
Probabilistic Modelling and Evaluation of Soft
Real-Time Embedded Systems�

Oana Florescu1, Menno de Hoon2, Jeroen Voeten1,3, and Henk Corporaal1

1 Eindhoven University of Technology
2 Chess Information Technology BV

3 Embedded Systems Institute

Abstract. Soft real-time systems are often analysed using hard real-
time techniques, which are not suitable to take into account the deadline
misses rate allowed in such systems. Therefore, the resulting
system is over-dimensioned, thus expensive. To appropriately dimension
soft real-time systems, adequate models, capturing their varying runtime
behaviour, are needed. By using the concepts of a mathematically defined
language, we provide a modelling approach based on patterns that are
able to express the variations appearing in the system timing behaviour.
Based on these modelling patterns, models can be easily created and are
amenable to average case performance evaluation. By the means of a
case study, we show the type of results that can be obtained from such
an evaluation and how these results are used to dimension the system.

1 Introduction

Due to the high time-to-market constraint in the embedded systems industry,
accompanied by increasing demand for more functionality and tighter require-
ments on cost, speed (throughput) and energy consumption of the final product,
the industry has shifted its focus from improving the system implementation
phase to improving the system design phase. To this end, early evaluation of
system properties is needed to make correct decisions that guarantee the satis-
faction of the functional and non-functional requirements. This is where design
space exploration and system-level performance modelling techniques come into
scene. In the past, such techniques were applied mainly in the design of hard
real-time systems. However, the higher demands on the quality of products re-
quire such techniques also for soft real-time systems, like DVD players for the
synchronisation of the audio and video stream decoding, or printers for the ac-
curacy of printing an image on a sheet. As no suitable techniques are available,
the timing requirements of such systems are treated as hard, and consequently,
the resulting system is over-dimensioned. However, as these requirements are
not critical factors, instead of having all the deadlines met, one should be able
to reason about the rate of deadlines misses which is allowed in soft real-time
systems.
� This work has been carried out as part of the Boderc project under the responsibil-

ity of the Embedded Systems Institute. This project is partially supported by the
Netherlands Ministry of Economic Affairs under the Senter TS program.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 206–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Probabilistic Modelling and Evaluation 207

Contributions of the paper. In this paper, we present an approach for prob-
abilistic modelling and evaluation of soft real-time embedded systems. The ap-
proach is based on the concepts of a formally defined general-purpose modelling
language, POOSL, which enables creation of models that describe systems be-
haviour using probabilistic distributions. Based on this, we developed a library
of probabilistic modelling patterns to be used when composing models for design
space exploration of soft real-time systems. These patterns act like templates
that can be used in any situation, reducing the necessary modelling effort. Based
on them, we can analyse the varying timing behaviour (average case analysis)
of the system, instead of considering only its worst case. The analysis results ex-
pose the degree to what extent the requirements can be met by a certain system
architecture and decisions can be made with respect to reducing the performance
of the necessary architecture for lowering the cost and the energy consumption.

Related research. An extensive overview of performance modelling and analy-
sis methodologies is given in [1] and [2]. They range from analytical compu-
tation (Modular Performance Analysis [3], UPPAAL [4]) to simulation-based
estimation (Spade [5], Artemis [6]). The analytical computation techniques are
exhaustive in the sense that all possible behaviours of the system are taken
into account, whereas simulation of models allows the investigation of a limited
number of behaviours. Thus, the obtained analysis results are estimates of the
real performance of the system. For credibility of results, models created in both
types of techniques need to be amenable to mathematical analysis (see [7]), us-
ing mathematical structures like Real-Time Calculus [8], timed automata [9] or
Kahn process networks [10]. As in general analytical approaches do not scale
with the complexity of the industrial systems, simulation-based estimation of
performance properties is used more often.

