
Event-driven control
in theory and practice

Trade-offs in software and control performance

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op dinsdag 19 december 2006 om 16.00 uur

door

Jacobus Henk Sandee

geboren te Wissenkerke



Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. P.P.J. van den Bosch

Copromotor:

dr.ir. W.P.M.H. Heemels

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Sandee, Jacobus H.

Event-driven control in theory and practice : trade-offs in software and control
performance / by Jacobus Henk Sandee. - Eindhoven : Technische Universiteit
Eindhoven, 2006.
Proefschrift. - ISBN-10: 90-386-1933-2
ISBN-13: 978-90-386-1933-0
NUR 959
Trefw.: discrete regelsystemen / reactieve computersystemen / bemonsterde
regelsystemen / randapparatuur ; printers.
Subject headings: discrete event systems / computerised control / sampled data
systems / printing industry.

Copyright c©2006 by J.H. Sandee

This PhD-study has been carried out as part of the Boderc project under the
responsibility of the Embedded Systems Institute. This project is partially supported
by the Dutch Ministry of Economic Affairs under the Senter TS program.



Preface
This PhD-research is part of the Boderc research project: Beyond the Ordinary: De-
sign of Embedded Real-time Control; coordinated by the Embedded Systems Institute.
The project aims at developing a model-based methodology to support early decisions
over multiple disciplines in the design of high-tech systems. A high speed document
printing system of Océ Technologies BV is taken as a case study and acts as the main
industrial driver for the project.

According to the Boderc project plan, modern high-tech systems, such as for ex-
ample encountered in high speed digital printing, rely during the design on the input
from different disciplines like electrical engineering, mechanical engineering, soft-
ware engineering, and control engineering. These disciplines use different models of
computation, such as differential equations, automata and finite state machines. Aca-
demic research is needed to create models that can effectively bridge the gap between
the different disciplines, by mixing different models of computation at the right level
of abstraction. However, it is not yet understood how the complete design process can
be done under demanding industrial product circumstances. This is the overall topic of
the Boderc project. This PhD-thesis specifically focusses on the system design aspects
where the disciplines software and control engineering are involved. This is visualized
as one of the three axis of a pyramid in the figure below.
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/ few details
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/ many details

control

software
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To make multi-disciplinary design choices, a system architect typically works with
high-level system descriptions, with only few details, as well as with low-level com-
ponent models, including lots of details. This is illustrated on the vertical axis of the
pyramid. To make well-founded trade-offs, he has to be able to reason at these dif-
ferent levels of detail and iterate in short cycles. These different levels can also be
observed in this thesis as it presents results at the system level (chapters 1-3 and 7), as
well as at the component level (chapters 4-6). The system level results should typically
be placed in the emerging field of systems engineering, while the lower level results
are especially focussed on the domain of control engineering, including software en-
gineering aspects.

In the multi-disciplinary design of high-tech systems, it is important that academia
works closely together with industry. Industry needs the highly specialized, often the-
oretical knowledge from academia, and academia needs the industrial environment
to focus on the right problems and to test their ideas within industrial practice and
constraints. These aspects can also be recognized in this thesis as the presented con-
cepts are well-founded by academic proofs at several points, as well as validated via
practical experiments in the industrial environment of printer development. This is
indicated at the third axis of the pyramid. The balls in the pyramid indicate how a
typical chapter outline of this thesis moves through the pyramid. This process is also
observed in practice when designing high-tech systems.

The pyramid also reflects the nature of the Boderc project: It covers the broad
range from system level to mono-disciplinary knowledge on one hand, and from aca-
demic to industrial results on the other.



