
COUPLING SIMULINK AND UML MODELS

Jozef Hooman 1, Nataliya Mulyar 2, Ladislau Posta 2
1 Embedded Systems Institute & University of Nijmegen
Address: Laplace-building 0.10, P.O. Box 513, 5600MB Eindhoven, the Netherlands
Phone: +31 (0) 40 247 8222, e-mail: jozef.hooman@embeddedsystems.nl
2 Eindhoven University of Technology, the Netherlands

Abstract: The general aim of this work is to support the multi-disciplinary development of real-time embed-
ded systems by combining tools of different disciplines. As a concrete example, we have coupled a UML-
based CASE tool (Rose RealTime) and Simulink to allow simultaneous simulation. Main conceptual problem
is to establish a common notion of time. We have implemented a first prototype in which this has been solved
by using the simulation time of Matlab/Simulink also for Rose RealTime and by extending the UML model
with assumptions about execution times.

Keywords: multi-disciplinary modeling, real-time, simulation, discrete-time models, continuous-time models

1 INTRODUCTION

The development of embedded real-time applica-
tions, including transportation, typically involves
several disciplines, such as electrical engineering,
mechanical engineering, and software engineer-
ing. Although these disciplines are tightly cou-
pled in the considered embedded systems, their
development is often a rather sequential, mono-
disciplinary, process. Typically, first the me-
chanical part is designed, next the hardware
infrastructure is fixed, and finally the embedded
software is developed. This approach can create
large problems, especially for the software engi-
neers. For instance, choices about the placements
of sensors (and implicitly the occurrence of
interrupts), control rates, control delays, hard-
ware, etc., have a strong influence on the com-
plexity of the software. Moreover, usually many
implicit assumptions are made, which first be-
come visible at system integration. This easily
leads to non-optimal solutions.

Within each discipline, a common solution is the
frequent use of models to detect problems as
early as possible. For instance, in the software
domain a lot of effort is put on model driven
development, based on UML models (Booch et.
al. 1999). Moreover, mono-disciplinary modeling
is usually supported by tools that allow some
form of execution or simulation. Lacking, how-

ever, is the possibility to combine tools of differ-
ent disciplines and to investigate the mutual
influence of modeling choices. Our aim is to
couple currently used tools to allow simultaneous
simulation of models from different disciplines.

The work described here is mainly part of the
Boderc project*, in collaboration with the com-
pany Océ, a producer of high-volume printers and
copiers, but the proposed solutions could also be
applicable in other domains such as avionics and
automotive.

Given the collaboration with Océ, we have
implemented a coupling between the UML-based
CASE tool Rose RealTime (currently renamed to
Rose Technical Developer) of IBM Rational and
Matlab/Simulink of The Mathworks. Rose Real-
Time (Rose-RT) supports the ROOM methodol-
ogy (Selic et. al., 1994) for the development of
software for real-time reactive systems. It is used
at Océ to define a reusable software architecture,
which is instantiated for a particular print-
ing/copying machine. Next the tool allows the

* This work has been carried out as part of the
Boderc project under the responsibility of the
Embedded Systems Institute. This project is
partially supported by the Netherlands Ministry
of Economic Affairs under the Senter TS pro-
gram. The first author is partially supported by
IST-2002-33522 project OMEGA.

generation of code for a particular target plat-
form, thus obtaining a direct connection between
a model and the generated code. Simulink is used
at Océ to model the mechanical layout of the
machine and to experiment with, for instance, the
shape and the length of the paper path, the
placement of motors and sensors, and the paper
speed.

As an example, our coupling allows the combina-
tion of a continuous-time model of a physical
dynamical system in Simulink with a discrete-
time control algorithm in Rose-RT, as depicted in
Fig. 1.

Rose-RT

Matlab/Simulink

Control
Software

System
Dynamics

Feedback signal

Control signal

Fig. 1 Combined Models

By establishing a proper notion of simultaneous
simulation of these models, one can quickly
investigate the effect of changes in the control
strategy, the software execution times, or the
effect of different system characteristics.

