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Abstract— Many plants are regulated by digital controllers
that run at a constant sampling frequency, thereby requiring
a high processor load for the computations. To guarantee a
good control performance, such a high sampling frequency
might be required at some periods of time, but not necessarily
continuously. By using an event-driven control scheme that
triggers the update of the control value only when the (tracking
or stabilization) error is large, the average processor load
can be reduced considerably. Although event-driven control
can be effective from a CPU-load perspective, the analysis
of such control schemes is much more involved than that of
conventional schemes and is a widely open research area. This
paper investigates the control performance of an event-driven
controlled continuous-time linear system with additive distur-
bances in terms of practical stability (ultimate boundedness).
By using the derived results, the event-driven controller can
be tuned to get satisfactorily transient behavior and desirable
ultimate bounds, while reducing the required average processor
load for its implementation. Several examples illustrate the
theory.

Index Terms— Practical stability, sampled-data control, pro-
cessor load, ultimate boundedness, robust invariance, piecewise
linear systems.

I. I NTRODUCTION

Many plants are regulated by digital controllers that run
at a constant (relatively high) sampling frequency, thereby
requiring a high processor load for the computations. To
achieve accurate control, controllers require a high sampling
frequency at certain periods of time, but do not require thisat
each interval of time. This opens up the possibility to lower
the average processor load needed for the implementation
of the controller. In the literature [1], [2], [7], [14] event-
driven control strategies have been proposed to create a
negotiable environment to make such a compromise between
processor load and control performance. However, theoretical
analysis of the proposed event-driven controllers is lacking in
literature. Although the event-driven controllers considered
here are less complicated in comparison with the cited work,
this work provides the first step in a proper analysis of these
types of control loops.

This work has been carried out as part of the Boderc project under the
responsibility of the Embedded Systems Institute. This project is partially
supported by the Netherlands Ministry of Economic Affairs under the Senter
TS program. The first author was also sponsored by the European6th
Framework Network of Excellence HYCON (contract number FP6-IST-
511368) and the European IST project SICONOS (IST-2001-37172).

To show the potential of reducing the involved control
computations without deteriorating the control performance
significantly, consider the following simple continuous-time
plant

ẋ(t) = 0.5x(t) + 10u(t) + 3w(t) (1)

with x(t) ∈ R, u(t) ∈ R and w(t) ∈ R the state, control
input and disturbance at timet ∈ R+, respectively. The
additive disturbance satisfies−10 ≤ w(t) ≤ 10. This system
will be controlled by a discrete-time controller

uk =

{

−0.45xk, if |xk| ≥ eT

uk−1, if |xk| < eT ,
(2)

that runs at a fixed sample time ofTs = 0.1 time units.
Here, eT denotes a parameter that determines the region
B := {x ∈ R | |x| < eT } close to the origin in which
the control values are not updated. Note that outsideB the
control values are updated in an “normal fashion.” This
particular situation is referred to as uniform sampling. We
will also consider the non-uniform case where reaching the
boundary ofB will be the event trigger - in addition to
a fixed update rate outsideB - for updating the control
values. Figure 1 displays the ratio of the number of control
updates in comparison to the case where the updates are
performed each sample time (i.e.uk = −0.45xk for all
xk) and the maximal value of the state variable (after
transients)xmax := lim supt→∞ |x(t)|, respectively, versus
the parametereT . The results are based on simulations. One
sees that by relaxing the control accuracy (in terms of the
ultimate boundxmax on the state) one can reduce almost80%
of the control computations. Depending on the ratio between
the computational complexity of the control algorithm, the
overhead of the event triggering mechanisms and i/o access
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Fig. 1. eT versus the control effort andxmax for system (1)-(2).



of the processor, the reduction of control computation indeed
lowers the processor load considerably. Initial experimental
measurements [15] show promising results.

It is of interest to investigate how to choose the controller
gain andeT (or more generalB) in order to get desirable
closed-loop behavior on one hand and low processor usage
on the other. Note that in this paper we both select the
controller parameters and the way the events are generated
that determine when the control values are updated. This
is in contrast with the effect of uncertain and time-varying
delays (“jitter”) introduced in the loop due to the real-time
implementation of control algorithms in embedded systems.
In that case the variations in the “event triggering” can be
considered as a disturbance and one designs compensators
that are robust to it, see e.g. [3], [11].