With respect to timing behaviour, an impressive amount of work has been
carried out in the area of schedulability analysis (e.g. [11], [12], [13]) focussing
on worst case. However, less work addresses the analysis of systems with prob-
abilistic behaviour. For soft real-time systems, it is important to analyse the
variations in the runtime behaviour to determine the likelihood of occurrence
of certain undesired situations and, based on that, to dimension the system.
In [14] and [7] it is showed that the techniques proposed in this area are quite
restrictive. Some of them target certain application classes, being limited to
uni-processor architectures or supporting only exponential distributions for ex-
pressing the probabilistic behaviour; other approaches address specific scheduling
policies or assume highly-loaded systems. Overcoming these issues, the modelling
approach presented in this paper can capture any kind of probabilistic distribu-
tion of system behaviour and any scheduling policy is allowed for the analysis of
timing behaviour. Although the evaluation of the system properties is based on
simulations, due to the formal semantics of the modelling language, the accuracy
of the results can be determined.

The paper is organised as follows. The case study used throughout the paper
to illustrate various ideas is presented in section 2. In section 3, the modelling
approach is described together with the modelling language used, whereas the

208 O. Florescu et al.

performance analysis method is presented in section 4 next to the results ob-
tained for the case study. Conclusions are drawn in section 5.

2 Case Study

The case study discussed in this paper is an in-car navigation system. The system
has three clusters of functionality: the man-machine interface (MMI) handles the
interaction with the user; the navigation functionality (NAV) deals with route-
planning and navigation guidance; the radio (RAD) is responsible for basic tuner
and volume control, as well as receiving traffic information from the network.
For this system, three application scenarios are possible: the ChangeVolume sce-
nario allows users to change the volume; the ChangeAddr scenario enables route
planning by looking up addresses in the maps stored in the database; in the
HandleTMC scenario the system needs to handle the navigation messages re-
ceived from the network. Each of these scenarios is described by a UML message
sequence diagram, like the one shown in fig. 1. A detailed description of the
system and of its scenarios can be found in [3].

The problem related to this system was to find suitable platform candidates
that meet the timing requirements of the application. To explore the design
space, a few platforms, presented in fig. 2, were proposed and analysed using
Modular Performance Analysis (MPA) in [3]. MPA is an analytical technique
in which the functionality of a system is characterised by the incoming and
outgoing event rates, message sizes and execution times. Based on Real-Time
Calculus, hard upper and lower bounds of the system performance are com-
puted. However, these bounds are in general not exact, meaning that they are
larger/smaller than the actual worst/best case. Thus, the analysis performed is
conservative.

As the in-car navigation is a soft real-time system that allows a certain per-
centage of deadline misses, it is doubtfully interesting to explore if there is an

Fig. 1. ChangeVolume scenario

(A)

(E)
(D)(C)

(B)

22 MIPS

113 MIPS 11 MIPS

72 kbps

22 MIPS

113 MIPS 11 MIPS

72 kbps 57 kbps

260 MIPS 22 MIPS

72 kbps

113 MIPS 130 MIPS

72 kbps

260 MIPS

MMI

RAD

NAV

MMI

RADNAV

MMI

RAD

NAV

MMI

RADNAV

MMI

RADNAV

Fig. 2. Platforms proposed for analysis

Probabilistic Modelling and Evaluation 209

architecture of lower cost and performance than what have been obtained with
MPA that can still meet the timing requirements.

3 Modelling of the System

One of the approaches for performing systematic design space exploration is the
Y-chart scheme introduced in [15]. This scheme makes a distinction between ap-
plications (the required functional behaviour) and platforms (the infrastructure
used to perform this functional behaviour). The design space can be explored
by evaluating different mappings of applications onto platforms. In the following
subsections, first the modelling language POOSL is briefly presented and then
the models of the application and of the platform are explained, whereas the
environment model and the mapping are detailed in [16].

3.1 POOSL Modelling Language

The Parallel Object-Oriented Specification Language (POOSL) [17] lies at the
core of the system-level design method called Software/Hardware Engineering
(SHE). POOSL contains a set of powerful primitives to formally describe concur-
rency, probabilistic behaviour, (synchronous) communication, timing and func-
tional features of a system into a single executable model. Its formal semantics
is based on timed probabilistic labelled transition systems. This mathematical
structure guarantees a unique and unambiguous interpretation of POOSL mod-
els. Hence, POOSL is suitable for specification and, subsequently, verification
of correctness and analytical computation of performance for real-time systems.
However, due to the state space explosion problem, simulation-based estimations
are used for the evaluation of system properties.