Realizing the desired tool coupling is far from
trivial. The two main challenges are:
(1) Conceptual correctness. The coupling should
be such that the simultaneous simulation of
models in both tools gives meaningful results. In
particular, this means that there must be a com-
mon notion of simulation time in combination
with a proper exchange of data and messages. For
instance, control data computed by the UML
model is to be used in the Simulink model at the
right moment in time, taking the duration of the
computation into account. Moreover, time-outs
generated by timers in the Rose-RT model should
correspond to the simulated time in Simulink.
(2) Technical implementation. The coupling
software should be properly designed to allow,
for instance, a change to another UML tool
without too much effort. Moreover, suitable ways
should be found to allow the tools to communi-
cate and to run a simulation mode simultane-
ously. The current version of the coupling works
in a Windows environment with Matlab release
13, Simulink version 5.0, and Rose-RT version
6.5.341.0.

Such a coupling between Rose-RT (or similar
real-time UML tools) and Simulink models has
not been realized before. Related is the work on
the High Level Architecture (HLA) (Dahmann et.
al. 1997), a general-purpose architecture for the
coupling of simulation tools. However, HLA
cannot be used for our purpose, because UML-
based CASE tools, such as Rose-RT do not fit
into the HLA framework since they do not have
the required simulation mode with a well-defined
notion of simulation time.

An alternative solution to the modeling of mixed
discrete-continuous systems has been followed in
the HyROOM approach (Stauner et. al. 2001),
where the ROOM/Rose-RT notation has been
extended with continuous elements. The main
parts of the resulting tool have been mapped into
HyCharts (Grosu et. al. 1998), a formal frame-
work for hybrid systems. Along this line, there
are several formal approaches that allow check-
ing properties of hybrid systems (modeling both
discrete and continuous aspects), such as HyTech
(Henzinger et. al. 1997) and Checkmate (Clarke
et. al. 2003). Another approach is the use of
generic modeling environments, such as Ptolemy
and the Generic Modeling Environment (GME),
that allow the development of domain specific
modeling tools. Our aim, however, is to allow
engineers to continue working with their well-
known mono-disciplinary tools, without having
to redo their modeling work in some multi-
disciplinary modeling environment.

The rest of this paper is structured as follows.
Sections 2 and 3 contain a very brief presentation
of the tools used (Rose-RT and Simulink, respec-
tively); describing them only as far as needed to
understand the coupling. The main concepts of
the coupling are explained in Section 4. Details
of the implementation are given in Section 5.
Concluding remarks can be found in Section 6.

2 ROSE REALTIME

Rose-RT is a UML-based CASE tool for the
development of complex reactive software.
Typically, a UML model in Rose-RT consists of
a number of active objects, also called capsules,
which communicate by sending and receiving
messages via ports. Messages may have different
priorities. A port must refer to a protocol, which
represents a set of messages that can be ex-
changed between capsules. The behavior of a

capsule is modeled by means of a hierarchical
state diagram. Transitions in a state diagram are
triggered by the receipt of messages or time-outs.
Actions on a transition may change local vari-
ables, send messages, or set timers.

Given a complete model, the Rose-tool can
generate code for a specific target platform, using
the characteristics of that platform. Model execu-
tion is based on a so-called Service Layer which
provides general services, e.g. it contains control-
lers, which are responsible for queuing and
delivering messages among capsules, and timing
services that can be used in the generated code.

The implementation of the Service Layer depends
on the target platform on which the program
should run. Hence, at the code generation and
compilation step for a Rose-RT model, the toolset
links the user-defined code with a services library
for the particular platform on which the model is
intended to run.

The Service Library also contains services for
concurrency control and thread management.
Capsules can belong to different logical threads.
Logical threads are mapped to a set of concurrent
physical threads defined by the developer of the
Rose-RT model. No other capsules in a thread
can execute until the currently executing capsule
returns control to the main loop of that thread.
However, other capsules on other physical
threads may be executing concurrently.

Each thread has a separate message queue and its
own controller object that is responsible for
queuing and delivering messages among capsules
in this thread. This controller object contains the
basic message delivery and processing loop. The
underlying operating system is responsible for
switching control among active physical threads.
The operating system may pre-empt one physical
thread in the middle of execution to switch to
another physical thread. Each thread can be
assigned a separate priority, so that the designer
has some control over the scheduling.

