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Abstract: The general aim of this work is to support the multi-disciplinary development of real-time embed-
ded systems by combining tools of different disciplines. As a concrete example, we have coupled a UML-
based CASE tool (Rose RealTime) and Simulink to allow simultaneous simulation. Main conceptual problem 
is to establish a common notion of time. We have implemented a first prototype in which this has been solved 
by using the simulation time of Matlab/Simulink also for Rose RealTime and by extending the UML model 
with assumptions about execution times. 
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1 INTRODUCTION 

The development of embedded real-time applica-
tions, including transportation, typically involves 
several disciplines, such as electrical engineering, 
mechanical engineering, and software engineer-
ing. Although these disciplines are tightly cou-
pled in the considered embedded systems, their 
development is often a rather sequential, mono-
disciplinary, process. Typically, first the me-
chanical part is designed, next the hardware 
infrastructure is fixed, and finally the embedded 
software is developed. This approach can create 
large problems, especially for the software engi-
neers. For instance, choices about the placements 
of sensors (and implicitly the occurrence of 
interrupts), control rates, control delays, hard-
ware, etc., have a strong influence on the com-
plexity of the software. Moreover, usually many 
implicit assumptions are made, which first be-
come visible at system integration. This easily 
leads to non-optimal solutions.  
 
Within each discipline, a common solution is the 
frequent use of models to detect problems as 
early as possible. For instance, in the software 
domain a lot of effort is put on model driven 
development, based on UML models (Booch et. 
al. 1999). Moreover, mono-disciplinary modeling 
is usually supported by tools that allow some 
form of execution or simulation. Lacking, how-

ever, is the possibility to combine tools of differ-
ent disciplines and to investigate the mutual 
influence of modeling choices. Our aim is to 
couple currently used tools to allow simultaneous 
simulation of models from different disciplines.  
 
The work described here is mainly part of the 
Boderc project*, in collaboration with the com-
pany Océ, a producer of high-volume printers and 
copiers, but the proposed solutions could also be 
applicable in other domains such as avionics and 
automotive.  
 
Given the collaboration with Océ, we have 
implemented a coupling between the UML-based 
CASE tool Rose RealTime (currently renamed to 
Rose Technical Developer) of IBM Rational and 
Matlab/Simulink of The Mathworks. Rose Real-
Time (Rose-RT) supports the ROOM methodol-
ogy (Selic et. al., 1994) for the development of 
software for real-time reactive systems. It is used 
at Océ to define a reusable software architecture, 
which is instantiated for a particular print-
ing/copying machine. Next the tool allows the 
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generation of code for a particular target plat-
form, thus obtaining a direct connection between 
a model and the generated code. Simulink is used 
at Océ to model the mechanical layout of the 
machine and to experiment with, for instance, the 
shape and the length of the paper path, the 
placement of motors and sensors, and the paper 
speed. 
 
As an example, our coupling allows the combina-
tion of a continuous-time model of a physical 
dynamical system in Simulink with a discrete-
time control algorithm in Rose-RT, as depicted in 
Fig. 1.  
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Fig. 1 Combined Models 

By establishing a proper notion of simultaneous 
simulation of these models, one can quickly 
investigate the effect of changes in the control 
strategy, the software execution times, or the 
effect of different system characteristics.  
 
Realizing the desired tool coupling is far from 
trivial. The two main challenges are: 
(1)  Conceptual correctness. The coupling should 
be such that the simultaneous simulation of 
models in both tools gives meaningful results. In 
particular, this means that there must be a com-
mon notion of simulation time in combination 
with a proper exchange of data and messages. For 
instance, control data computed by the UML 
model is to be used in the Simulink model at the 
right moment in time, taking the duration of the 
computation into account. Moreover, time-outs 
generated by timers in the Rose-RT model should 
correspond to the simulated time in Simulink.  
(2) Technical implementation. The coupling 
software should be properly designed to allow, 
for instance, a change to another UML tool 
without too much effort. Moreover, suitable ways 
should be found to allow the tools to communi-
cate and to run a simulation mode simultane-
ously. The current version of the coupling works 
in a Windows environment with Matlab release 
13, Simulink version 5.0, and Rose-RT version 
6.5.341.0. 
 

Such a coupling between Rose-RT (or similar 
real-time UML tools) and Simulink models has 
not been realized before. Related is the work on 
the High Level Architecture (HLA) (Dahmann et. 
al. 1997), a general-purpose architecture for the 
coupling of simulation tools. However, HLA 
cannot be used for our purpose, because UML-
based CASE tools, such as Rose-RT do not fit 
into the HLA framework since they do not have 
the required simulation mode with a well-defined 
notion of simulation time.  
 