This paper provides theory and insight to understand and
tune event-driven controlled linear systems for both the
uniform and the non-uniform case. The performance of these
novel control strategies is addressed in terms of ultimate
boundedness (practical stability), robustly positively invariant
sets, and guaranteed speed of convergence [4]. Depending on
the particular event triggers for updating the control values,
properties like robust positive invariance or convergenceto
a set for theperturbed event-driven linear systemcan be
derived either from aperturbed discrete-time linear systemor
from aperturbed discrete-time (non-deterministic) piecewise
linear (PWL) system. Since results for robust invariance
and ultimate boundedness are known for discrete-time linear
systems, see e.g. [4], [5], [8], [9], [12], and piecewise linear
systems, see e.g. [13], [10], these results can be carried
over to event-driven controlled systems. In this way we can
examine how the tuning parameters of the controller should
be chosen to obtain satisfactory control performance on one
hand and computational effort of its implementation on the
other.

II. PRELIMINARIES

A set Ω ∈ R
n is a C-set, if it is compact, convex and

contains0 in its interior. For a setΩ we denote its interior, its
closure and its boundary by intΩ, clΩ and∂Ω, respectively.
We define the Minkowski functionalΦΩ for a C-setΩ as
ΦΩ(x) := inf{λ > 0 | x ∈ λΩ}. Note thatx ∈ Ω if and
only if ΦΩ(x) ≤ 1. The symbol⊕ denotes the Minkowski
sum of two sets:U ⊕V := {u + v | u ∈ U , v ∈ V}. For two
setsΩ1 andΩ2 of R

n, we denote the set differenceΩ1\Ω2 is
defined as{x ∈ Ω1 | x 6∈ Ω2}. The complement ofΩ ⊂ R

n

is defined asRn \ Ω and is denoted byΩc.
Consider a continuous-time system

ẋ(t) = f(t, x(t), w(t)) (3)

with x(t) ∈ R
n the state variable andw(t) ∈ Wc the

disturbance at timet ∈ R+ or a discrete-time difference
equation

xk+1 = f(k, xk, wk) (4)

with xk ∈ R
n the state andwk ∈ Wd the disturbance at

discrete-timek ∈ N. Wc andWd denote the disturbance sets,

which are assumed to be convex, compact and contain0. We
define the setL1([0, Ts] 7→ R

p) as the Lebesgue space of
integrable functions on[0, Ts] to R

p andLloc
1 ([0,∞) 7→ R

p)
as the Lebesgue space of locally integrable functions from
[0,∞) to R

p.
Definition 2.1: Given0 ≤ λ ≤ 1. The setΩ is a (robustly)

λ-contractive set for the discrete-time difference equation
(4), if for any x ∈ Ω, k ∈ N and anyw ∈ Wd it holds
that f(k, x, w) ∈ λΩ. For λ = 1 we say thatΩ is robustly
positively invariant (RPI).

Definition 2.2: [4] We call the discrete-time difference
equation (4)ultimately bounded(UB) to the setΩ, if for
eachx0 ∈ R

n there exists aK(x0) > 0 such that any state
trajectory of (4) with initial conditionx0 (and any arbitrary
realization of the disturbancew : N 7→ Wd) satisfiesxk ∈ Ω
for all k ≥ K(x0). Similarly, we call (3)ultimately bounded
(UB) to the setΩ, if for every initial conditionx(0) ∈ R

n

there exists aT (x(0)) > 0 such that any state trajectory of
(3) with initial conditionx(0) (and any arbitrary realization
of the disturbancew :∈ Lloc

1 ([0,∞) 7→ R
p) with w(t) ∈ Wc

a.e.) satisfiesx(t) ∈ Ω for all t ≥ T (x(0)).
Definition 2.3: We say that the system (4) has aconver-

gence index0 ≤ λ ≤ 1 to the C-setΩ, if (4) is UB to Ω and
there exists a C-setS ⊆ Ω such thatΦS(xk+1) ≤ λΦS(xk)
for all k ∈ N, xk 6∈ intΩ and all wk ∈ Wd where
xk+1 = f(k, xk, wk).

Note that this is a minor adaptation of the definition in [4]
for which the latter condition should hold for anyxk 6∈ intS,
which is a more stringent condition.

III. PROBLEM FORMULATION

We consider the system described by

ẋ(t) = Acx(t) + Bcu(t) + Ecw(t), (5)

wherex(t) ∈ R
n is the state,u(t) ∈ R

m the control input
and w(t) ∈ Wc the unknown disturbance, respectively, at
time t ∈ R+. Wc ⊂ R

p is a convex and compact set, which
contains the origin.Ac ∈ R

n×n, Bc ∈ R
n×m and Ec ∈

R
n×p are constant matrices.
The system will be controlled by a discrete-time state-

feedback controller with gainF ∈ R
m×n, i.e.

uk = Fxk, (6)

wherexk = x(τk), uk = u(τk) using the zero-order hold
u(t) = uk for all t ∈ [τk, τk+1).