Abstract
Event-driven control in theory and practice

Trade-offs in software and control performance

Feedback control algorithms are indispensable for the proper functioning of many
industrial high-tech systems like copiers, wafer steppers and so on. Most research
in digital feedback control considers periodic or time-driven control systems, where
continuous-time signals are represented by their sampled values at a fixed frequency.
In most applications, these digital control algorithms are implemented in a real-time
embedded software environment. As a consequence of the time-driven nature of con-
trollers, control engineers pose strong, non-negotiable requirements on the real-time
implementations of their algorithms as the required control performance can be guar-
anteed in this manner. This might lead to non-optimal solutions if the design problem
is considered from a broader multi-disciplinary system perspective. As an example,
time-driven controllers perform control calculations all the time at a fixed rate, so also
when nothing significant has happened in the process. This is clearly an unneces-
sary waste of resources like processor load and communication bus load and thus not
optimal if these aspects are considered as well.

To reduce the severe real-time constraints imposed by the control engineer and
the accompanying disadvantages, this thesis proposes to drop the strict requirement
of equidistant sampling. This enables the designers to make better balanced multi-
disciplinary trade-offs resulting in a better overall system performance and reduced
cost price. By not requiring equidistant sampling, one could for instance vary the
sample frequency over time and dynamically schedule the control algorithms in order
to optimize over processor load. Another option is to perform a control update when
new measurement data arrives. In this manner quantization effects and latencies are
reduced considerably, which can reduce the required sensor resolution and thus the
system cost price. As it is now an event (e.g. the arrival of a new measurement), rather
than the elapse of time, that triggers the controller to perform an update, this type of
feedback controllers is called event-driven control.

In this thesis, we present two different event-driven control structures. The first
one is sensor-based event-driven control in the sense that the control update is trig-
gered by the arrival of new sensor data. In particular, this control structure is applied
to accurately control a motor, based on an (extremely) low resolution encoder. The
control design is based on transforming the system equations from the time domain to
the angular position (spatial) domain. As controller updates are synchronous with re-
spect to the angular position of the motor, we can apply variations on classical control
theory to design and tune the controller. As a result of the transformation, the typical
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control measures that we obtain from analysis, are formulated in the spatial domain.
For instance, the bandwidth of the controller is not expressed in Hertz (s−1) anymore,
but in rad−1 and settling time is replaced by settling distance. For many high-tech
systems these spatial measures directly relate to the real performance requirements.
Moreover, disturbances are often more easily formulated in terms of angular position
than in terms of time, which has clear advantages from a modeling point of view. To
validate the theory, the controller is implemented on a high speed document print-
ing system, to accurately control a motor based on an encoder resolution of only 1
pulse per revolution. By means of analysis, simulation and measurements we show
that the control performance is similar to the initially proposed industrial controller
that is based on a much higher encoder resolution. Moreover, we show that the pro-
posed event-driven controller involves a significant lower processor load and hence
outperforms the time-driven controller from a system perspective.

The aim of the second type of event-driven controllers is to reduce the resource uti-
lization for the controller tasks, such as processor load and communication bus load.
The main idea is to only update the controller when it is necessary from a control
performance point of view. For instance, we propose event-driven controllers that do
not update the control value when the tracking/stabilization error is below a certain
threshold. By choosing this threshold, a trade-off can be made between control per-
formance and processor load. To get insight in this trade-off, theory is presented to an-
alyze the control performance of these event-driven control loops in terms of ultimate
bounds on the tracking/stabilization error. The theory is based on inferring properties
(like robust positive invariance, ultimate boundedness and convergence indices) for the
event-driven controlled system from discrete-time linear systems and piecewise linear
systems. Next to the theoretical analysis, simulations and experiments are carried out
on a printer paper path test-setup. It is shown that for the particular application the av-
erage processing time, needed to execute the controller tasks, was reduced by a factor
2 without significant degradation of the control performance in comparison to a time-
driven implementation. Moreover, we developed a method to accurately predict the
processor load for different processing platforms. This method is based on simulation
models and micro measurements on the processing platform, such that the processor
load can be estimated prior to implementing the controller on the platform.

Next to these contributions in the field of event-driven control, a system engineer-
ing technique called “threads of reasoning” is extended and applied to the printer case
study to achieve a focus on the right issues and trade-offs in a design.