Message processing, which is provided by the
Services Library, is based on the following steps.
During start-up, the initialization message is the
message with the highest priority. When a cap-
sule processes the initialization message, the
capsule's initial transition segment is executed.
During the main processing loop the controller
object takes the next highest priority message

from the message queues and delivers it to the
receiver capsule and invokes that capsule's be-
havior to process the message. Each capsule
processes the current message to the completion
of the transition chain. This is referred to as the
run-to-completion semantics. When the capsule
has completed processing a message, it returns
control to the controller. The controller continues
this loop until there are no more messages to be
processed.

One step in Rose-RT is associated with process-
ing the next message of the highest available
priority. A step terminates when all actions
associated with the respective message are per-
formed.

There are two ways of testing the generated and
compiled code. The first way is to run the execu-
table on the intended platform. The second way is
to execute the model step-by-step on a simulated
platform, but then correct timing is not guaran-
teed and only the reactive response to messages
can be tested.

The Timing Service of the Rose-RT Services
Library provides the model developers with
general-purpose timing facilities based on both
absolute and relative time. The precision of the
Timing Service depends on the granularity of the
timing supported by the underlying operating
system. The Timing Service does not guarantee
absolute accuracy, since it is platform dependent.
This means that intervals between timer creation
and timer expiration can take slightly longer than
specified, and events scheduled for a particular
time may in fact happen slightly after the actual
time has occurred.

3 MATLAB/SIMULINK

This section contains a short description of
Simulink of The MathWorks, based on the tool
documentation. A Simulink model is represented
graphically by means of a number of intercon-
nected blocks. Lines between blocks connect
block outputs to block inputs. Blocks may have
states, which may consist of a discrete-time and a
continuous-time part.

The output of a block is computed by an output
function, based on its input and its current state
and time. Similarly, an update function calculates
the next discrete state. A derivative function

relates the derivatives of the continuous part of
the state to time and the current values of the
inputs and the state.

Blocks can be built from a large number of
predefined library blocks, or they can be imple-
mented by an S-function, which can be written in
MATLAB, C, C++, Ada, or Fortran.

During the simulation of a Simulink model, the
outputs, inputs and states are computed at certain
intervals, from a start time to an end time, as
specified by the user. The successive states of a
system are computed by a so-called solver, a
Simulink-specific program. Since no solver is
suitable for all models, there are several types of
solvers. The solvers use numerical integration to
compute the continuous states of a system from
the state derivatives specified by the model. Each
solver uses a different integration method, allow-
ing the selection of the most suitable method for
a particular model.

The successive time points at which the states
and outputs are computed are called time steps.
The length of time between steps is called step
size. The step size depends on the type of the
solver used, the characteristics of the Simulink
model, and the existence of discontinuities of the
continuous states (Simulink checks for such
discontinuities – this is called zero crossing
detection – and if it detects one within the current
step, the precise time at which zero crossing
occurs is determined and additional time steps are
taken).

There are several types of solvers. Fixed-step
solvers use a fixed step size. Variable-step
solvers change the step size during simulation.
They reduce the step size to increase accuracy
when states are changing rapidly and increasing
the step size to avoid taking unnecessary steps
when states are changing slowly. This requires
some additional computation each step, to deter-
mine the step size, but can reduce the total num-
ber of steps and hence the duration of the simula-
tion. For purely discrete models there are discrete
solvers. Continuous solvers compute continuous
states using numerical integration. Simulink
provides an extensive set of fixed-step and vari-
able-step continuous solvers, each implementing
a specific numerical integration technique for
solving the ordinary differential equations that
represent the continuous states of dynamic sys-
tems.

The solvers monitor the error at each time step;
they compute the local error, which is the esti-
mated error of the computed state values. If the
local error is greater than the acceptable error for
any state, the solver reduces the step size and
tries again.

Simulation of a Simulink model starts with the
initialization phase, where e.g. library blocks are
incorporated, block parameters are evaluated,
memory is allocated and the execution order of
the blocks is determined. Next, Simulink enters a
simulation loop, consisting of simulation steps.
During each simulation step, Simulink executes
all blocks of the model in the order determined
during initialization. This execution order does
not change during the simulation. For each block,
Simulink calls functions that compute the block's
states, derivatives, and outputs for the current
sample time. This continues until the simulation
is complete.