An alternative solution to the modeling of mixed 
discrete-continuous systems has been followed in 
the HyROOM approach (Stauner et. al. 2001), 
where the ROOM/Rose-RT notation has been 
extended with continuous elements. The main 
parts of the resulting tool have been mapped into 
HyCharts (Grosu et. al. 1998), a formal frame-
work for hybrid systems. Along this line, there 
are several formal approaches that allow check-
ing properties of hybrid systems (modeling both 
discrete and continuous aspects), such as HyTech 
(Henzinger et. al. 1997) and Checkmate (Clarke 
et. al. 2003).  Another approach is the use of 
generic modeling environments, such as Ptolemy 
and the Generic Modeling Environment (GME), 
that allow the development of domain specific 
modeling tools. Our aim, however, is to allow 
engineers to continue working with their well-
known mono-disciplinary tools, without having 
to redo their modeling work in some multi-
disciplinary modeling environment. 
 
The rest of this paper is structured as follows. 
Sections 2 and 3 contain a very brief presentation 
of the tools used (Rose-RT and Simulink, respec-
tively); describing them only as far as needed to 
understand the coupling. The main concepts of 
the coupling are explained in Section 4. Details 
of the implementation are given in Section 5. 
Concluding remarks can be found in Section 6. 

2 ROSE REALTIME 

Rose-RT is a UML-based CASE tool for the 
development of complex reactive software. 
Typically, a UML model in Rose-RT consists of 
a number of active objects, also called capsules, 
which communicate by sending and receiving 
messages via ports. Messages may have different 
priorities. A port must refer to a protocol, which 
represents a set of messages that can be ex-
changed between capsules. The behavior of a 



capsule is modeled by means of a hierarchical 
state diagram. Transitions in a state diagram are 
triggered by the receipt of messages or time-outs. 
Actions on a transition may change local vari-
ables, send messages, or set timers. 
 
Given a complete model, the Rose-tool can 
generate code for a specific target platform, using 
the characteristics of that platform. Model execu-
tion is based on a so-called Service Layer which 
provides general services, e.g. it contains control-
lers, which are responsible for queuing and 
delivering messages among capsules, and timing 
services that can be used in the generated code.  
 
The implementation of the Service Layer depends 
on the target platform on which the program 
should run. Hence, at the code generation and 
compilation step for a Rose-RT model, the toolset 
links the user-defined code with a services library 
for the particular platform on which the model is 
intended to run. 
 
The Service Library also contains services for 
concurrency control and thread management. 
Capsules can belong to different logical threads. 
Logical threads are mapped to a set of concurrent 
physical threads defined by the developer of the 
Rose-RT model. No other capsules in a thread 
can execute until the currently executing capsule 
returns control to the main loop of that thread. 
However, other capsules on other physical 
threads may be executing concurrently. 
 
Each thread has a separate message queue and its 
own controller object that is responsible for 
queuing and delivering messages among capsules 
in this thread. This controller object contains the 
basic message delivery and processing loop. The 
underlying operating system is responsible for 
switching control among active physical threads. 
The operating system may pre-empt one physical 
thread in the middle of execution to switch to 
another physical thread. Each thread can be 
assigned a separate priority, so that the designer 
has some control over the scheduling.  
 
Message processing, which is provided by the 
Services Library, is based on the following steps. 
During start-up, the initialization message is the 
message with the highest priority. When a cap-
sule processes the initialization message, the 
capsule's initial transition segment is executed. 
During the main processing loop the controller 
object takes the next highest priority message 

from the message queues and delivers it to the 
receiver capsule and invokes that capsule's be-
havior to process the message. Each capsule 
processes the current message to the completion 
of the transition chain. This is referred to as the 
run-to-completion semantics. When the capsule 
has completed processing a message, it returns 
control to the controller. The controller continues 
this loop until there are no more messages to be 
processed. 
 
One step in Rose-RT is associated with process-
ing the next message of the highest available 
priority. A step terminates when all actions 
associated with the respective message are per-
formed.  
 
There are two ways of testing the generated and 
compiled code. The first way is to run the execu-
table on the intended platform. The second way is 
to execute the model step-by-step on a simulated 
platform, but then correct timing is not guaran-
teed and only the reactive response to messages 
can be tested. 
 
The Timing Service of the Rose-RT Services 
Library provides the model developers with 
general-purpose timing facilities based on both 
absolute and relative time. The precision of the 
Timing Service depends on the granularity of the 
timing supported by the underlying operating 
system. The Timing Service does not guarantee 
absolute accuracy, since it is platform dependent. 
This means that intervals between timer creation 
and timer expiration can take slightly longer than 
specified, and events scheduled for a particular 
time may in fact happen slightly after the actual 
time has occurred. 

