Practical stability of perturbed
event-driven controlled linear systems

W.P.M.H. Heemels and J.H. Sandée
* Embedded Systems Institute, P.O. Box 513, 5600 MB Eindhovethelands.nauri ce. heenel s@si . nl
$Technische Universiteit Eindhoven, Dept. of Electrical Eegiing, Control Systems Group
P.O. Box 513, 5600 MB Eindhoven, Netherlangsh. sandee@ ue. nl

Abstract—Many plants are regulated by digital controllers To show the potential of reducing the involved control
that run at a constant sampling frequency, thereby requiring  computations without deteriorating the control perforgen

a high processor load for the computations. To guarantee a gjnificantly, consider the following simple continuoursi
good control performance, such a high sampling frequency plant '

might be required at some periods of time, but not necessarily
continuously. By using an event-driven control scheme that z(t) = 0.5x(¢t) + 10u(t) + 3w(¢) 1)
triggers the update of the control value only when the (tracking ]

or stabilization) error is large, the average processor load With z(t) € R, u(t) € R andw(t) € R the state, control
can be reduced considerably. Although event-driven control input and disturbance at time € R, respectively. The

can be effective from a .CPU-Ioad pers_pective, the analysis gdditive disturbance satisfiesl 0 < w(t) < 10. This system
of such control schemes is much more involved than that of | ., be controlled by a discrete-time controller
conventional schemes and is a widely open research area. This

paper investigates the control performance of an event-drive {_0.45%7 if 2] > er
U =

controlled continuous-time linear system with additive distur- )
Uk—1, if |$k‘ <er,

bances in terms of practical stability (ultimate boundedness).
By using the derived results, the event-driven controller can
be tuned to get satisfactorily transient behavior and desirable that runs at a fixed sample time @ = 0.1 time units.
ultimate bounds, while reducing the required average processor Here, er denotes a parameter that determines the region
load for its implementation. Several examples illustrate the g ._ {z € R | |z| < er} close to the origin in which
theory. . . the control values are not updated. Note that out&dine
Index Terms— Practical stability, sampled-data control, pro- . “ S .
cessor load, ultimate boundedness, robust invariance, piecewise CONtrol values are updated in an “normal fashion.” This
linear systems. particular situation is referred to as uniform sampling. We
will also consider the non-uniform case where reaching the
boundary of B will be the event trigger - in addition to
a fixed update rate outsidB - for updating the control
Many plants are regulated by digital controllers that rurvalues. Figure 1 displays the ratio of the number of control
at a constant (relatively high) sampling frequency, thgrebupdates in comparison to the case where the updates are
requiring a high processor load for the computations. Tperformed each sample time (i.e;, = —0.45x; for all
achieve accurate control, controllers require a high smmpl zx) and the maximal value of the state variable (after
frequency at certain periods of time, but do not requiredhis transients)z,, ., := limsup,_, . |z(t)|, respectively, versus
each interval of time. This opens up the possibility to lowethe paramete¢;. The results are based on simulations. One
the average processor load needed for the implementatisees that by relaxing the control accuracy (in terms of the
of the controller. In the literature [1], [2], [7], [14] even ultimate boundem,, On the state) one can reduce almgiEt
driven control strategies have been proposed to createohthe control computations. Depending on the ratio between
negotiable environment to make such a compromise betwetlre computational complexity of the control algorithm, the
processor load and control performance. However, theaileti overhead of the event triggering mechanisms and i/o access
analysis of the proposed event-driven controllers is lagkn
literature. Although the event-driven controllers coesét
here are less complicated in comparison with the cited work,
this work provides the first step in a proper analysis of these
types of control loops.

)

I. INTRODUCTION
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of the processor, the reduction of control computation éade which are assumed to be convex, compact and contaive
lowers the processor load considerably. Initial experitalen define the set’; ([0, 7s] — RP) as the Lebesgue space of
measurements [15] show promising results. integrable functions off, T;] to R? and £1°¢([0, co) — RP)

