of 
Linix and a controller are modeled in 20-SIM [5]. Via auto-
matic code generation the HILS or the real plant can be created 
and run. Figure 4 depicts this process. 
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Figure 4: Code generation for HILS 

As proof of concept the simulation results of the model are 
compared with the real-plant and the HILS. An x86-
compatible PC is used as HILS. A PC/104 board is used for the 
ECS. 

A. The plant model 
The model of the plant is depicted in Figure 5 below: 
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Figure 5: The Linix plant model 

The plant was simulated as a separate entity before design-
ing the controller conform the design trajectory. The and 

special blocks reflect the I/O, which is necessary for code 
generation.  

B. The Controller 

The controller for the Linix set-up is a discrete PID control-
ler. Figure 6 shows the internals of this controller. The control-
ler inputs are the reference position and a feedback of the real 
position. The output is the motor steering signal which will be 
converted into a corresponding PWM duty cycle.  
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Figure 6: The discrete PID controller of Linix 

C. Simulation and results 
All state-variables and other signals both of the plant and 

the controller can be inspected in the simulation environment. 
The most interesting signals are the angular positions of the 
motor and the load, hence the signals from the position sensors 
in the model. On the HIL simulator only the input and output 
of the ECS were monitored, in order to compare the results 
with the real plant (on the real plant, only the inputs and out-
puts can be captured). Additional signals can be inspected but 
have to be added by special blocks, in the model. The same 
holds for the controller. When the controller was run on the 
Embedded Control System only the input and output signals 
were inspected. Additional signals can also be monitored if 
special code blocks are added. The monitoring of these signals 
are soft real-time and will not influence the real-time behavior 
of the ECS. Currently slack-time cannot be measured yet. (Ei-
ther on the HILS or ECS). 

As proof of concept, first a simulation and a measurement 
of the controller with the real plant is carried out and as second 
step the real plant is replaced by a simulation of the Linix set-
up on the HIL Simulator PC. The controller uses the same 
hardware and software in both cases. Only the external I/O 
connection cable will be replaced from the real set-up to the 
simulation PC. The controller software is the exactly the 
same.  

Simulation versus real set-up 
The first experiment has been performed to compare the 

20-SIM simulation results with the results from the real plant 
using code generation for the controller. Figure 7 shows the 
course of the PWM and encoder signals when applying a mo-
tion profile as reference signal. This test is performed with a 
sample rate of 1 kHz for the controller. Euler was used as the 
integration method. The position error depicts the error be-
tween the simulated position and the position of the real set-
up.  

The simulation signals are comparable with the measured 
signals on the real set-up. A small steady state error exists on 
the position of the real plant. This is due to an unmodeled 
dead-zone in the PWM steering of the real motor. When the 
controller output (PWM duty cycle) is smaller than ±6% the 
Linix motor does not turn. 

 
 Figure 7: Comparing the simulated Linix with the real Linix 
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Simulation versus HIL simulation 
The second test has been performed to compare the 20-SIM 

simulation results with the HIL simulation results. Code has 
been generated for both the controller and the plant and the 
input and output signals were logged and imported into 20-
SIM. 

Figure 8 shows a comparison between the 20-SIM simula-
tion results and the ECS-HIL simulator results. The most im-
portant difference between simulation and HIL simulation is 
the physical I/O interconnection. A comparison between the 
20-SIM motor position and the HIL simulator motor position 
(position error line in Figure 8) shows that the PWM I/O and 
encoder I/O ports are accurate enough for the HIL Simulation. 
The error is almost zero and shows only some quantization 
noise. The HIL simulator is able to convert in real-time the 
controller output signals into the corresponding plant signals. 
For the test set-up, the HIL simulator can run in real-time at a 
sample frequency up to 50 kHz. 

The tests have been performed with the controller running 
at 1 kHz and the HIL Simulator running at 10 kHz. The HIL 
Simulator runs at a 10 times higher sample frequency for better 
emulation of the continuous-time system (the real plant has its 
current state always available, it determines it infinitely fast). 
The controller and the HIL simulator are not synchronized, i.e. 
there is no common master clock. The controller computation 
scheme used here is the measure steer calculate method, for 
both the controller and the HIL simulator to get a precisely 
periodic steering. This means that at every sample, first a value 
is measured and the resulting steering value of the previous 
sample is send to the actuator before the new value is calcu-
lated. 

The results from both tests show that the principle of 
Hardware-In-the-Loop Simulation is working. More simula-
tions and measurements need to be performed, e.g. to check 
whether there is a possible delay at the HIL simulation out-
puts compared with the real plant status. One sample delay 
can introduce a significant error in the position calculation. 
For example, if the HIL simulator is running at 10 kHz and 
a the wheel is rotating with an angular velocity of 10 m/s, 
one sample delay (0,1 ms) will cause an error in the position 
1 mm. Experimenting with encoder resolutions, PWM fre-
quencies and controller and HILS sample rates is also de-
sired. 

VI. CONCLUSIONS AND RECOMMENDATIONS  
Conclusions: 

• Using FPGAs as configurable versatile I/O devices 
works and is a cheap means to performing a range of 
tests. 

• The HIL simulation approach as in the proposed design 
trajectory allows for concurrent engineering in an early 
phase. 

• A disadvantage is that the implementation of FPGA 
configuration takes time. However, this is a “one-time” 
operation; once configurations are implemented they 
can be easily reused. 

Recommendations: 
• More testing of different I/O configurations to check 

differences in details of behavior and to precisely indi-
cate in which situation a specific HIL Simulation can 
benefit. 

• Refining the design trajectory of [2] in order to optimally 
benefit from the versatility provided by the FPGAs and 
the design support given by HIL Simulation. 

• Performance measurements are necessary to study to real-
time behavior and hence the applicability. An important 
issue is to determine when the code running on the FPGA 
becomes the limiting factor of the total HIL Simulator. 
Also a comparison with traditional HIL Simulators is rec-
ommended.  
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