In summary, two types of event-driven controllers are theoretically analyzed and
experimentally validated on a prototype document printing system. The results clearly
indicate the potential benefits of event-driven control with respect to the overall system
performance and in making trade-offs between control performance, software perfor-
mance and cost price.
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Introduction

1.1 Trade-offs in software and
control performance

1.2 Event-driven control

1.3 Experimental and industrial
validation

1.4 Scope and outline

Control algorithms are indispensable for the proper functioning of many high-tech
applications, such as automobiles, airplanes, home applications (refrigerator, washing
machine, vacuum cleaner), industrial plants, and for instance copiers. Within these
high-tech systems, a broad variety of controllers can be found. For instance in a copier,
where most controllers are implemented to control the velocity of a motor. These mo-
tor controllers are mainly found in the paper path where they drive rollers to transport
sheets of paper. However, throughout the whole copier, physical parts are moving by
the actuation of a motor. For instance in the scanner, where an array of sensors scans
the media, or in the finisher, where paper trays are moved to the right position to catch
the sheets of paper. Next to controlling motors, controllers are applied for various
other purposes in the copier. One example is the temperature control at the location
where the image is fused onto the sheet. Also controllers can be found that are not
controlling a physical element of the copier, but for instance take care of synchronized
timing over the multiple processors in the system.

Most of these control algorithms have in common that they need to be executed on
a real-time software processing platform, under strong real-time conditions to guar-
antee their required control performance. The major reason is that most controller
design methods are based on the requirement that the controller sample moments are
uniformly distributed over time, i.e. having fixed sample intervals. Stating differently,
effects like timing variation (jitter), which are inevitable in most software implemen-
tations, are not included in most analysis and synthesis methods. As a consequence,
control engineers pose strong, non-negotiable requirements on the real-time imple-
mentations of their algorithms. This is illustrated in figure 1.1, which depicts the con-
trol algorithm as a package that is thrown over a brick wall to the software department
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Figure 1.1: “...control engineers pose strong, non-negotiable requirements on the real-time im-
plementations of their algorithms...”

that has to implement and test the algorithm.
An emerging field of research in control engineering is to take the real-time im-

plementation difficulties into account. To be able to guarantee a certain overall system
performance, control engineers should be aware of the difficulties in implementing
control algorithms with hard real-time requirements in a software environment where
resources like processing power and communication bandwidth are shared with other
running processes. It is common for them to test their algorithms on dedicated hard-
ware with enough processing power to meet the requirements. They are most often
not aware of the underlying scheduling techniques that are used to implement the al-
gorithm on the final product. This means that control engineers typically do not take
the needs of the scheduler into account during the design or make use of its properties
(e.g. knowledge of deadlines).

But, the reverse is also true: Many (control) software designers have insufficient
knowledge of which controller requirements can be relaxed to better fit the under-
lying software architecture. One example can be found in the choice of the sample
frequency. From a control performance point of view, many algorithms are hardly
affected by a small variation in the sample frequency, but this might make software
implementations a lot easier. Also, control engineers have lots of knowledge about
(constant) delays/latencies, that can be handled by the controller, but these are often
not communicated to the software designers. Therefore, effective communication is
essential, as it is very hard for one person to have extensive knowledge in both disci-
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plines. Next to effective communication, however, control design methods should be
available to specifically deal with these multi-disciplinary design aspects.