Normally, theevent timesτk are related throughτk+1 =
τk + Ts, whereTs is a fixed sample time meaning that the
control value is updated everyTs time units according to
(6). To reduce the number of required control calculations,
in this paper we propose not to update the control value if
the statex(τk) is contained in a setB close to the origin. The
consequences for the control performance in terms of control
accuracy (ultimate bounds) and speed of convergence will be
investigated. As such, we consider a setB that is open1 and

1This is merely a technical condition to make the following exposition
more compact and clear. This is not a restrictive condition.



contains the origin. If the state of the system is inB at the
event timesτk, the controller output will not be calculated
and updated. If the state is outsideB, an update is performed
according to (6). Hence, the closed-loop system (5)-(6) is
modified to

ẋ(t) = Acx(t) + Bcu(t) + Ecw(t)

u(t) =

{

Fx(τk) if x(τk) /∈ B
u(τk−1) if x(τk) ∈ B

for t ∈ [τk, τk+1),

(7)
where we still have to specify how the event timesτk are
generated. We consider two ways of updating the event times
τk: a non-uniform(triggered by the event of leavingB) and
a uniform (sampling at a fixed sample timeTs) manner.
Note that the system (7) together with a particular way of
generating the event times can be considered as a discrete-
time system, if one restricts oneself to the event times. Hence,
this means that the definitions for (4) in section II can easily
be generlazed to apply for (7) “on the event times.”

A. Problem 1: non-uniform sampling

The event timesτk are chosen such that

τk+1 = τk + Ts if x(τk) /∈ B
τk+1 = τexit if x(τk) ∈ B,

(8)

where τexit = inf{t > τk | x(t) 6∈ B} is the time instant
at which x(t) exits B (after being insideB at the previous
event time). For the situation in whichx(0) ∈ B (τ0 = 0)
we assume thatuτ0

= 0.
From (7) it can be seen that the control updates are

not synchronous. The duration that the state of the system
remains insideB causes asynchronicity, althoughTs is a
fixed sample time outsideB.

B. Problem 2: uniform sampling

In the previous section the control strategy is such that the
control value is updated as soon as the boundary ofB is hit
and the state was insideB at the previous event time. In many
applications such implementation would not be optimal with
respect to the scheduling of tasks on a processor. Whether
the state of the system is inside or outsideB will often be
detected on a constant rate. If this rate is chosen equal to the
sampling rate of the controller, i.e. having a period timeTs,
the system description (7) can be used with theuniformly
distributed event timesτk, k = 0, 1, 2, . . . with τ0 = 0 and

τk+1 = τk + Ts (9)

C. Control objectives

The control objective is a “stabilization problem” in the
sense of controlling the state towards a regionΩ close to the
origin and keeping it there, as we cannot expect asymptotic
stability due to the type of control strategy employed and
the presence of disturbances. Hence, this means that we
considerpractical stability which has been used widely to
prove system performance in the context of non-linear and
perturbed systems. A term that is also often used in this
context is uniformultimate boundedness[4].

Problem 3.1:Let a desired ultimate boundΩ ⊂ R
n

containing0 in the interior be given and let0 ≤ λ ≤ 1
be a desirable convergence index. ConstructF andB such
that the system (7) with the event times given by either (8)
or (9) is UB toΩ (as a continuous-time system) and (7) has
a convergence indexλ towardsΩ (as a discrete-time system
on the event timesτk).

IV. GENERAL THEORY

Problem 3.1 will be solved in two stages. First properties
on UB to Ω and convergence indices toΩ are obtained for
the event-driven system (7)on the event times. Next bounds
on the intersample behavior (see Section IV-C below) will
be derived that enlargeΩ to Ω̃ such that the ultimate bound
Ω̃ is guaranteed for all (continuous) timest.

To do so, the discrete-time system

xk+1 = (A + BF )xk + wk = Aclxk + wk with (10)

A := eAcTs

B :=
∫ Ts

0
eAcθdθBc

wk :=
∫ τk+1

τk

eAc(τk+1−θ)Ecw(θ)dθ

Acl := A + BF

(11)

will play an important role in the analysis. Indeed, for both
the uniform and non-uniform sampling case, the system
behaves far away from the setB (at the event times) as
(10). We use the shorthand notationx(τk) = xk here.
Note that this system is only representing the system (7)
at the event times, whenx(τk) 6∈ B. The bounds onw(t)
given by Wc are transformed into bounds onwk given
by Wd := {

∫ Ts

0
eAc(Ts−θ)Ecw(θ)dθ | w ∈ L1([0, Ts] 7→

R
p), w(t) ∈ Wc a.e.}. SinceWc is convex, compact and

contains0, Wd is convex, compact and contains0.

A. Non-uniform sampling

As we will see in the theorem below, ultimate bounds
for the linear discrete-time system(10) can be used to find
ultimate bounds for theevent-driven system(7) with non-
uniform sampling (8).

Theorem 4.1:Consider the system (7)-(8) withWc a
closed, convex set containing0, F given andB an open
set containing the origin.