4 MAIN CONCEPTS OF THE COUPLING

In this section, the main decisions taken to estab-
lish a correct coupling are presented, namely, the
notion of time in Section 4.1 and the global
coupling architecture in Section 4.2.

4.1 Notion of time

The most important decision concerns the notion
of time to be used for the simulation. Observe
that the timing of Rose-RT is strongly coupled to
the timing service of the operating system of the
target system on which the model is running.
Moreover, timing is not respected in the step-by-
step simulation. Hence, we concluded that the
timing of Rose-RT is not suitable for our purpose
and decided to use the notion of simulated time
of Simulink instead. The alternative is to use a
separate, independent, notion of time, but this
would also require new implementations of
solvers, redoing a lot of things already available
in Simulink.

To be able to establish a proper notion of simula-
tion time, which faithfully reflects the execution
of both models, somehow the execution time of
the transitions in the Rose-RT model has to be
taken into account. We assume that this informa-
tion is available, representing an assumption on
the underlying platform.

4.2 Global coupling architecture

Another decision to be taken is the global archi-
tecture of the coupling. Instead of a tight cou-
pling, we decided to use a more loosely coupled
architecture by introducing a third component
called Multidisciplinary Coupling Tool (MCT), as
shown in Fig. 2. Observe that each tool contains
an add-in, which is responsible for the communi-
cation with the MCT component.

MATLAB/

SIMULINK

ROSE-RT

MCT
add-in

MCT
add-in

 MCT

Fig. 2 Loosely Coupled Architecture

By introducing such an MCT interface, the
modeling tools do not need to know about each
other and it becomes much easier to change. For
instance, to switch to another UML-based CASE
tool. Moreover, it makes it easier for the engi-

neers to establish a coupling without knowing
much about the details of the models of the other
discipline.

To obtain proper timing of the UML models, we
have redefined the timing service of Rose-RT
such that it gets the current notion of time from
the MCT component, which passes on the notion
of time it receives from Simulink.

5 DETAILS OF THE COUPLING

This section contains more implementation
details of the realized coupling. Fig. 3 shows a
rather detailed module architectural view of the
implementation, showing for instance in more
detail how the timing of a UML model is ob-
tained from the MCT. The Original Rose-RT
model and the Original Simulink model depict the
original models supplied for coupling.

Timing interface

Rose-RT

Simulated Target
Operating System

Memory Files Timers

IPC Threads

Services Library

Rose-RT Model

Original
Rose-RT

model

MCT
Rose-RT

add-in

Frame Log Timing

Communication State machine

Matlab

Matlab Kernel

 Simulink Library

Solvers

Simulink Model

MCT
Simulink
add-in

MCT

Remote
control
interface

Data
interface

1

2

3 6
7

9

4

5 8

7
10

11

12

Original
Simulink
model

Timing
interface

Fig. 3 Module Architecture View

Below we describe the main parts, the Rose-RT
layers in Section 5.1, the MCT in Section 5.2,

and the Matlab/Simulink layers in Section 5.3,
referring to arrows in Fig. 3.

5.1 Rose-RT layers

The Rose-RT component consists of three layers:
the Rose-RT Model layer, the Services Library
layer, and the Simulated Target Operating Sys-
tem layer.

The Rose-RT Model layer consists of the Original
Rose-RT model and the MCT Rose-RT add-in,
which is responsible for the external communica-
tion (arrow 1 in Fig. 3). In general, a Rose-RT
model may communicate with external applica-
tions through external ports only. An external
port can only identify the presence of a Rose-RT-
specific type signal. This actually means that data
cannot be send to an external port of a capsule.
However, we can associate an external port with
a signal, which notifies that the data supplied by
the Simulink model is available in some data
storage (here located in the MCT component).
Consequently, every different data unit should be
associated with a separate external port. The
MCT Rose-RT add-in contains the collection of
all these external ports.