The SHE method is accompanied by two simulation tools. SHESim is a graph-
ical environment intended for incremental specification, modification and vali-
dation of POOSL models. Rotalumis is a high-speed simulator, enabling fast
evaluation of system properties. Both tools have been proved to correctly simu-
late a model with respect to the formal semantics of the language ([18]).

3.2 Application Model

The functional behaviour of a real-time embedded system is implemented
through a number of tasks that communicate with each other. In our approach,
they are modelled as POOSL process objects. Using the primitives of the lan-
guage, any kind of real-time behaviour can be expressed (e.g. concurrency, com-
munication, data computations).

As an example, the HandleKeyPress (visualised in the UML diagram in
fig. 1) task model is presented in fig. 3. The activation of the task is triggered by
an event (i.e. turning the knob by the user). The computations performed by the
task, modelled by the method Computation, impose a certain load on a CPU
and have a deadline D, modelled by the delay statement. When the deadline
expires, or when the computation finishes (if it takes longer than D) the result

210 O. Florescu et al.

HandleKeyPress()()
| E : Event, R : Results |

/* a new event E is received */
in?event(E);
par
par

Computation(E)(R)

and
delay D

rap;
/* the result R is sent */
out!result(R)

and
/* handle another event */
HandleKeyPress()()

rap.

Fig. 3. HandleKeyPress task
model

Schedule()() | req, oldreq : Request |
sel

task?schedule(req);
req setCurrentLoad();
SchPolicy scheduleRequest(req);
if (SchPolicy hasHighestPriority(req) == true)
then

sel
toResource!execute(req)

or
toResource!preemption;
fromResource?stopped(oldreq);
toResource!execute(req);
SchPolicy update(oldreq)

les
fi;
Schedule()()

or
fromResource?stopped(oldreq);
task!executed;
req := SchPolicy removeRequest(oldreq);
if (req != nil)
then toResource!execute(req) fi;
Schedule()()

les.

Fig. 4. Scheduler model

is sent as a message to another task. By recursively calling HandleKeyPress

method in the and branch of the outer par statement, it is ensured that another
available message can be immediately received.

The deadline and the load (expressed as the number of instructions to be
executed by a CPU) represent the parameters of a real-time task. As the Com-

putation performed by a task usually depends on the incoming event, the load
is not a fixed value, but varies between a minimum and a maximum (best case
and worst case). These parameters affect the scheduling of tasks on a platform.

3.3 Platform Model

The platform on which the software runs is described as a collection of compu-
tation and communication resources. As there is no large conceptual difference
between them (they receive requests, execute them and send back notification
on completion), we have conceived a single model for both types of resources.

As a resource is usually shared by a number of concurrent tasks, a scheduler is
needed to arbitrate the access. The modelling pattern for a scheduler is given in
fig. 4. The scheduler can either receive scheduling requests from newly activated
tasks (the outer sel branch), or notifications from the platform about completed
requests (the or branch). In case of a newly activated task, the setCurrentLoad
method sets its current load according to a probabilistic distribution which ap-
propriately captures the fluctuations in the task load. The data object SchPolicy
is an instance of a data class implementing the actual scheduling algorithm. For
specifying different policies, different subclasses can be defined. Any type of
policy can be modelled (e.g. EDF, RMA, round-robin). An EDF scheduling

Probabilistic Modelling and Evaluation 211

scheduleRequest(req : Request): SchPolicy
| i, j : Integer |

i := 1;
while(req getDeadline() >

list get(i) getDeadline()) do
i:=i+1

od;
list insert(i, req);
return self.

Fig. 5. EDF scheduling policy

Resource()() | req: Request,
loadLeft, tstart, tstop : Integer |

sch?execute(req);
delay initialLatency sample();
tstart := currentTime;
abort

delay req getLoad() / throughput
with sch?preemption;
tstop := currentTime;
loadLeft := req getLoad() -

(tstop - tstart) * throughput;
req setLoad(loadLeft);
sch!stopped(req);
Resource()().