3 MATLAB/SIMULINK 

This section contains a short description of 
Simulink of The MathWorks, based on the tool 
documentation. A Simulink model is represented 
graphically by means of a number of intercon-
nected blocks. Lines between blocks connect 
block outputs to block inputs. Blocks may have 
states, which may consist of a discrete-time and a 
continuous-time part.  
 
The output of a block is computed by an output 
function, based on its input and its current state 
and time. Similarly, an update function calculates 
the next discrete state. A derivative function 



relates the derivatives of the continuous part of 
the state to time and the current values of the 
inputs and the state. 
 
Blocks can be built from a large number of 
predefined library blocks, or they can be imple-
mented by an S-function, which can be written in 
MATLAB, C, C++, Ada, or Fortran. 
 
During the simulation of a Simulink model, the 
outputs, inputs and states are computed at certain 
intervals, from a start time to an end time, as 
specified by the user. The successive states of a 
system are computed by a so-called solver, a 
Simulink-specific program. Since no solver is 
suitable for all models, there are several types of 
solvers. The solvers use numerical integration to 
compute the continuous states of a system from 
the state derivatives specified by the model. Each 
solver uses a different integration method, allow-
ing the selection of the most suitable method for 
a particular model.  
 
The successive time points at which the states 
and outputs are computed are called time steps. 
The length of time between steps is called step 
size. The step size depends on the type of the 
solver used, the characteristics of the Simulink 
model, and the existence of discontinuities of the 
continuous states (Simulink checks for such 
discontinuities – this is called zero crossing 
detection – and if it detects one within the current 
step, the precise time at which zero crossing 
occurs is determined and additional time steps are 
taken).  
 
There are several types of solvers. Fixed-step 
solvers use a fixed step size. Variable-step 
solvers change the step size during simulation. 
They reduce the step size to increase accuracy 
when states are changing rapidly and increasing 
the step size to avoid taking unnecessary steps 
when states are changing slowly. This requires 
some additional computation each step, to deter-
mine the step size, but can reduce the total num-
ber of steps and hence the duration of the simula-
tion. For purely discrete models there are discrete 
solvers. Continuous solvers compute continuous 
states using numerical integration. Simulink 
provides an extensive set of fixed-step and vari-
able-step continuous solvers, each implementing 
a specific numerical integration technique for 
solving the ordinary differential equations that 
represent the continuous states of dynamic sys-
tems. 

The solvers monitor the error at each time step; 
they compute the local error, which is the esti-
mated error of the computed state values. If the 
local error is greater than the acceptable error for 
any state, the solver reduces the step size and 
tries again. 
 
Simulation of a Simulink model starts with the 
initialization phase, where e.g. library blocks are 
incorporated, block parameters are evaluated, 
memory is allocated and the execution order of 
the blocks is determined. Next, Simulink enters a 
simulation loop, consisting of simulation steps. 
During each simulation step, Simulink executes 
all blocks of the model in the order determined 
during initialization. This execution order does 
not change during the simulation. For each block, 
Simulink calls functions that compute the block's 
states, derivatives, and outputs for the current 
sample time. This continues until the simulation 
is complete. 

4 MAIN CONCEPTS OF THE COUPLING 

In this section, the main decisions taken to estab-
lish a correct coupling are presented, namely, the 
notion of time in Section 4.1 and the global 
coupling architecture in Section 4.2. 

4.1 Notion of time 

The most important decision concerns the notion 
of time to be used for the simulation. Observe 
that the timing of Rose-RT is strongly coupled to 
the timing service of the operating system of the 
target system on which the model is running. 
Moreover, timing is not respected in the step-by-
step simulation. Hence, we concluded that the 
timing of Rose-RT is not suitable for our purpose 
and decided to use the notion of simulated time 
of Simulink instead. The alternative is to use a 
separate, independent, notion of time, but this 
would also require new implementations of 
solvers, redoing a lot of things already available 
in Simulink.   
 
To be able to establish a proper notion of simula-
tion time, which faithfully reflects the execution 
of both models, somehow the execution time of 
the transitions in the Rose-RT model has to be 
taken into account. We assume that this informa-
tion is available, representing an assumption on 
the underlying platform. 