1) If Ω is a RPI set for thelinear discrete-time system
(10) with disturbances inWd and clB ⊆ Ω, then Ω
is a RPI set for theevent-driven system(7)-(8) on the
event times, meaning that ifx0 ∈ Ω, thenxx0,w(τk) ∈
Ω wherexx0,w(·) denotes the solution to (7)-(8) with
x(0) = x0 and the realization of the disturbance given
by w :∈ Lloc

1 ([0,∞) 7→ Wc).
2) If the linear discrete-time system(10) with distur-

bances inWd is UB to the RPI setΩ and clB ⊆ Ω,
then theevent-driven system(7)-(8) on the event times
is UB to Ω.

3) If the linear discrete-time system(10) with distur-
bances inWd has convergence factorλ ≤ 1 to the
RPI C-setΩ and clB ⊆ Ω, then theevent-driven system



(7)-(8) on the event timeshas convergence indexλ to
Ω.

Proof: 1) Let x(τk) ∈ Ω. Then we can distinguish
two cases: Ifx(τk) ∈ B, we will either remain inB forever
(thereby not destroying robust positive invariance) or an exit
time τk+1 will occur for which x(τk+1) ∈ ∂B ⊂ clB ⊆ Ω.
The other case is thatx(τk) 6∈ B, then τk+1 = τk + Ts

according to (8) and the update of the state over the interval
[τk, τk+1] is governed by (10) for somewk ∈ Wd. As Ω is a
RPI set for (10), this means thatx(τk+1) ∈ Ω (irrespective
of the realization of the noise). Hence, we proved that if
x(τk) ∈ Ω thenx(τk+1) ∈ Ω meaning thatΩ is RPI for the
event-driven system at the event times.

2) If x(0) ∈ Ω, then due to RPI ofΩ the system (7)-(8)
stays withinΩ on the event times as outlined in the first part
of the proof. If x(0) 6∈ Ω and thusx(0) 6∈ B, the system is
governed by (10) on the event times as long asx(τk) 6∈ Ω.
Since (10) is UB toΩ there exists a timeK(x(0)) such
that x(τK(x(0))) ∈ Ω. Since Ω is RPI for (7)-(8) on the
event times, we havex(τk) ∈ Ω for all k ≥ K(x(0)). This
completes the proof of statement 2.

3) Similar reasoning applies to the system (7)-(8) to have
a convergence indexλ to the setΩ.

B. Uniform sampling

As mentioned before, the non-uniform update scheme
is hard to implement in practice. Uniform sampling might
be more relevant from a practical point of view. However,
in contrast to non-uniform sampling the properties of the
discrete-time linear systemdo not transfer to the event-
driven system in this case. As we will see, we will need
a piecewise linear (PWL) model to analyse the event-driven
systems using uniform sampling. For ease of exposition and
brevity, we present only theunperturbedcase here.

To be able to compute an ultimate bound that solves
problem 3.1, we consider (7) with the uniform event times
as in (9), i.e.τk+1 = τk + Ts with τ0 = 0 and we take
xk := x(τk), k = 0, 1, 2, . . . . At the event times the system
is described by the discrete-time system

xk+1 = Axk + Buk

uk =

{

Fxk if xk /∈ B
uk−1 if xk ∈ B.

(12)

Since we only sample the system at uniformly distributed
times τk, we do not know how far we are outsideB before
we detect that the state leftB. The reason is that inB the
control value is held and depends on the state on the event
time just beforeB was entered (possibly several event times
ago), which prevents that the analysis can be based on (10)
as in the non-uniform case. Instead we explicitly are going
to compute the maps that relate the state just after entering
B to the state after just leavingB again. Depending on how
long the control value is held, a different map defines the
update that relates both states. It will turn out that in this
way a piecewise linear (PWL) model is obtained in which we
abstract away from the time that the system is insideB. Using
this PWL systemproperties related to UB and convergence

factors can be translated to the original system (7)-(9) on
the event times. We will start with presenting how this PWL
description can be created using the following assumption.

Assumption 4.1:A + BF is non-singular.
To define the mapgp for the different periods of time

(denoted byp) that the state stays inB, we consider first the
casep = 0, i.e. xk 6∈ B the system update matrix is given
by

xk+1 := g0(xk) = (A + BF )xk. (13)

For p = 1 we assume thatxk−1 /∈ B, xk ∈ B and then
xk+1 6∈ B. The functiong1 defines the mapping fromxk to
xk+1 in this case. This update of the state is given byxk+1 =
Axk + Buk with uk = uk−1 = Fxk−1 (since the control
value is held). From (12) we have thatxk = (A+BF )xk−1

and thusxk−1 = (A + BF )−1xk. This gives

uk = uk−1 = F (A + BF )−1xk. (14)