A Rose-RT model has access to classes of the
Services Library layer. For example, whenever a
model needs to use the timing service, as in the
case of a timer creation, it uses the methods of
classes that implement the Timing Service of the
Services Library (see arrow 2). Arrow 3 shows
that the Timing Service of the Services Library
queries the Timers of the Simulated Target Oper-
ating System. These Timers (of the Simulated
Target Operating System) use the Timing inter-
face of the MCT (see arrow 6) in order to access
the simulation time of Simulink instead of the
one originally used by Rose-RT.

5.2 MCT

The MCT component consists of three interfaces:
a Remote control interface, a Data interface, and
a Timing interface.
The Remote control interface allows starting,
stopping and controlling the execution of the
Rose-RT model in step-by-step mode (arrow 4).
This functionality can be accessed by the MCT
Simulink add-in (arrow 7).
The Data interface serves as storage for the data
that has to be exchanged between the Rose-RT
and Simulink models, including the timing delays
associated with the execution of transitions in
Rose-RT (arrows 5 and 8). For example, data

calculated by Simulink is set in the MCT to be
available for Rose-RT. After the MCT notifies
Rose-RT about the data availability through the
Remote control interface, Rose-RT can access the
data in the MCT storage. The other direction of
data transfer proceeds similarly. The Data inter-
face also plays an important role in the time
synchronization process. After executing a transi-
tion, the assumed execution time is sent to the
MCT Simulink add-in using the Data interface.
The Timing interface keeps track of the simula-
tion time. It represents an intermediate clock,
which is updated with the value of the Simulink
simulation time (arrow 9) and which is regularly
sampled (before a step in Rose-RT is executed)
by the Timers of the Simulated Target Operating
System (arrow 6).

5.3 Matlab/Simulink layers

The Matlab/Simulink component has three lay-
ers: the Simulink Model layer, the Simulink
Library layer, and the Matlab layer.

The Simulink Model layer contains the Original
Simulink model, extended by the MCT Simulink
add-in (see arrow 10). The MCT Simulink add-in
is actually the driver of the simulation, and
therefore the Original Simulink model depends on
it.

Timing of Simulink does not depend on the
platform on which the tool runs, but is defined by
the Solvers. The MCT Simulink add-in takes the
value of the current simulation time provided by
one of the Solvers (see arrow 11) and passes it to
the Timing interface (arrow 9).

The MCT Simulink add-in uses the functions of
the Remote control interface to send events to the
MCT Rose-RT add-in, and to drive the Rose-RT
execution in the step-by-step mode (arrow 7).
The command to perform a step in Rose-RT
should always be preceded by an update of the
Rose-RT time in order to keep the clocks of
Rose-RT and Simulink synchronized. After each
step performed by Rose-RT, the MCT Simulink
add-in gets the new data, including the assumed
time duration of the executed transition(s). This
data is obtained through the Data interface. To
ensure that Simulink takes this execution delay
into account, we have designed a block diagram
in which the original Simulink model should be
inserted, as depicted in Fig. 4.

Fig. 4 Extended Simulink model

This extended Simulink model contains a block
called Triggered Subsystem which is enabled
each time a trigger is detected. There are three
types of triggers possible:
(1) Initial trigger (when the simulation starts);
represented by the blocks From Workspace,
Dead Zone, and Data Type Conversion1.
(2) Execution delay trigger; generated when the
Simulink simulation time is advanced with the
value of the execution delay of a transition exe-
cuted in Rose-RT. It is represented by the blocks
Clock, Relational Operator, and Memory2.
(3) Timer expiration trigger. This trigger is
generated when the Simulink simulation time is
advanced with a value equal to the duration of the
timer, as requested by a timer setting in Rose-RT.
This trigger is represented by the blocks Clock,
Relational Operator, Hit Crossing, Memory3,
and Memory4.

Block Triggered Subsystem is shown in Fig. 5.
Inside this Triggered Subsystem one can notice a
MCTblock which is a user-created block defined
by the S-function MCTSfunction. This
MCTSfunction has three outputs, which are
passed to the five outputs of the Triggered Sub-
system block. Output Execution relative delay is
used for the simulation of delays by the Variable
Transport Delay block (see Fig. 4). This block

ensures that data received from the Data Output
of the Triggered Subsystem is provided only after
the time specified by the Execution relative
delay. Output Execution relative delay is also
used for the calculation of the Execution Absolute
delay, which is used to generate the Execution
delay trigger to the Triggered Subsystem.