It is of interest to investigate how to choose the controlleas the Lebesgue space of locally integrable functions from
gain ander (or more generaB3) in order to get desirable [0,c0) to RP.
closed-loop behavior on one hand and low processor usageDefinition 2.1: Given0 < A < 1. The sef is a (robustly)
on the other. Note that in this paper we both select th&-contractive set for the discrete-time difference equmtio
controller parameters and the way the events are generafdyl, if for any x € Q, £k € N and anyw € W;y it holds
that determine when the control values are updated. Thikat f(k,z,w) € AQ. For A = 1 we say thafQ is robustly
is in contrast with the effect of uncertain and time-varyingpositively invariant (RPI).
delays (“jitter”) introduced in the loop due to the real-dm  Definition 2.2: [4] We call the discrete-time difference
implementation of control algorithms in embedded systemgquation (4)ultimately boundedUB) to the set(, if for
In that case the variations in the “event triggering” can beachz, € R™ there exists d(z) > 0 such that any state
considered as a disturbance and one designs compensatmagctory of (4) with initial conditionzy (and any arbitrary
that are robust to it, see e.g. [3], [11]. realization of the disturbance : N — W) satisfieszy, €

This paper provides theory and insight to understand arfdr all ¥ > K (x). Similarly, we call (3)ultimately bounded
tune event-driven controlled linear systems for both th€UB) to the set(, if for every initial conditionz(0) € R"
uniform and the non-uniform case. The performance of thedbere exists &'(x(0)) > 0 such that any state trajectory of
novel control strategies is addressed in terms of ultimai@®) with initial conditionz(0) (and any arbitrary realization
boundedness (practical stability), robustly positivelyariant  of the disturbancey :c £'°°([0, 0o) — RP) with w(t) € W,
sets, and guaranteed speed of convergence [4]. Dependingeoe.) satisfies:(t) €  for all ¢ > T'(x(0)).
the particular event triggers for updating the control ealu  Definition 2.3: We say that the system (4) hascanver-
properties like robust positive invariance or convergetice gence indexX < A <1 to the C-sef?, if (4) is UB to 2 and
a set for theperturbed event-driven linear systecan be there exists a C-se C Q) such that®s(zx11) < ADs(zy)
derived either from @erturbed discrete-time linear system for all £ € N, z;, ¢ intQ and all wy, € W; where
from aperturbed discrete-time (non-deterministic) piecewise .1 = f(k, zx, wg).
linear (PWL) systemSince results for robust invariance Note that this is a minor adaptation of the definition in [4]
and ultimate boundedness are known for discrete-timerinetor which the latter condition should hold for any, ¢ intS,
systems, see e.g. [4], [5], [8], [9], [12], and piecewise=tin which is a more stringent condition.
systems, see e.g. [13], [10], these results can be carried
over to event-driven controlled systems. In this way we can Ill. PROBLEM FORMULATION
examine how the tuning parameters of the controller should We consider the system described by
be chosen to obtain satisfactory control performance on one
hand and computational effort of its implementation on the

other. wherez(t) € R™ is the stateu(t) € R™ the control input
and w(t) € W, the unknown disturbance, respectively, at

_ o timet € R,. W. C RP is a convex and compact set, which
A setQ) € R" is a C-set, if it is compact, convex and contains the originA. € R"*", B, € R"™*™ and E, €

containg in its interior. For a sef2 we denote its interior, its Rnx» gre constant matrices.
closure and its boundary by inf cl2 and 92, respectively.  The system will be controlled by a discrete-time state-
We define the Minkowski functionabg, for a C-set2 as  feedback controller with gaid’ € R™*", i.e.
Dq(x) := inf{\ > 0 | x € AQ}. Note thatx € Q if and
only if ®q(z) < 1. The symbol® denotes the Minkowski uy = Fay, (6)
sum of two setsid &V := {u+v |u € U,v € V}. For two
sets(2; and(2, of R™, we denote the set differen€g \ Q5 is
defined as{z € Q | x &€ Q2}. The complement of2 C R™
is defined aRR™ \  and is denoted byc.