1.1 Trade-offs in software and control perfor-
mance

There are various issues that make the implementation of controllers difficult on em-
bedded platforms with limited resources. In the previous section we have already
mentioned some of them; both from the perspectives of the control engineer as well as
from the (control) software designer. These issues result in important trade-offs that
affect both the control performance (i.e. tracking, stabilization, disturbance rejection,
etc) and the software performance (i.e. processor load, response times, etc) and have
to be dealt with in the system design. The main trade-offs are found in:

Sample frequency selection
The sample frequency of the control updates has a strong relation to the re-
quired controller bandwidth (the frequency up to which reference signals can
be tracked and disturbances are suppressed) [26]. When the sample frequency
is increased, the obtainable bandwidth can also be increased by carefully tun-
ing the controller. Often though, the chosen sample frequency is considerably
larger than strictly necessary. Typically, the sample frequency is based on rules-
of-thumb; for instance at 6 times the desired closed-loop bandwidth when per-
forming discrete-time controller design [25]. In industrial practice the sample
frequency might even be chosen at≥40 times the desired closed-loop bandwidth
to be at the “safe side”.

The reason to lower the sample frequency is obvious in applications where pro-
cessing power is limited. Each time the control algorithm is executed, a set of
tasks needs to be processed, which takes time. The more complex the algo-
rithm, the lower the maximum allowable sample frequency generally is, as it
takes more time to execute more complex algorithms (see also ‘Time-varying
delays’ below). Therefore, the main trade-off that can be identified in the se-
lection of the controller sample frequency is between control performance on
the one hand and processor load on the other. Studies are carried out to lower
the sample frequency requirement by designing the controller in discrete-time,
while taking into account the continuous-time behavior of the controlled system
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(see e.g. [55]).

Next to the available processing power for the control algorithm, a constraining
factor for the sample frequency selection is the limited availability of timer inter-
rupts on the processing platform to trigger the control updates. This is generally
the case when more tasks are running on the same processor. It can therefore
be favorable to have periodic tasks running on a multiple of each others sample
frequency. This indicates some of the demands that software designers might
impose on the sample frequency, which are in current practice often not taken
into account when designing a controller.

Time-varying delays
Time-varying delays in control implementations are inevitable because of the
fact that the execution of tasks on a processor simply takes time. When process-
ing power is limited, often choices have to be made about the complexity of the
chosen control algorithm. In many situations, complex control algorithms have
the advantage to be able to perform more demanding tasks and achieve a higher
control performance. However, when the complexity is increased, the execution
time increases, with which the duration until the moment that the actuator sig-
nal is updated increases as well. This increased delay generally influences the
control performance in a negative way. In practice, this trade-off is taken into
account rarely. Note that in the real-time software community one often refers
to (fixed) delays as “latencies”, and the term “jitter” is used for the time-varying
part of the delay.

Other important reasons for (varying) delays caused by the software imple-
mentation are: communication of data over a network [86], scheduling (see
e.g. [78] in which the effects of various schedulers on the control performance
is analyzed), and memory usage (including cache). All these complex issues
contribute to the achievable control performance and to the performance of
the total system, which makes the controller implementation a difficult multi-
disciplinary problem.

The academic literature about control under time-varying delays is expanding
rapidly. This topic is particularly of interest as more and more often wireless
networks with limited bandwidth are used to communicate sensor and actuator
signals over a distance. A nice overview paper of various techniques to analyze
the stability of networked control systems is found in [86]. This paper also de-
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scribes different types of networks and their influence on the controlled system.
In industrial practice, however, control engineers typically only take constant
delays into account when designing the controller. The effects of jitter are (at
best) quantified in simulations (see e.g. [8]). Another option is to implement the
controller with a large but constant delay between measurement and actuation,
by implementing a fixed delay that is larger than the maximum expected jitter.
In these systems, one often chooses one complete sample period delay.

Quantization
Quantization is often caused by the limited resolution of sensors, but also the
software implementation and communication mechanisms can be important rea-
sons. When a controller is implemented on a specific platform we have to deal
with a limited resolution for the representation of variables. This is caused by
the limited word length. Depending on the processor, calculations will cost
more time for bigger word lengths. Therefore, increasing the word length is
an advantage for the control performance because of reduced quantization, but
might as well be a disadvantage because of the increased computation time. For
communicating data over a network with limited capacity, the same reasoning
applies.