Fig. 5 Triggered Subsystem

Next we describe the behaviour of the S-function
MCTSfunction defining the MCTblock. A
standard S-function contains a number of
functions that are called by Simulink. For in-
stance, during a simulation step, Simulink calls
mdlUpdate() to update discrete states, mdlDeriva-
tives() to calculate derivatives, and mdlOutputs()

to calculate the outputs of a block. In our case,
the mdlOutputs() function defines when and how
the synchronization of the Rose-RT and Mat-
lab/Simulink models is performed. The order in
which commands are given within the mdlOut-
puts() function is crucial for the execution and
should be strictly followed:
1. Set the clock in the Timing interface to the

current simulation time. This is needed for
synchronizing the Rose-RT clock with the
Simulink clock.

2. Give a command to Rose-RT to perform
one step. By doing this, Rose-RT will be-
come active and responsive to external
events.

3. Send an external event, if no timer was
started in Rose-RT, which will trigger a
transition in the Rose-RT model.

4. Read the data, execution delay and timer
duration from the Data interface and pass it
to the output of the MCTblock. If these were
not set during the execution of the step in
Rose-RT the previous values will be read.

5. Take the input of the MCTblock, provided
by the Original Simulink model and put it in
the Data interface to make it available for
Rose-RT.

Finally, we propose the selection of a continuous
variable-step solver for the simulation, to ensure
an effective way of calculating data and deter-
mining critical points in the simulation.

6 CONCLUDING REMARKS

The current version of the coupling tool that
connects Simulink and Rose-RT is a first proto-
type that can be used to investigate the main
principles and to experiment with examples. It is
has been tested an a few small examples, but
more experiments are needed to investigate the
behavior for various types of solvers and models
and to get more confidence in the correctness of
the simulations. Moreover, we have to apply the
coupling to large existing models from industry
to investigate the feasibility and usefulness of
such a simultaneous simulation and to investigate
the performance for complex systems. Future
work also includes the removal of a few simplifi-
cations that have been made to obtain a first
prototype quickly. For instance, at the moment
only one timer is allowed in the UML model and
a preliminary version of a timer queue has not yet
been tested.

Acknowledgements We would like to thank the
members of the Boderc project for constructive
discussions, useful hints for the realization of the
coupling, support on the design of Mat-
lab/Simulink models, and constructive comments
on draft versions of the current paper.

LITERATURE

Booch, G., J. Rumbaugh and I. Jacobson. (1999).
The Unified Modeling Language User Guide,
Addison-Wesley.

Clarke, E.M., A Fehnker, Zhi Han, B. Krogh, J.
Ouaknine, O. Stursberg and M. Theobald.
(2003). Abstraction and Counterexample-
guided Refinement of Hybrid Systems. Inter-
national Journal of Foundations of Computer
Science, Vol 14, Number 3.

Dahmann, J., R. Fujimoto, and R. Weatherly.
(1997). The Department of Defense High
Level Architecture In Proc. of the 1997 Win-
ter Simulation Conference, pp.142-149.

The Generic Modeling Environment,
http://www.isis.vanderbilt.edu/Projects/gme/

Grosu, R., T. Stauner and M. Broy. (1998). A
Modular Visual Model for Hybrid Systems.
In Proc. of the FTRTFT'98.

Henzinger, T.A., P.-H. Ho and H. Wong-Toi.
(1997). HyTech: A Model Checker for Hy-
brid Systems. Software Tools for Technology
Transfer 1:110-122.

The Ptolemy Project, ptolemy.eecs.berkeley.edu/

Rose Technical Developer, www.ibm.com

Selic, B., G., Gullekson and P. Ward. (1994).
Real-Time Object-Oriented Modeling. John
Wiley & Sons.

Simulink of The Mathworks,
www.mathworks.com/products/simulink/

Stauner, T., A. Pretschner and I. Péter. (2001).
Approaching a Discrete-Continuous UML:
Tool Support and Formalization. Proc.
UML'2001 workshop on Practical UML-
Based Rigorous Development Methods --
Countering or Integrating the eXtremists, pp.
242-257.