Hence,

xk+1 = g1(xk)
:= Axk + BF (A + BF )−1xk

(15)

Similarly, suppose we stayp steps inB before leavingB
again (i.e.xk−1 6∈ B, thenxk ∈ B, xk+1 ∈ B, ..., xk+p−1 ∈
B and thenxk+p /∈ B). We obtain the functiongp that maps
xk to xk+p as follows by using repetitively

xk+i = Axk+i−1 + Buk+i−1, (16)

for i = 1, ..., p. Since the control value is held, it holds
that uk+p−1 = uk+p−2 = ... = uk = uk−1. As uk−1 =
F (A+BF )−1xk by (14), we can expressxk+p as a function
of xk:

xk+p = gp(xk) := Apxk+
+ [Ap−1 + Ap−2 + . . . + I]BF (A + BF )−1xk.

(17)
Now that the mapsgp are defined, the regionDp has to be

determined for which the mapgp is active. Forp = 0 this is
straightforward asD0 := Bc, which denotes the complement
of B. For p > 0 Dp is given by thosexk for which there
exists anxk−1 6∈ B such thatxk = (A + BF )xk−1 ∈ B,
xk+1 ∈ B, ..., xk+p−1 ∈ B and thenxk+p 6∈ B is satisfied.
Hence, forp = 1, 2, . . . we have

Dp := {x ∈ B | (A + BF )−1x 6∈ B and

gj(x) ∈ B for j = 1, . . . , p − 1

andgp(x) 6∈ B}. (18)

We also define the set of states that remain insideB forever
after entering it from outsideB .

D∞ := {x ∈ B | (A + BF )−1x 6∈ B
gj(x) ∈ B for all j = 1, 2, . . .}. (19)

Note thatDi ∩ Dj = ∅ if i 6= j.
Finally, we introduce the setRB which contains all

possible values ofxk within B, that can be reached within
one discrete time-step starting from a statexk−1 outsideB:

RB := {x ∈ B | (A + BF )−1x 6∈ B}.



Fig. 2. State transformations fork.

Fig. 3. State transformations forl.

Note that it holds that

RB = D∞ ∪
∞
⋃

i=1

Di.

To obtain a finite representation of the piecewise linear
system, we need the existence of apmax such that

RB = D∞ ∪
pmax
⋃

i=1

Di. (20)

Remark 4.1:Deriving conditions for which the existence
of such a finitepmax is guaranteed is an open issue. One
of the complications is for instance thatDi = ∅ does not
necessarily imply thatDi+1 = ∅. Also the computation
of D∞ is not straightforward. However, a condition that
guarantees the emptiness ofD∞ and the existence of apmax

such that (20) holds, is, for instance, that all the eigenvalues
of the matrix A lie outside the closed unit circle of the
complex half plane andA+BF does not have an eigenvalue
1 (which is typically the case asA + BF is chosen such
that all eigenvalues are inside the open unit circle). One can
even compute an explicit upperbound forpmax. A kind of
“reverse” Lyapunov argument proves this statement. Future
research will be focussed on this matter.

In figures 2 and 3 it is illustrated how we abstract away
from the motion insideB. The iteration parameterk is
substituted forl after abstracting away from the motion of the
system’s state insideB. This notation will be maintained for
the rest of this paper. Therefore, we replacexk+p = gp(xk)
by xl+1 = gp(xl) and obtain the piecewise linear system
xl+1 = fPWL(xl) with

xl+1 =

{

gp(xl), whenxl ∈ Dp

0, whenxl ∈ D∞ ∪ [B \ RB ]
(21)

where l can be seen as the new time variable, where we
abstracted away from the time steps related to the motion

insideB. Some observations on the PWL system (21) are in
order.

• We “completed” the piecewise linear model by adding
dynamics to the system for the case whenxl ∈ D∞ and
xl ∈ B \RB , so that it is defined completely onRn. In
principle the dynamics on these sets are not important
as will be proven below.

• A setDp is in general not convex. It might even not be
connected. See, the second example in section VIII.

Theorem 4.2:Consider system (7)-(9)without distur-
bances,F satisfies Assumption 4.1 andB is an open set
containing the origin. Assume that there exists apmax < ∞
such that (20) holds.

1) If the PWL system (21) is UB to the positively
invariant Ω andB ⊆ Ω, then theevent-driven system
(7)-(9) is UB toΩ on the event times.

2) If the PWL system (21) has a convergence index
0 leqλ ≤ 1 to the positively invariant C-setΩ and
B ⊆ Ω, then theevent-driven system(7)-(9) has a
convergence indexλ to Ω on the event times.

Proof: Note that the system (7)-(9) on the event times
is described by (12). We will use the latter system and the
corresponding notation.