Consider a continuous-time system

z(t) = Acx(t) + Beu(t) + Eow(t), (5)

Il. PRELIMINARIES

wherez, = x(71x), ux = u(7;) using the zero-order hold
u(t) = uy, for all t € [1g, Th41)-
Normally, theevent timesr;, are related throughy.; =
7 + T, whereT is a fixed sample time meaning that the
control value is updated every, time units according to
i(t) = f(t,z(t), w(t)) (3) (6). To reduce the number of required control calculations,
in this paper we propose not to update the control value if
with z(t) € R" the state variable and(t) € W. the the stater(r,) is contained in a sef close to the origin. The
disturbance at timeé < R, or a discrete-time difference consequences for the control performance in terms of contro
equation accuracy (ultimate bounds) and speed of convergence will be
Try1 = f(k, Tr, wi) (4) investigated. As such, we consider a Bethat is opeh and

W'th Lk 6 R™ the state andv, € Wy the Q'Sturbance at  17his s merely a technical condition to make the following esition
discrete-time: € N. W, andW, denote the disturbance sets,more compact and clear. This is not a restrictive condition.



contains the origin. If the state of the system isdmat the Problem 3.1:Let a desired ultimate bounf c R™
event timesry, the controller output will not be calculated containing0 in the interior be given and lebh < A < 1
and updated. If the state is outsilean update is performed be a desirable convergence index. Constiticand B such
according to (6). Hence, the closed-loop system (5)-(6) ihat the system (7) with the event times given by either (8)

modified to or (9) is UB tof2 (as a continuous-time system) and (7) has
#(t) = Aua(t) + Bou(t) + Ecw(t) a convergence index towards? (as a discrete-time system
ult) = { Fa(my) !f o(me) € B for t € [k, That)s on the event timesy).
u(re-1) 1 z(me) € B @ IV. GENERAL THEORY
where we still have to specify how the event timgsare Problem 3.1 will be solved in two stages. First properties

generated. We consider two ways of updating the event times UB to Q2 and convergence indices o are obtained for
7. @ non-uniform(triggered by the event of leaving) and the event-driven system (Bn the event timesdNext bounds

a uniform (sampling at a fixed sample tim&;) manner. on the intersample behavior (see Section IV-C below) will
Note that the system (7) together with a particular way obe derived that enlarg@ to Q such that the ultimate bound
generating the event times can be considered as a discrefeis guaranteed for all (continuous) times

time system, if one restricts oneself to the eventtimescden  To do so, the discrete-time system

this means that the definitions for (4) in section Il can gasil )

be generlazed to apply for (7) “on the event times.” Tppr = (A+ BF)xp + wp = Aqar +wi With— (10)

A. Problem 1: non-uniform sampling A=t

B:= [ eA0d0B,

_ wy, = [T e =0 B (0)do
1 =76+ Ts if x(rg) ¢ B ®) A Ak+ BE

Tk+1 = Texit if l(Tk) € Bv

The event times;, are chosen such that (11)

) . ] ] will play an important role in the analysis. Indeed, for both
where 7e,;; = inf{t > 7 | x(t) ¢ B} is the time instant e yniform and non-uniform sampling case, the system
at which x(t) exits B (after being inside5 at the previous penaves far away from the sé& (at the event times) as
event time). For the situation in which(0) € B (1o = 0) (10). We use the shorthand notatior{r;,) = =z here.
we assume that,, = 0. Note that this system is only representing the system (7)

From (7) it can be seen that the control updates arg the event times, when(r;,) ¢ B. The bounds onu(t)
not synchronous. The duration that the state of the syste@;\,en by W. are transformed into bounds om; given
remains inside5 causes asynchronicity, although is a by Wy = {ITS AT~ B w(0)d0 | w € L1([0,Ts] —

. . . . 0 c 9 S
fixed sample time outsids. RP), w(t) € W, a.e.}. SinceW, is convex, compact and

B. Problem 2: uniform sampling contains0, W; is convex, compact and contaifis

In the previous section the control strategy is such that th& Non-uniform sampling

control value is updated as soon as the boundary af hit As we will see in the theorem below, ultimate bounds

and _the ;tate was !nsml%at the previous event time. I.n Many oy the linear discrete-time systeifiO) can be used to find
applications such implementation would not be optimal with | . i . i
. ultimate bounds for thevent-driven syster(¥) with non

respect to the scheduling of tasks on a processor. Whethuenriform sampling (8)

the state of the system is inside or outsiflewill often be ping (©).
detected on a constant rate. If this rate is chosen equaéto tr]
. . . o C
sampling rate of the controller, i.e. having a period tife

the system description (7) can be used with timgformly

Theorem 4.1:Consider the system (7)-(8) withV. a
osed, convex set containing F given andB an open
set containing the origin.