Fig. 6. Resource model

policy is given as an example in fig. 5. A list is kept with all the ready requests,
and the new request req is inserted in this list based on its deadline value. For
the requests completed by the resource, the scheduler checks if the deadline was
missed and monitors the percentage of misses during simulation.

Fig. 6 presents the resource model as a POOSL process. The parameters of
this modelling pattern are the initialLatency, which is due to task context switch
time, in case of a CPU, and to the time to transfer the first bit of a message, in
case of a bus, and the throughput. While throughput of a resource has a constant
value, the initialLatency may vary due to diverse factors (e.g. cache). Therefore,
we have modelled it is as a data object of some distribution type. Furthermore,
we have enabled preemption of the execution of a request on a resource using
the abort statement. Once finished or preempted, the remaining execution time
of a request is computed and the request is sent back to the scheduler.

4 Average Case Performance Analysis

The modelling patterns presented in the previous section can be used to auto-
matically generate a Y-chart-compliant model of a system. Different application-
platform configurations can be specified and evaluated. During the simulation
of such a model, the scheduler reports if there are deadline misses. Furthermore,
based on the POOSL semantics, it can be detected if there is a deadlock in
the system. If all the deadlines are met and there is no deadlock during the
simulation, then the corresponding platform is a good candidate that meets all
the system requirements, although simulation completeness cannot be claimed.
However, for soft real-time systems, it is allowed that a certain percentage of
deadlines are missed. Thus, in this case, it is useful to keep track of the rate
of deadlines missed and check if the underlying platform meets the require-
ments. With the modelling approach presented above, the average case behav-
iour can be monitored and an appropriate dimensioning of the system can be
made.

212 O. Florescu et al.

Task Min Max
name [instr.] [instr.]

HandleKeyPress 7.5E4 1E5
AdjustVolume 7.5E4 1E5
UpdateScreen 3.75E5 5E5

DatabaseLookup 3.75E6 5E6
ReceiveTMC 7.5E5 1E6
DecodeTMC 3.75E6 5E6

Fig. 7. Tasks loads in the case study

Scenario Deadline Task f
name [ms] name [1/s]

ChangeVolume 200 HandleKeyPress 32
AdjustVolume 32
UpdateScreen 32

ChangeAddr 200 HandleKeyPress 1
DatabaseLookup 1
UpdateScreen 1

HandleTMC 1000 ReceiveTMC 1/3
DecodeTMC 1/3
UpdateScreen 1/30

Fig. 8. Timeliness requirements

4.1 Analysis Results for the Case Study

For the case study considered in this paper (the in-car navigation system)
we have assumed that the loads of all tasks variate according to a uniform
distribution, based on the inspiration got from measurements of similar sys-
tems. As the UML diagrams provide only the worst case value of the load of
each task, we have considered that the actual load varies between 75% and
100% of the value provided. The limits of the load variation for each task are
given in fig. 7. Based on the MIPS rate of the CPUs on the proposed architec-
tures, given in fig. 2, we can compute the execution times of tasks. Depending
on the scenario in which it is used, a task may be called at different rates.
The frequencies of tasks activations per scenario are given in fig. 8. Based on
these activation rates, priorities were assigned to tasks according to the rate
monotonic approach. The timing requirements of the system are specified in
the UML diagrams as end-to-end deadlines for each scenario, provided also in
fig. 8.

During simulations4 of the system behaviour for each of the architectures
proposed in fig. 2, the end-to-end delays were monitored. The results obtained
were graphically plotted as distribution histograms, showing on the horizon-
tal axis the values of the end-to-end delay and on the vertical axis the rate
of occurrence of each value. As the parallel execution of two scenarios is likely
to lead to more variation in the end-to-end delay, fig. 9 shows the distribution
histogram for the HandleTMC scenario when it runs in parallel with ChangeVol-
ume on architecture A. From such distribution histograms, the minimum (best
case) and the maximum (worst case) values for the end-to-end delays can be
deduced. Columns 3 and 4 in fig 11 show these values for all the combinations
of scenarios running on architecture A. Moreover, the relative frequency of oc-
currence of the maximum value can also be deduced. During simulations, we
have observed that the requirements are met for all the scenarios on all the pro-
posed architectures and that the maximum delays are much smaller than the
deadlines.