If x0 ∈ Ω then we either have that the state trajectory
of (12) satisfiesxk ∈⊆ Ω for all k = 0, 1, 2, . . . (which
is in accordance with the properties of the theorem) or the
state trajectory leavesΩ for some event time. Hence, we
only have to consider the case where there exists ak0 (take
the smallest) for whichxk0

6∈ Ω and thusxk0
∈ Bc = D0

becauseB ⊆ Ω. Note that the statexk of system (12) never
reachesB \ RB for k ≥ k0 (by definition ofRB).

Observe that the dynamics of (12) and (21) coincide on
⋃∞

i=0 Di (modulo the motion insideB, which lies inΩ by
the hypothesis anyway). Hence, sincexk0

∈ D0, the system
(12) follows the dynamics of (21) (modulo motion insideB)
for k ≥ k0 until D∞ is reached - if ever (say atk1 ≥ k0

with k1 possibly equal to∞). If D∞ is reached, the state
trajectoryxk of (12) stays insideB ⊆ Ω for all k ≥ k1 by
definition. Hence, on the time interval[k0, k0+1, . . . , k1) the
state of system (12) follows the motion of (21) and hence,
the inheritance of the properties as described in the theorem
is immediate.

Note that the largerp is, the more event times we are not
updating the control value and thus we are not using the CPU
for performing control computations. So, the largerpmax the
more we can potentially save on computation time, but the
complexer (the more regions) the resulting PWL model will
be for the performance analysis. Fortunately, the computation
of the ultimate bounds is performed off-line.

C. Including intersample behavior

The above results only provide statementson the event
times. The behavior of the system in between the event times
is not characterized. However, since at the event times we
obtain properties like UB and convergence indicesλ to a
bounded setΩ we know that we enterΩ in finite time. Using



this observation, an ultimate bound including the intersample
behavior of (7) together with (8) or (9) can be computed from

xx0,w(t) − xk = [eAc(t−τk) − I]xk+

+

∫ t

τk

eAc(t−θ)Bcukdθ +

∫ t

τk

eAc(t−θ)Ecw(θ)dθ, (22)

wheret ∈ [τk, τk+1].
In the non-uniform case we either havexx0,w(t) ∈ B

or the equation (22) holds withuk = Fxk and τk+1 =
τk + Ts. In the latter case using the boundedness ofWc

we can easily see that‖xx0,w(t) − xk‖ ≤ CTs(‖xk‖ +
1 + ‖F‖‖xk‖) for all Ts ∈ [0, Tmax

s ]. The constantC =
C(Ac, Bc, Ec, T

max
s ,Wc) depends on the system parame-

ters,Wc and Tmax
s . Hence, if the system (10) is UB to a

setΩ, then the event-driven system (7)-(8) is UB to the set
Ω⊕B(0, ε) with ε := supx∈Ω CTs(‖x‖+1+ ‖F‖‖x‖) and
B(0, ε) := {x | ‖x‖ ≤ ε}. Note also that the convergence
speed is maintained modulo the intersample behavior that
can be bounded by a relative error around the trajectory on
the event times.

In the uniform case the situation is a bit more complex.
If xk 6∈ B a similar bound as above can be derived.
However, if xk ∈ B, then uk = Fxr for some r < k,
wherexr = xx0

(τr) 6∈ B and τr is the largest event time
(smaller thanτk) for which xx0,w(τr) 6∈ B. Hence, the
quantity‖xx0,w(t)−xk‖ is now bounded byCTs(‖xk‖+1+
‖F‖‖xr‖). Note thatxr satisfies(A+BF )xr ∈ B. SinceB
is bounded and we have Assumption 4.1, this gives a bound
on‖xr‖. Consequently, we obtain a bound of‖xx0,w(t)−xk‖
like C̃Ts(‖xk‖ + ‖F‖ + 1) for someC̃. Note that if there
are physical reasons that the control inputs are restrictedto
a bounded set, then we obtain immediately a bound like
CTs(‖xk‖ + 1) independent of the designed controller gain
F .

V. COMPUTATIONAL ASPECTS FOR THE NON-UNIFORM

CASE

There are several ways to compute RPI sets for discrete-
time linear systems, see e.g. [4], [5], [8], [9], [12]. We will
present here one approach based on ellipsoidal sets as in [9]
to indicate how the derived results can be exploited.

To use the ellipsoidal approach of [9], we assume thatWd

can be bounded by an ellipsoidER−1 := {w | wT R−1w ≤
1}, R > 0. Techniques to find such an over-approximation
are given in [6].

Along the lines of [9] it can be shown that feasibility of

P − γ−1AclPAT
cl − (1 − γ)−1R > 0 (23)

for someγ ∈ (0, 1) yields (using Schur complements) that

(Aclx+w)T P−1(Aclx+w) < γxT P−1x+(1−γ)wT R−1w.