distributed event timesy, k = 0, 1,2, ... with 7o = 0 and 1) If Q is a RPI set for thdinear discrete-time system
(10) with disturbances iW; and cB C Q, thenQ
Tht1 =Tk + T 9) is a RPI set for theevent-driven syster¥)-(8) on the

event timesmeaning that ifxg € Q, thenz,, ., (1) €
R o _ Q wherez,, ,,(-) denotes the solution to (7)-(8) with
The control objective is a “stabilization problem” in the z(0) = z, and the realization of the disturbance given
sense of controlling the state towards a redibnlose to the by w :€ £9°([0, 00) — W,.).
origin and keeping it there, as we cannot expect asymptotic 2) If the linear discrete-time systenl0) with distur-
stability due to the type of control strategy employed and bances inW, is UB to the RPI sef2 and cB C (,
the presence of disturbances. Hence, this means that we then theevent-driven systeif7)-(8) on the event times
considerpractical stability which has been used widely to is UB to Q.
prove system performance in the context of non-linear and 3) If the linear discrete-time systenl0) with distur-
perturbed systems. A term that is also often used in this  pances inW,; has convergence factor < 1 to the
context is uniformultimate boundednedg]. RPI C-set and cB C (2, then theevent-driven system

C. Control objectives



(7)-(8) on the event timebas convergence indexto factors can be translated to the original system (7)-(9) on
Q. the event times. We will start with presenting how this PWL
Proof: 1) Let z(7;) € Q. Then we can distinguish description can be created using the following assumption.
two cases: Ifz(7;) € B, we will either remain in3 forever Assumption 4.1:A + BF is non-singular.
(thereby not destroying robust positive invariance) orsh e  To define the mapy, for the different periods of time
time 7.1 will occur for which z(7,41) € 0B C cIlB C Q. (denoted byp) that the state stays i, we consider first the
The other case is that(r;) ¢ B, thent,1 = 7. +Ts casep = 0, i.e. z;, € B the system update matrix is given
according to (8) and the update of the state over the intenvay
[Tk, Tk+1] IS governed by (10) for some;, € Wy. AsQ is a Ti+1 = go(zr) = (A + BF)zy. (13)
RPI set for (10), this means tha{r,1) € Q (irrespective
of the realization of the noise). Hence, we proved that i
x(m,) € Q thenz(m,41) € © meaning that) is RPI for the

event-driven system at the event times. ) .
y Axy + Bug with ug, = ug_1 = Fxp_1 (since the control

2) If z(0) € Q, then due to RPI of2 the system (7)-(8) . b
stays withinQ2 on the event times as outlined in the first partValue is held). From (12) we have that = (A+ BF)zk1

_ -1 ; ;
of the proof. Ifz(0) ¢ Q and thusz(0) ¢ B, the system is and thuszy— = (A + BF)™z. This gives
governed by (10) on the event times as longrés;) ¢ Q. up = up_1 = F(A+ BF) 'ay. (14)
Since (10) is UB tof} there exists a timek (x(0)) such

|f=orp = 1 we assume that,_; ¢ B, z;, € B and then
k1 € B. The functiong; defines the mapping from,, to
Zk41 In this case. This update of the state is giverzhy; =

that z(7x(,(0))) € Q. SinceQ is RPI for (7)-(8) on the Hence,
event times, we have(r,,) € Q for all £ > K(x(0)). This Ter1 = gi(xk) (15)
completes the proof of statement 2. = Amr, + BF(A+ BF) 12y

3) Similar reasoning applies to the system (7)-(8) to havgimijarly, suppose we stay steps in3 before leavingB3
a convergence index to the set(). again (i.ea,_1 ¢ B, thenzy, € B, w41 € By ..., Tpyp1 €
B. Uniform sampling B and thenz, ., ¢ B). We obtain the functiom, that maps