4 By using the fast execution engine Rotalumis, a few minutes of system simulation
represent several hours of runtime behaviour. The simulation was run until an accu-
racy of 99% of the results was reached.

Probabilistic Modelling and Evaluation 213

180 200 220 240 260 280 300 320 340
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

End−to−end delay HandleTMC

D
en

si
ty

End−to−end delay distribution HandleTMC − ChangeVolume

TMCVOL data

Fig. 9. HandleTMC distribution his-
togram on architecture A

650 700 750 800 850 900 950 1000 1050
0

1

2

3

4

5

6

x 10
−3

End−to−end delay HandleTMC [ms]

D
en

si
ty

 [%
]

End−to−end delay distribution HandleTMC with ChangeVolume

Fig. 10. Distribution fitted over the Han-
dleTMC distribution histogram on the
improved A

Measured Active Min. delay Max. delay Mean delay Max. delay
scenario scenario [ms] [ms] [ms] [ms]

ChangeVolume HandleTMC 28.17 47.82 49.66 58.48
HandleTMC ChangeVolume 180.9 353.51 838.32 1056.06
ChangeAddr HandleTMC 61.08 127.51 134.12 270.8
HandleTMC ChangeAddr 132.59 204.06 349.712 496.03

Fig. 11. End-to-end delays of all scenarios

4.2 Dimensioning of the System

The in-car navigation system is a soft real-time system that allows a rate of
5% of deadline misses. Based on this, together with the utilisation rates of the
resources, which were also monitored during simulation, and the observed max-
imum values of the delays, one can reason about possible platform performance
reduction in order to reduce cost and energy consumption of the system.

In [3], where this case study was analysed using MPA, the authors investi-
gated the robustness of architecture A. Therefore, in this paper we have also
focussed on this architecture to reason about its resources. The utilisation of
MMI is 88%. As the periods and loads of the tasks mapped on this processor
are quite heavy, there is not much room for the decrease of its capacity. The
NAV processor is used 6%. The histograms of scenarios ChangeAddr and Han-
dleTMC showed a difference of 80ms and 200ms respectively between the worst
case delays obtained and the requirements. Hence, we reduced NAV capacity
to 40MIPS. The utilisation of RAD is 33%. The analysis showed a difference
of 100ms for ChangeAddr and 200ms for HandleTMC respectively between the
maximum delays and the deadlines. As there is potential for capacity reduction,
we reduce the capacity of this processor to 5MIPS.

With this new configuration for architecture A, we resumed our simulations
using the same variances in the task loads and the same task priorities. The dis-
tribution histograms of the end-to-end delays were plotted and, as an example,
fig. 10 shows the histogram for the HandleTMC scenario. The mean and maxi-
mum values of the end-to-end delays for all the scenarios are presented in columns

214 O. Florescu et al.

Build
system
model

Modelling
patterns

System
properties

Generate
histograms

reduce performance
of the platform

Deadline
misses?

NO

YESsimulate Fit
distribution

curve

Calculate
miss rate

Within
req.?

NO

YES

increase performance
of the platform

OK

Fig. 12. Flow of the steps in the analysis approach

5 and 6 in fig. 11. From the confidence intervals calculated during simulation, we
observed that the rate of deadline misses is within 5%, thereby fulfilling the re-
quirements. In this way, we have found a better dimensioning of the system than
what was found using MPA, reducing two of the processors with 65% (NAV) and
respectively 55% (RAD).

Furthermore, in order to use such analysis results in an multi-disciplinary
model of complex systems aiming at design trade-offs across disciplines, an ab-
straction of the timing behaviour of the software part is needed. To this end,
we propose to fit the resulting distribution curves into known types of distrib-
ution. According to the central limit theorem in probability theory, due to the
uniformly distributed loads of the tasks and to the fact that tasks in different
scenarios are independent, the end-to-end delay of a scenario has approximately
a normal distribution. Therefore, over the distribution histogram obtained from
a simulation, a normal distribution curve is fitted. Fig. 10 shows such a curve
fitted over the HandleTMC histogram. The parameters of the normal distribu-
tion are the mean value (μ) of 838.32 (ms) (the mean value of the delay) and the
standard deviation (σ2) of 3953.36 (ms). From such curves, the rate of deadline
misses can be deduced, based on their characteristics. For example, the deadline
for HandleTMC, which is 1000ms, can be found between two and three standard
deviations from the mean. Thus, the probability of missing the deadline is less
than 5%, which means the requirements are met. Furthermore, from these curves
the probability of rare events occurrence can also be computed.