From this it is easily seen thatxT P−1x ≤ 1 andwT R−1w ≤
1 imply (Aclx + w)T P−1(Aclx + w) ≤ 1. This shows that
Ω = {x | xT P−1x ≤ 1} is a RPI set for (10). Moreover,
we can show that the system (10) has a convergence factor

λ :=
√

γ + 1−γ
µ

< 1 to
√

µΩ = Ω(µ) := {x | xT P−1x ≤

µ} with µ > 1. This can be shown by takingS := Ω and
observing that the Minkowski functionalΦS(x) is equal to√

xT P−1x. Hence, we have that

Φ2
S(xk+1) = (Aclxk + wk)T P−1(Aclxk + wk)

< γxT P−1x + (1 − γ)wT R−1w

≤ γΦ2
S(xk) + (1 − γ).

Since forxk 6∈ intΩ(µ)
Φ2

S
(xk)
µ

≥ 1, it follows that

Φ2
S(xk+1) ≤ (γ +

1 − γ

µ
)Φ2

S(xk),

which shows that we have a convergence indexλ :=
√

γ + 1−γ
µ

. Theorem 4.1 shows that we have a convergence
indexλ for the event-driven system (7)-(8) on the event times
to Ω(µ) if we selectµ > 1 andB such that clB ⊆ Ω(µ).

VI. COMPUTATIONAL ASPECTS FOR THE UNIFORM CASE

Also for PWL systems several ways to compute invariant
and contractive sets are available [10], [13]. We present here
an approach based on ellipsoidal sets although techniques
using reachability analysis can be exploited as well.

Theorem 6.1:Consider the event-driven system (7)-(9)
without perturbations withF satisfying Assumption 4.1.
Let P > 0 be a solution toAT

clPAcl − γP < 0
for some γ ∈ (0, 1). Take α∗ small such thatα∗ >
max1,...,pmax

sup{xT Px | x ∈ gp(Dp)} and α∗ >
max{xT Px | x ∈ clB}, wheregp(Dp) denotes the image
of the mapgp with its arguments inDp. Define the set
Ω(α∗) := {x | xT Px ≤ α∗}. Then the PWL system (21)
and consequently the event-driven system (7)-(9) on the event
times have a convergence index

√
γ to the setΩ(α∗).

For brevity we omit the proof.

VII. T UNING OF THE CONTROLLER

In this section we indicate how the ultimate boundΩ
depends onB for (7), thereby facilitating the selection of
desirable ultimate bounds by tuningB. We will only present
results for the non-uniform case due to space limitations.
Similar results are available for theunperturbed caseand
uniform sampling. For the case of perturbed systems and
uniform sampling, finding such relationships is still open.

The following result can be inferred from [4].
Theorem 7.1:Consider the system (7)-(8) withWc a

closed, convex set containing0, F given andB an open
set containing the origin.

• If Ω is a RPI set for the discrete-time linear system (10)
containing clB, then for anyµ ≥ 1 µΩ is a RPI set for
(10) containingµclB.

• If the discrete-time linear system (10) is UB toΩ
containing clB, then for anyµ ≥ 1 (10) is UB to µΩ
containingµclB

• If the discrete-time linear system (10) has convergence
index λ ≤ 1 to Ω containing clB, then for anyµ ≥ 1
(10) has convergence indexλ ≤ 1 to µΩ containing
µclB



This result shows thatΩ scales “linearly” with B for
scaling factors larger than one. Computing the minimal RPI
setΩmin containing{0}, see e.g. [9] gives the ultimate bound
as long as the chosen clB lies insideΩmin the ultimate bound
will stay constant and equal toΩmin (or strictly speaking an
ultimate bound is the setµΩmin for any smallµ > 1). If clB
moves outsideΩmin, the linear scaling effect occurs. This
effect is nicely demonstrated in the first example below.

VIII. E XAMPLES

A. Non-uniform sampling

To illustrate the theory in case of non-uniform sampling
(8) we will use the example of the introduction. Note that
in the introduction we useduniform sampling. In figure 4
the ratio of the number of control updates in comparison to
the case where the updates are performed each sample time
(i.e. uk = −0.45xk for all xk) and the maximal value of the
state variable (after transients)xmax := lim supt→∞ |x(t)|
(the minimal ultimate bound), respectively, versus the pa-
rametereT are displayed, whereB = {x | |x| < eT }.