4.2 Global coupling architecture 

Another decision to be taken is the global archi-
tecture of the coupling. Instead of a tight cou-
pling, we decided to use a more loosely coupled 
architecture by introducing a third component 
called Multidisciplinary Coupling Tool (MCT), as 
shown in Fig. 2. Observe that each tool contains 
an add-in, which is responsible for the communi-
cation with the MCT component. 
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Fig. 2 Loosely Coupled Architecture 

By introducing such an MCT interface, the 
modeling tools do not need to know about each 
other and it becomes much easier to change. For 
instance, to switch to another UML-based CASE 
tool. Moreover, it makes it easier for the engi-

neers to establish a coupling without knowing 
much about the details of the models of the other 
discipline.  
 
To obtain proper timing of the UML models, we 
have redefined the timing service of Rose-RT 
such that it gets the current notion of time from 
the MCT component, which passes on the notion 
of time it receives from Simulink. 

5 DETAILS OF THE COUPLING 

This section contains more implementation 
details of the realized coupling. Fig. 3 shows a 
rather detailed module architectural view of the 
implementation, showing for instance in more 
detail how the timing of a UML model is ob-
tained from the MCT. The Original Rose-RT 
model and the Original Simulink model depict the 
original models supplied for coupling. 
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Fig. 3 Module Architecture View

Below we describe the main parts, the Rose-RT 
layers in Section 5.1, the MCT in Section 5.2, 

and the Matlab/Simulink layers in Section 5.3, 
referring to arrows in Fig. 3. 



5.1 Rose-RT layers 

The Rose-RT component consists of three layers: 
the Rose-RT Model layer, the Services Library 
layer, and the Simulated Target Operating Sys-
tem layer. 
 
The Rose-RT Model layer consists of the Original 
Rose-RT model and the MCT Rose-RT add-in, 
which is responsible for the external communica-
tion (arrow 1 in Fig. 3). In general, a Rose-RT 
model may communicate with external applica-
tions through external ports only. An external 
port can only identify the presence of a Rose-RT-
specific type signal. This actually means that data 
cannot be send to an external port of a capsule. 
However, we can associate an external port with 
a signal, which notifies that the data supplied by 
the Simulink model is available in some data 
storage (here located in the MCT component). 
Consequently, every different data unit should be 
associated with a separate external port. The 
MCT Rose-RT add-in contains the collection of 
all these external ports.  
 
A Rose-RT model has access to classes of the 
Services Library layer. For example, whenever a 
model needs to use the timing service, as in the 
case of a timer creation, it uses the methods of 
classes that implement the Timing Service of the 
Services Library (see arrow 2). Arrow 3 shows 
that the Timing Service of the Services Library 
queries the Timers of the Simulated Target Oper-
ating System. These Timers (of the Simulated 
Target Operating System) use the Timing inter-
face of the MCT (see arrow 6) in order to access 
the simulation time of Simulink instead of the 
one originally used by Rose-RT. 

5.2 MCT 

The MCT component consists of three interfaces: 
a Remote control interface, a Data interface, and 
a Timing interface. 
The Remote control interface allows starting, 
stopping and controlling the execution of the 
Rose-RT model in step-by-step mode (arrow 4). 
This functionality can be accessed by the MCT 
Simulink add-in (arrow 7). 
The Data interface serves as storage for the data 
that has to be exchanged between the Rose-RT 
and Simulink models, including the timing delays 
associated with the execution of transitions in 
Rose-RT (arrows 5 and 8). For example, data 

calculated by Simulink is set in the MCT to be 
available for Rose-RT. After the MCT notifies 
Rose-RT about the data availability through the 
Remote control interface, Rose-RT can access the 
data in the MCT storage. The other direction of 
data transfer proceeds similarly. The Data inter-
face also plays an important role in the time 
synchronization process. After executing a transi-
tion, the assumed execution time is sent to the 
MCT Simulink add-in using the Data interface.  
The Timing interface keeps track of the simula-
tion time. It represents an intermediate clock, 
which is updated with the value of the Simulink 
simulation time (arrow 9) and which is regularly 
sampled (before a step in Rose-RT is executed) 
by the Timers of the Simulated Target Operating 
System (arrow 6). 

5.3 Matlab/Simulink layers 

The Matlab/Simulink component has three lay-
ers: the Simulink Model layer, the Simulink 
Library layer, and the Matlab layer. 
 
The Simulink Model layer contains the Original 
Simulink model, extended by the MCT Simulink 
add-in (see arrow 10). The MCT Simulink add-in 
is actually the driver of the simulation, and 
therefore the Original Simulink model depends on 
it.  
 
Timing of Simulink does not depend on the 
platform on which the tool runs, but is defined by 
the Solvers. The MCT Simulink add-in takes the 
value of the current simulation time provided by 
one of the Solvers (see arrow 11) and passes it to 
the Timing interface (arrow 9). 
 