The analysis approach presented in this section is summarised in fig. 12 in which
the steps to be performed for the analysis of a soft real-time system are provided.

5 Conclusions

As soft real-time systems are often analysed using hard real-time techniques,
which are not suitable to account for the deadline misses rate allowed in such
systems, the resulting system is over-dimensioned. To overcome this issue, in
this paper, we have presented a modelling approach, based on the concepts
of the POOSL language, that enables probabilistic modelling of soft real-time
embedded systems. This approach relies on patterns that allow composition of
system models consisting of tasks, resources and their associated schedulers,

Probabilistic Modelling and Evaluation 215

capturing the varying runtime system behaviour using distributions. By using
them, models for design space exploration can be built easily.

Moreover, we presented an approach to perform average case performance
analysis to appropriately dimension soft real-time systems. We show for a case
study that, using this approach, we could reduce the dimension of the system
with more than 50% than what was found using analytical techniques. Further-
more, we presented a way to make an abstraction of the analysis results of the
timing behaviour to use it as input for multi-disciplinary models.

As future work, we aim at extending the probabilistic modelling patterns
to cover for complex platforms like networks-on-chip, by taking into account
memory components, routing algorithms and even batteries for the analysis of
energy consumption.

References

1. Balsamo, S., et al.: Model-based performance prediction in software development:
A survey. IEEE Trans. on Software Engineering 30(5) (2004) 295–310

2. Gries, M.: Methods for evaluating and covering the design space during early
design development. Integration, the VLSI Journal 38(2) (2004) 131–183

3. Wandeler, E., et al.: System architecture evaluation using Modular Performance
Analysis - A case study. (Accepted in the STTT Journal)

4. Behrmann, G., et al.: A tutorial on UPPAAL. In: Proc. of SFM. (2004) 200–236
5. Lieverse, P., et al.: A methodology for architecture exploration of heterogeneous

signal processing systems. VLSI Signal Processing Systems 29(3) (2001) 197–207
6. Pimentel, A.D., et al.: Exploring embedded-systems architectures with Artemis.

Computer 34(11) (2001) 57–63
7. Theelen, B.D.: Performance modelling for system-level design. PhD thesis, Eind-

hoven University of Technology (2004)
8. Chakraborty, S., et al.: A general framework for analysing system properties in

platform-based embedded system designs. In: Proc. of DATE, IEEE (2003)
9. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science

126(2) (1994)
10. Kahn, G.: The semantics of simple language for parallel programming. In: Proc.

of IFIP Congress. (1974)
11. Liu, C., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard

real time environment. J. of ACM 20(1) (1973) 46–61
12. Buttazzo, G.C.: Hard real-time computing systems: predictable scheduling algo-

rithms and applications. Kluwer Academic Publishers (1997)
13. Bini, E., et al.: A hyperbolic bound for the rate monotonic algorithm. In: Proc. of

ECRTS, IEEE (2001) 59–66
14. Manolache, S.: Analysis and optimisation of real-time systems with stochastic

behaviour. PhD thesis, Linkpings University (2005)
15. Kienhuis, B., et al.: An approach for quantitative analysis of application-specific

dataflow architectures. In: Proc. of ASAP. (1997)
16. Florescu, O., et al.: Performance modelling and analysis using poosl for an in-car

navigation system. In: Appear in Proc. of ASCI. (2006)
17. (POOSL) http://www.es.ele.tue.nl/poosl.
18. Geilen, M.G.: Formal techniques for verification of complex real-time systems.

PhD thesis, Eindhoven University of Technology (2002)

	Introduction
	Case Study
	Modelling of the System
	POOSL Modelling Language
	Application Model
	Platform Model

	Average Case Performance Analysis
	Analysis Results for the Case Study
	Dimensioning of the System

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