As mentioned before, the non-uniform update schemig® 10 zx4p as follows by using repetitively

is hard to implement in practice. Uniform sampling might Thti = AThpio1 + Bugyi—1, (16)
be more relevant from a practical point of view. Howeverf0
in contrast to non-uniform sampling the properties of th?h
discrete-time linear systerdo not transfer to the event-
driven system in this case. As we will see, we will nee

ri = 1,...,p. Since the control value is held, it holds
at Uk+p—1 = Uk4p—2 = ... = U = Ug—1- As up_1 =
(F(AJFBF)*lxk by (14), we can express, ., as a function

a piecewise linear (PWL) model to analyse the event-drive(r)fc Lk

systems using uniform sampling. For ease of exposition andx+p = gp(Tr) := APzp+

brevity, we present only thanperturbedcase here. + [AP~t 4 AP=2 4 + I|BF(A+ BF) lay.
To be able to compute an ultimate bound that solves (7)

problem 3.1, we consider (7) with the uniform event times NOw that the mapg, are defined, the regioP, has to be
as in (9), i.e.mp1 = 7 + T, with 7o = 0 and we take determined for which the mag, is active. Forp = 0 this is

ap = x(), k =0,1,2,... . At the event times the system Straightforward ad), := B, which denotes the complement
is described by the discrete-time system of B. Forp > 0 D, is given by thoser;, for which there
exists anzy_1 ¢ B such thatr, = (A + BF)z,_1 € B,
Ty1 = Axy + Buy Tpt1 € B, .., Tpip—1 € B and thenzyy, ¢ B is satisfied.
e { Fxp ifx, ¢B (12) Hence, forp =1,2,... we have
T upy if 2 € B.

D, = {xeB|(A+BF)'z¢Band
Since we only sample the system at uniformly distributed ‘ . _
times 7, we do not know how far we are outsid® before gplw) € Bforj=1,....p—1
we detect that the state leR. The reason is that i the andg,(z) ¢ B}. (18)
control value is held and depends on the state on the eventye also define the set of states that remain ingiderever
time just beforel3 was entered (possibly several event timegfter entering it from outsidé .

ago), which prevents that the analysis can be based on (10) .
as in the non-uniform case. Instead we explicitly are going Do = {zeB|(A+BF) z¢B

to compute the maps that relate the state just after entering gi(x)e Bforall j=1,2,...}. (19)
Il’j’to the state after Justileavm@ again. Depending on how Note thatD; N D; = 0 if i # .

ong the control value is held, a different map defines the Finally, we introduce the sef?;; which contains al

update that relates both states. It will turn out that in this . oy o
. - . . . . ossible values of;, within B, that can be reached within

way a piecewise linear (PWL) model is obtained in which w dne discrete time-step starting from a staje ; outsides:

abstract away from the time that the system is in&d&lsing P 9 =1 '

this PWL systenproperties related to UB and convergence Rp:={x€B|(A+BF) 'z ¢B}.



y inside B. Some observations on the PWL system (21) are in
(A+BF)x,, +w, =:_-‘ . . X' order.
¢ B ‘e ® € . « We “completed” the piecewise linear model by adding
i dynamics to the system for the case where D, and
: 3 x; € B\ Rp, so that it is defined completely dR™. In
O principle the dynamics on these sets are not important
Xeg Xy X2 as will be proven below.
23 T B « AsetD, is in general not convex. It might even not be

connected. See, the second example in section VIII.
Theorem 4.2:Consider system (7)-(9without distur-
bances,F' satisfies Assumption 4.1 anfl is an open set

containing the origin. Assume that there existg,a. < oo

Fig. 2. State transformations far.

x, — 2 5ix such that (20) holds.
¢B « 1) If the PWL system (21) is UB to the positively
" invariant2 and B C (), then theevent-driven system
< g « (7)-(9) is UB to2 on the event times
12 3 2) If the PWL system (21) has a convergence index
0 legh < 1 to the positively invariant C-sef2 and
Fig. 3. State transformations fér B C Q, then theevent-driven syster(i7)-(9) has a
convergence index to 2 on the event times
Proof: Note that the system (7)-(9) on the event times
Note that it holds that is described by (12). We will use the latter system and the
o0 corresponding notation.
Rp = Dx U U D;. If zo € Q then we either have that the state trajectory
i=1 of (12) satisfiesr, €C  for all £ = 0,1,2,... (which
To obtain a finite representation of the piecewise lineds in accordance with the properties of the theorem) or the
system, we need the existence of,g,, such that state trajectory leaveQ for some event time. Hence, we
Pmas only have to consider the case where there exists @ake
Rp =D, U U D;. (20) the smallest) for whichey, ¢ Q and thuszy, € B¢ = Dy
i=1 becauses C (). Note that the state; of system (12) never

Remark 4.1:Deriving conditions for which the existence reaches3 \ Rp for k > ko (by definition of Rp).