In control theory, quantization is an effect that is known and has been studied
thoroughly since the 1950’s. In [25] several methods are discussed how to an-
alyze the control performance of systems affected by quantization. In practice,
however, a quantizer is often implemented in simulation to observe its effect
on the system behavior. This is an important step, because quantization intro-
duces tracking errors and can cause nasty symptoms (like limit cycles) in the
controlled system. Unfortunately, it is also a step that is often overlooked in the
early design phases.

Above, we have mentioned various trade-offs between software and control per-
formance in the context of sample frequency selection, time-varying delays and quan-
tization. Still, it lists only a small subset of all the trade-offs that have to be dealt with
in the system design, even when only considering the implementation of embedded
feedback control algorithms. Moreover, for a high-tech system, multiple disciplines
are involved in the trade-off making process. They are all responsible for a specific as-
pect of the design, e.g. the electronic design, mechanical design and software design,
while physics and chemistry constitute clear constraints as well. Designs are often
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Figure 1.2: “...a step towards breaking down the wall between both disciplines...”

made in parallel by multiple groups of people. Considering the complexity of these
systems due to size (one may think typically of millions lines of code and thousands of
components like bolts, nuts, etc) and due to many multi-disciplinary design decisions,
making these multi-disciplinary trade-offs is a tremendous task and a real challenge.
As it is in practice impossible to analyze every trade-off thoroughly due to limited
design time and effort, one is forced to zoom in on the most important issues and not
waste time on non-issues. Therefore, methods should be available that support in fo-
cussing on the most important and most critical issues in a design. This is an essential
part in the discipline system engineering [42], as discussed in chapter 2.

1.2 Event-driven control

When considering the trade-offs between software and control engineering, an im-
provement would be to have design methods for control algorithms that also take the
requirements of the software implementation into account. On the other hand, we need
design methods for software that deal with the control requirements. Researchers in
software and control engineering are becoming increasingly aware of this need for
an integrated scientific and technological perspective on the role that computers play
in control systems and that control can play in computer systems [75]. The research
presented in this thesis focusses on breaking down parts of the wall between both
disciplines (figure 1.2), by relaxing one of the most stringent conditions that control
engineers impose: a fixed sample frequency.
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We propose control algorithms that do not require that sample moments are uni-
formly distributed over time. We claim that this enables the engineers to make better
trade-offs in order to achieve a better overall system performance. By not requiring
equidistant sampling, one could for instance vary the sample frequency over time and
therefore choose to dynamically schedule the control algorithms in order to optimize
over processor load. Another option is to design the controller such that it responds
faster to acquired measurement data with which quantization effects and latencies are
reduced considerably.

These controllers we call event-driven controllers, as it is an event, rather than the
progression of time, that triggers the controller to perform an update. As event-driven
control loops typically deal with discrete events having strong interaction with the
continuous-time dynamics of the plant, they can be considered as a specific class of
hybrid systems. The classical controllers that perform equidistant sampling we call
time-driven.

Various examples found in literature promote the use of event-driven controllers.
For instance, when the event-based sampling is caused by the measurement method
used (see e.g. [16, 24, 36, 56, 60]). Also the physical nature of the process that is
controlled can be a source for event-based sampling (see e.g. the examples in [21]).
When control loops are implemented on embedded platform with control loops closed
over networks, it is often very difficult to implement time-driven algorithms, as dis-
cussed in [17, 86]. Although we do find examples of event-driven control in literature,
hardly any theory on control performance analysis is found. The aim of this thesis is
to contribute in filling this gap.

Event-driven controllers better fit the new technology in software and computing
platforms, which is focusing on the use of event-based systems. The reason is often to
save on computing power and communication load. This is done by adapting existing
platforms for event-driven operating systems [20] or by creating new platforms without
the need for a system clock [30].

In chapter 3 we will give a more extensive introduction to event-driven controllers
and their potential value in practice.