The MCT Simulink add-in uses the functions of 
the Remote control interface to send events to the 
MCT Rose-RT add-in, and to drive the Rose-RT 
execution in the step-by-step mode (arrow 7). 
The command to perform a step in Rose-RT 
should always be preceded by an update of the 
Rose-RT time in order to keep the clocks of 
Rose-RT and Simulink synchronized. After each 
step performed by Rose-RT, the MCT Simulink 
add-in gets the new data, including the assumed 
time duration of the executed transition(s). This 
data is obtained through the Data interface. To 
ensure that Simulink takes this execution delay 
into account, we have designed a block diagram 
in which the original Simulink model should be 
inserted, as depicted in Fig. 4. 



 

 

Fig. 4 Extended Simulink model 

This extended Simulink model contains a block 
called Triggered Subsystem which is enabled 
each time a trigger is detected. There are three 
types of triggers possible: 
(1) Initial trigger (when the simulation starts); 
represented by the blocks From Workspace, 
Dead Zone, and Data Type Conversion1.  
(2) Execution delay trigger; generated when the 
Simulink simulation time is advanced with the 
value of the execution delay of a transition exe-
cuted in Rose-RT. It is represented by the blocks 
Clock, Relational Operator, and Memory2.  
(3) Timer expiration trigger. This trigger is 
generated when the Simulink simulation time is 
advanced with a value equal to the duration of the 
timer, as requested by a timer setting in Rose-RT. 
This trigger is represented by the blocks Clock, 
Relational Operator, Hit Crossing, Memory3, 
and Memory4. 
 
Block Triggered Subsystem is shown in Fig. 5. 
Inside this Triggered Subsystem one can notice a 
MCTblock which is a user-created block defined 
by the S-function MCTSfunction. This 
MCTSfunction has three outputs, which are 
passed to the five outputs of the Triggered Sub-
system block. Output Execution relative delay is 
used for the simulation of delays by the Variable 
Transport Delay block (see Fig. 4). This block 

ensures that data received from the Data Output 
of the Triggered Subsystem is provided only after 
the time specified by the Execution relative 
delay. Output Execution relative delay is also 
used for the calculation of the Execution Absolute 
delay, which is used to generate the Execution 
delay trigger to the Triggered Subsystem.  
 

 
 

 

Fig. 5 Triggered Subsystem 

Next we describe the behaviour of the S-function 
MCTSfunction defining the MCTblock. A 
standard S-function contains a number of 
functions that are called by Simulink. For in-
stance, during a simulation step, Simulink calls 
mdlUpdate() to update discrete states, mdlDeriva-
tives() to calculate derivatives, and mdlOutputs() 



to calculate the outputs of a block. In our case, 
the mdlOutputs() function defines when and how 
the synchronization of the Rose-RT and Mat-
lab/Simulink models is performed. The order in 
which commands are given within the mdlOut-
puts() function is crucial for the execution and 
should be strictly followed:  
1. Set the clock in the Timing interface to the 

current simulation time. This is needed for 
synchronizing the Rose-RT clock with the 
Simulink clock. 

2. Give a command to Rose-RT to perform 
one step. By doing this, Rose-RT will be-
come active and responsive to external 
events. 

3. Send an external event, if no timer was 
started in Rose-RT, which will trigger a 
transition in the Rose-RT model.  

4. Read the data, execution delay and timer 
duration from the Data interface and pass it 
to the output of the MCTblock. If these were 
not set during the execution of the step in 
Rose-RT the previous values will be read. 

5. Take the input of the MCTblock, provided 
by the Original Simulink model and put it in 
the Data interface to make it available for 
Rose-RT.  

 
Finally, we propose the selection of a continuous 
variable-step solver for the simulation, to ensure 
an effective way of calculating data and deter-
mining critical points in the simulation.  

6 CONCLUDING REMARKS 

The current version of the coupling tool that 
connects Simulink and Rose-RT is a first proto-
type that can be used to investigate the main 
principles and to experiment with examples. It is 
has been tested an a few small examples, but 
more experiments are needed to investigate the 
behavior for various types of solvers and models 
and to get more confidence in the correctness of 
the simulations. Moreover, we have to apply the 
coupling to large existing models from industry 
to investigate the feasibility and usefulness of 
such a simultaneous simulation and to investigate 
the performance for complex systems. Future 
work also includes the removal of a few simplifi-
cations that have been made to obtain a first 
prototype quickly. For instance, at the moment 
only one timer is allowed in the UML model and 
a preliminary version of a timer queue has not yet 
been tested.  
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