of such a finitep,,.. is guaranteed is an open issue. One Observe that the dynamics of (12) and (21) coincide on
of the complications is for instance th&; = ( does not J;, D; (modulo the motion insides, which lies inQ by
necessarily imply thatD;,; = (. Also the computation the hypothesis anyway). Hence, sineg € D, the system

of D, is not straightforward. However, a condition that(12) follows the dynamics of (21) (modulo motion insifg
guarantees the emptinessiof, and the existence of@,,,., for k& > ko until D is reached - if ever (say &t > ko
such that (20) holds, is, for instance, that all the eigaresl with k; possibly equal tox). If D, is reached, the state
of the matrix A lie outside the closed unit circle of the trajectoryz; of (12) stays insides C Q2 for all £ > &k, by
complex half plane andl + BF does not have an eigenvaluedefinition. Hence, on the time intervily, ko+1, ..., k) the

1 (which is typically the case ad + BF is chosen such state of system (12) follows the motion of (21) and hence,
that all eigenvalues are inside the open unit circle). Ome cadhe inheritance of the properties as described in the theore

even compute an explicit upperbound foy,... A kind of is immediate. [ ]
“reverse” Lyapunov argument proves this statement. Future Note that the largep is, the more event times we are not
research will be focussed on this matter. updating the control value and thus we are not using the CPU

In figures 2 and 3 it is illustrated how we abstract awayor performing control computations. So, the larggy,.. the
from the motion inside5. The iteration parametek is more we can potentially save on computation time, but the
substituted fof after abstracting away from the motion of thecomplexer (the more regions) the resulting PWL model will
system’s state insidB. This notation will be maintained for be for the performance analysis. Fortunately, the comjautat
the rest of this paper. Therefore, we replage, = g,(zx)  of the ultimate bounds is performed off-line.
by ;11 = g,(x;) and obtain the piecewise linear system

r141 = fewr(z) with C. Including intersample behavior
gp(x1), whenz € D, _ The above regults only providg statemeants the event
Ti41 = 0 whenz, € Do, U [B\ Ry] (21) _tlmes The beha\{lor of the system_ln between the eve_nt times
’ o B is not characterized. However, since at the event times we

where ! can be seen as the new time variable, where wabtain properties like UB and convergence indiceso a
abstracted away from the time steps related to the motidounded sef2 we know that we ente® in finite time. Using



this observation, an ultimate bound including the intensi@m p} with ¢ > 1. This can be shown by takin§ := Q and
behavior of (7) together with (8) or (9) can be computed fronobserving that the Minkowski functiona@ts(x) is equal to

vaT P-1z. Hence, we have that
Tyow(t) — Tk = [6Ac(t7”’) — Izk+ v o

¢ t P2 (-731@ 1) = (A ll‘k—ka)TP_l(A ,ll‘k—ka)
A (t—0) A (t—0) S\Vk+ c c
- /Tk e Beundt + /Tk T Eew(®)d, - (22) < y2TP iz + (1 - y)w’ R 1w
2
wheret € [ry, Thi1). < P@s(zk) +(1—1).

In the non-uniform case we either hawg, ,,(t) € B
or the equation (22) holds withy, = Fzp and 741 =
7 + Ts. In the latter case using the boundedness/\f 1—
we can easily see thdtr,, . (t) — z]| < CTs(|ax| + Ps(wrin) < (v + TV)(I)‘QS(‘”’“)’
1+ [|F|lzx]]) for all Ty € [0,T:™*]. The constanC =
C (A, Be, E., T W,) depends on the system parame =
ters, W, and T7**. Hence, if the system (10) is UB to a /7 + TW Theorem 4.1 shows that we have a convergence
set(), then the event-driven system (7)-(8) is UB to the seindexA for the event-driven system (7)-(8) on the event times
Q@ B(0,¢) with ¢ := sup,c, CT5(||z|| + 1+ ||F||||z||) and  to Q(u) if we select > 1 and B such that dB C Q(p).