1.3 Experimental and industrial validation

The application context, that is used in this thesis to validate the theoretical results
on event-driven control, is best characterized by document printing systems that are
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Figure 1.3: The Océ VarioPrint 2090.

highly productive, reliable, and user-friendly. A picture of such a printer is shown
in figure 1.3. These systems can print on several sizes of media, different weights,
automatically on both sides and include stapling, booklet production, or other types of
finishing. In order to be perceived as reliable devices, such printers must be very robust
with respect to variations in media, and stochastic variations in timing parameters that
relate to paper transport must be controlled up to a high degree. As the printing speed
is rather high (typically above 1 image per second), timing requirements are tight and
advanced mechatronics are indispensable. This becomes the more apparent if one
realizes that the positioning of images on paper has tolerances well below 1 mm.

When considering the embedded control of these systems, one should think of con-
trolling multiple sheets that travel through the paper path simultaneously, while keep-
ing them synchronized with the imaging process. In figure 1.4 a schematic overview of
the printer is presented. When the printer is in normal operation, a sheet is separated
from the trays in the paper input module, after which it is sent to the paper path that
transports the sheets accurately in the direction of the print engine, where the image
is fused on a sheet of paper. After that, the sheet is turned for duplex printing, or
transported by the paper path to the finisher.
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print engine paper path

paper

input

module

finisher

image

processing

image

fuse

sensors

rollers motors

control

software

paper
motor

Figure 1.4: Overview of the different components in the printer.

1.4 Scope and outline

Research hypothesis
Event-driven control improves the overall system performance over traditional
time-driven control by relaxing one of the most stringent conditions that control
engineers impose: a fixed sample frequency.

For the overall system performance we consider the system aspects that are affected
by the controller’s implementation, which particularly are:

• control performance (in terms of tracking, stabilization, disturbance rejection,
etc), and

• software performance (in terms of processor load),

• amongst other aspects, like communication bus load and system cost price.

One of the main challenges in this context is to create possibilities to make better
balanced trade-offs between the software and control performance. For this, theory
to analyze the performance in both areas, as well as practical design rules to imple-
ment the event-driven controllers in industry are developed. The results are validated
on an industrial high speed document printing system. Next to these contributions in
the field of “implementation-aware control”, a system engineering technique called
“threads of reasoning” is extended and applied to the printer case study to achieve fo-
cus on the right issues and trade-offs in the design. Making trade-offs is a fundamental
step for any system engineer and this technique is demonstrated to be supportive in this
process.
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The contributions of the individual chapters are:

Chapter 2: How to focus on the right trade-offs
In the design of technology intensive products (like printers) one searches for a
product that satisfies the product requirements as well as the business drivers.
The main need in an early design phase is to bring structure in the typical chaos
of uncertainty and the huge amount of realization options present. Potential
realization choices all have advantages and disadvantages, which cause conflicts
in the design. The earlier the essential conflicts are identified, the better it is.
Turning them from implicit to explicit helps the system architect in making the
trade-off consciously or at least in selecting the most important conflicts that
require further in-depth investigation. In this respect we extend the effectiveness
of a technique called “threads of reasoning” in the printer case study.

This chapter is based on the work published in the proceedings of the 16th an-
nual international symposium of the International Council On Systems Engi-
neering (INCOSE) [72].

Chapter 3: Event-driven control
This chapter introduces and motivates the use of event-driven control, as op-
posed to traditional time-driven controllers. The aim of event-driven control is
to create a better balance between control performance on one hand, and other
system aspects (such as the processor load, communication load, and system
cost price) on the other, to achieve a better overall system performance. This
is done by relaxing the stringent condition of equidistant sampling at high fre-
quencies when applying time-driven control. It is illustrated that event-driven
control can reduce the work-load (e.g. processor load, communication bus load)
and that response times are reduced as well.