The figure of the ultimate bounds can nicely be derived
from the theory. First, we compute for the system (1), the
discretized version (10) with sample timeTs = 0.1:

xk+1 = 1.051xk + 1.025uk + wk; uk = −0.45xk (24)

or
xk+1 = 0.590xk + wk (25)

with 3.076 ≤ wk ≤ 3.076. The minimal RPI setΩmin for
(25) containing{0} is equal to the ellipsoid[−7.50, 7.50].
Hence, note that as long aseT < 7.50 the ultimate bound
of the system (7)-(8) is equal toΩmin (or strictly speaking to
the setµΩmin for a smallµ > 1 as discussed in Section V).
This explains the constant line in thexmax versuseT plot in
Figure 4 up toeT = 7.50. At the momenteT gets greater
than7.50, the condition of theorem 4.1 that clB ⊂ Ωmin does
no longer hold. However, we can now use the “scaling effect”
from Theorem 7.1. Theorem 7.1 implies thateT

7.50Ωmin is RPI
and the linear system is UB toµ eT

7.50Ωmin for anyµ > 1 when
eT > 7.50. Since clB ⊆ eT

7.50Ωmin holds, Theorem 4.1 implies
that eT

7.50Ωmin is RPI and the event-driven system (7)-(8) is
UB to µ eT

7.50Ωmin for any µ > 1. This explains the linear
part in thexmax versuseT plot in Figure 4. Hence, we can
reduce the number of control updates with almost80% in
this set-up without reducing the control accuracy (e.g. take
eT = 5)!

0 5 10 15
20

30

40

50

60

70

80

90

100

e
T

# 
co

nt
ro

l u
pd

at
es

 (
%

)

0 5 10 15
0

2

4

6

8

10

12

14

16

e
T

x m
ax

Fig. 4. eT versus the control effort andxmax for system (1)-(2).
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B. Uniform sampling

To demonstrate the results for uniform sampling, we have
taken the example of an unstable system with two states
(n = 2) given by (7) with

Ac =

[

1070 270
270 40

]

; Bc =

[

453
874

]

(26)

The controller matrix is taken to beF = [−2.4604 −0.2340].
The matrices in the discrete-time version (10) are equal to

A =

[

3.00 0.50
0.50 1.10

]

B =

[

1.00
1.00

]

(27)

for Ts = 0.001. Note that the the eigenvalues ofAcl = A +
BF are0.7±0.7. B = {x | |x1| < eT , |x1| < eT } with eT =
6. One can easily check that the conditions mentioned in
Remark 4.1 are satisfied. Hence,D∞ = ∅ and the finitepmax

that one finds is equal to3. Figure 5 displays the calculated
setsRB andDp, p = 1, 2, 3 as given by equation (18)

The dynamics that are valid insideDp, calculated with
equation (17) are:

g0(xl) =

[

0.537 0.264
−1.96 0.863

]

xl

g1(xl) =

[

0.364 1.03
−2.13 1.63

]

xl

g2(xl) =

[

−2.60 4.43
−4.79 2.83

]

xl

g3(xl) =

[

−12.8 15.2
−9.17 5.84

]

xl

(28)

Since we have obtained the PWL-description of the system
we can apply the theory presented in section VI. Using the
ellipsoidal approach as presented in Theorem 6.1 we obtain
the ellipsoidΩ in figure 6. We also computed the reachable
set Ωreach for the PWL system from points inRB . For the
computation of this set a combination of tools from [10]
and [8] was used. Note thatΩreach is a positive invariant
set for the PWL system. SinceB ⊂ Ωreach and outsideB
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the dynamics on the event times is equal toxk+1 = Aclxk,
similar statements can be made forΩreach as forΩ.

Figure 6 also shows a time simulation of the continuous
time system. A (red) dotted line shows the intersample
behavior in which the small (red) diamonds indicate the
values at the event times. It can be seen that the trajectory
is not restricted to the depictedΩreach (in blue (dark grey)),
due to the intersample behavior. Bounds on the intersample
behavior can be obtained via Section IV-C.

IX. CONCLUSIONS

This paper advocates the use of event-driven controllers
to reduce the required (average) processor load for the
implementation of digital controllers. An initial example
already illustrated the reduction of control computations(up
to 80%) that is achievable. In [15] it is experimentally studied
how this reduction in control computations is related to
lowering the average processor load. However, the trade-
off one has to make is to balance this reduction with the
control accuracy. This paper provides necessary theory to
get insight in this trade-off and shows the ultimate bounds
that are obtainable and how they depend on the parameters
of the control strategy. The theory is based on inferring
properties (like robust positive invariance, ultimate bounded-
ness and convergence indices) for the event-driven controlled
system from discrete-time linear systems (in case of non-
uniform sampling) or piecewise linear systems (in case of
uniform sampling). Although this paper analyses a rather
simple event-driven control structure, it already indicates the

complexity and challenge for the analysis and synthesis of
these type of control loops. This work provides the first
step in a proper analysis of these types of loops and future
work will be focussed on the finite number of regions of
the piecewise linear model (finitepmax) and on extensions
(e.g. reference tracking).

REFERENCES
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