B(0,¢) := {z | ||z|| < £}. Note also that the convergence
speed is maintained modulo the intersample behavior that!-
can be bounded by a relative error around the trajectory onAlso for PWL systems several ways to compute invariant
the event times. and contractive sets are available [10], [13]. We preserd he

In the uniform case the situation is a bit more complexan approach based on ellipsoidal sets although techniques
If x, ¢ B a similar bound as above can be derivedusing reachability analysis can be exploited as well.
However, if x, € B, thenu, = Fx, for somer < k, Theorem 6.1:Consider the event-driven system (7)-(9)
wherez, = z,,(7) € B and 7, is the largest event time without perturbations withF satisfying Assumption 4.1.
(smaller thant) for which z,, ., (7.) ¢ B. Hence, the Let P > 0 be a solution toAEPAd —vP < 0
quantity ||z, .« (t) — k|| is now bounded by’ T;(||zx||+14+ for some~y € (0,1). Take o* small such thata* >
| F|/||lz||). Note thatz, satisfies(A+ BF)z, € B. SinceB  max;,. ;... sup{z’ Pz | = € g,(D,)} and o* >
is bounded and we have Assumption 4.1, this gives a boumtax{z” Pz | = € cIB}, whereg,(D,) denotes the image
on|jz,||. Consequently, we obtain a bound|af,, .,(t)—zx|| of the mapg, with its arguments inD,. Define the set
like CT(||z|| + ||F|| + 1) for someC. Note that if there Q(a*) := {z | 7Pz < o*}. Then the PWL system (21)
are physical reasons that the control inputs are restritted and consequently the event-driven system (7)-(9) on theteve
a bounded set, then we obtain immediately a bound likémes have a convergence indgxy to the setQ(a*).

CT,(||zx|l + 1) independent of the designed controller gain For brevity we omit the proof.
F.

since fora, ¢ intQ(u) T > 1, it follows that

which shows that we have a convergence index:=

COMPUTATIONAL ASPECTS FOR THE UNIFORM CASE

VIl. TUNING OF THE CONTROLLER
V. COMPUTATIONAL ASPECTS FOR THE NONUNIFORM

CASE In this section we indicate how the ultimate boufd

] depends ons for (7), thereby facilitating the selection of
~ There are several ways to compute RPI sets for discretgasiraple ultimate bounds by tunig) We will only present
time linear systems, see e.g. [4], [5], [8], [9], [12]. We Wil regyits for the non-uniform case due to space limitations.
present here one approach based on ellipsoidal sets as in §Qhilar results are available for thenperturbed casend

to indicate howithe _derived results can be exploited. uniform sampling. For the case of perturbed systems and
To use the ellipsoidal approach of [9], we assume Wat  yniform sampling, finding such relationships is still open.

can be bounded by an ellipsoith- = {w | w"R™'w < " The following result can be inferred from [4].

1}, R >0. Techniques to find such an over-approximation Thegrem 7.1:Consider the system (7)-(8) withV, a

are given in [6]. closed, convex set containing F given andB an open

Along the lines of [9] it can be shown that feasibility of gt containing the origin.

P—~1AuPAL —(1-9)"'R>0 (23) . If Qis a RPI set for the discrete-time linear system (10)
containing cB, then for anyu > 1 uf2 is a RPI set for

for somey € (0,1) yields (using Schur complements) that (10) containinguclB.

(Agz4w) P~ (Agz+w) < ya" P~ z+(1—-v)w" R w. « If the discrete-time linear system (10) is UB t
o . containing cB, then for anyy > 1 (10) is UB to uf2

From this it is easily seen that P!z < 1 andw” R~'w < containingpclB

1 imply (Acsz +1w)TP71(_Acll’ +w) < 1. This shows that  , |f the discrete-time linear system (10) has convergence

Q= {z [z P 'z < 1} is a RPI set for (10). Moreover, index A < 1 to  containing cB, then for anyy > 1

we can show that the system (10) has a convergence factor (10) has convergence index < 1 to uf2 containing

A= /v+ 1777 <1to /pQ=Qu) ={z|2"P 'z < uclB



This result shows thaf? scales “linearly” with 5 for

~ R ~ D
scaling factors larger than one. Computing the minimal RPI sy E sy 3
setQm;, containing{0}, see e.g. [9] gives the ultimate bound
as long as the chosenzlies insideQm;,, the ultimate bound 0 0
will stay constant and equal @n;,, (or strictly speaking an s s
ultimate bound is the setQm;,, for any smally > 1). If clB
moves outsiden:,, the linear scaling effect occurs. This 0t 0

effect is nicely demonstrated in the first example below. ~

D2 D3
5 5
VIII. EXAMPLES t? Y
0 0
A. Non-uniform sampling
-5 0 5

To illustrate the theory in case of non-uniform sampling ° °
(8) we will use the example of the introduction. Note that
in the introduction we usedniform sampling. In figure 4
the ratio of the number of control updates in comparison tﬁg. 5. SetsRp, Dy, Ds, Ds in yellow (light grey), setB the rectangle
the case where the updates are performed each sample tifgemeath the sei®, in green (dark grey).

(i.e. up = —0.45x; for all ;) and the maximal value of the
state variable (after transients)nax := limsup,_, . |z(¢)]
(the minimal ultimate bound), respectively, versus the p
rameterer are displayed, wher8 = {z | |z| < er}.

The figure of the ultimate bounds can nicely be derived To demonstrate the results for uniform sampling, we have
from the theory. First, we compute for the system (1), théaken the example of an unstable system with two states

-5 0 5
Xl Xl

aé. Uniform sampling

discretized version (10) with sample tirfig = 0.1: (n = 2) given by (7) with
Tpp1 = 1.051xy 4 1.025uy, + wy; up = —0.45z,  (24) _ | 1070 270 | ., _ | 453
Ae 270 40 |’ B 874 (26)
or
Thi1 = 0.590z), + wy, (25) The controller matrix is taken to b€ = [—2.4604 —0.2340].

The matrices in the discrete-time version (10) are equal to
with 3.076 < w; < 3.076. The minimal RPI sef)i, for

(25) containing{0} is equal to the ellipsoid—7.50, 7.50]. A— { 3.00 0.50 } B = [ 1.00 } (27)
Hence, note that as long ag < 7.50 the ultimate bound 0.50 1.10 1.00

of the system (7)-(8) is equal ¥, (or strictly speaking to o, T, = 0.001. Note that the the eigenvalues df; = A +
the setu{2m;, for a smally > 1 as discussed in Section V). pr are0.740.7. B — {2 | |z1] < er, |z1| < e} with e =

This explains the constant line in the.ax versuser plotin - s one can easily check that the conditions mentioned in
Figure 4 up toer = 7.50. At the momenter gets greater Remark 4.1 are satisfied. Hende,, = 0 and the finitepmax
than7.50, the condition of theorem 4.1 thatZIC Qmin do€S  {hat one finds is equal ®. Figure 5 displays the calculated
no longer hold. However, we can now use the “scaling effectgetsRB andD,, p = 1,2,3 as given by equation (18)

from Theorem 7.1. Theorem 7.1 implies thafs Qmin is RPI The dynamics that are valid insid®,, calculated with
and the linear system is UB 10:°5; Qmin for any . > 1 when equation (17) are:

er > 7.50. Since cB C =I5 Qmin holds, Theorem 4.1 implies

that =1 Qmin is RPI and the event-driven system (7)-(8) is go(a1) = 0.537 0.264 o
UB t0 11=55min for any p > 1. This explains the linear - —1.96 0.863
part in thexmax versuser plot in Figure 4. Hence, we can _ 0.364 1.03
reduce the number of control updates with alme&¥s in gz = | 543 163 | ™
) : ! - (28)
this set-up without reducing the control accuracy (e.getak go(1) = —2.60 4.43 2
er = b)! | —4.79 2.83
—12.8 15.2
98() = | _g17 584 |V

max

Since we have obtained the PWL-description of the system
we can apply the theory presented in section VI. Using the
ellipsoidal approach as presented in Theorem 6.1 we obtain
the ellipsoidf? in figure 6. We also computed the reachable
set Qreach for the PWL system from points iRg. For the

) ! m | computation of this set a combination of tools from [10]
& o and [8] was used. Note thd.each IS a positive invariant
Fig. 4. er versus the control effort andmax for system (1)-(2). set for the PWL system. SincB C Qreach and outsideBB

# control updates (%)




Fig. 6. EllipsoidS2 indicated by the dashed (blue) line, $&t,;, in blue
(dark grey) and seB in green (light grey).

the dynamics on the event times is equakia; = Az,
similar statements can be made fg,chas forQ.

complexity and challenge for the analysis and synthesis of
these type of control loops. This work provides the first
step in a proper analysis of these types of loops and future
work will be focussed on the finite humber of regions of
the piecewise linear model (finitg,,,..) and on extensions
(e.g. reference tracking).
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