Chapter 4: Sensor-based event-driven control
One of the challenging problems in the design of a printer and many other mo-
tion systems is the servo control of several motors at high accuracy. Because of
cost price requirements conventional solutions are often not feasible anymore.
High resolution encoders are far too expensive and high sample frequencies are
prohibitive as controllers have to run on low-cost processors with processing
power that is shared with many other tasks. As a possible solution, we present
an event-driven controller that is based on an (extremely) low resolution en-
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coder. The control value is updated at each moment that an encoder pulse is
detected, yielding zero measurement error. Although this approach can be ap-
plied in general, we focus on the printer case study, in which we accurately
control a DC-motor based on an encoder having a resolution of only 1 pulse per
revolution. By means of analysis, simulation and measurements we show that
the control performance is similar to the initially proposed industrial controller
that is based on a much higher encoder resolution. On top of this, we show that
the proposed event-driven controller involves a significant lower processor load,
i.e. a better software performance.

This chapter is based on the work submitted for journal publication [73].

Chapter 5: Event-driven control to reduce resource utilization
In spite of the various benefits of using event-driven control, its application in
practice is hampered by the lack of a system theory for event-based sampled con-
trol systems. The latter is mainly due to the fact that the analysis is mathemat-
ically more complicated than for time-driven control loops. To add in building
up an event-based system theory, this chapter considers a specific event-driven
control scheme for perturbed linear systems. The event-driven control scheme
updates the control value only when the (tracking or stabilization) error is large,
but not when this error is small. In this way, the average processor and/or com-
munication load can be reduced considerably. The analysis in this chapter is
aimed at the control performance in terms of practical stability (ultimate bound-
edness). By using the derived results, the event-driven controller can be tuned to
get satisfactorily transient behavior and desirable ultimate bounds on one hand,
while reducing the required resource utilization for its implementation on the
other. Several examples illustrate the theory.

This chapter is partially based on the work that appeared in the proceedings of
the American Control Conferences 2005 [70] and 2006 [38], and is submitted
for journal publication [40].

Chapter 6: Processor load for event-driven controllers
In literature [4, 22, 41, 66], some proposals are made for event-driven controllers
to reduce the number of control updates without deteriorating the control per-
formance significantly. The assumption is made that the reduction in control up-
dates results in a reduction of the processor load needed for its implementation.
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However, this is unclear as event-driven control typically introduces some over-
head and experimental validation of the reduced processor load for event-driven
controllers has not been presented in literature so far. This chapter contributes in
filling this gap. Simulations, as well as experiments on a printer paper path test
setup, show that a reduction in the number of control updates indeed results in a
considerable reduction of the processor load, with only a small decrease of con-
trol performance. Furthermore, a method is presented to predict the processor
load accurately, without having to implement the controller on a test setup.

This chapter is partially based on the work published in the proceedings of the
IEEE Conference on Control and Applications 2006 [71] and is submitted for
journal publication [74].

Chapter 7: Conclusions and recommendations
Conclusions and recommendations are presented here.
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How to focus on the right
trade-offs1

2.1 Introduction
2.2 Problem scope
2.3 The technique of threads of

reasoning

2.4 Threads of reasoning for the
case study

2.5 Conclusions

2.1 Introduction

The complexity of products being designed by industry today is increasing at an as-
tonishing rate. The search is for a product that will satisfy the design drivers within
certain margins. Design drivers are the important system aspects on which design de-
cisions are based. Examples are: development costs, production costs, time-to-market,
throughput, response time, productivity, physical dimensions, power consumption,
noise production, and so on. Often, design drivers are conflicting, so that trade-offs
must be made.

The main need in the design process of a product is to bring structure in the typ-
ical chaos of uncertainty and the huge amount of realization options present. This is
most profound in the early design phase. Even typical product requirements might
be uncertain in the sense that they are only known up to a certain degree or are still
open for discussion. Potential solutions or applied technologies all have advantages as
well as disadvantages, which causes conflicts in the design. A conflict is the situation
where a specific design choice influences one or more design drivers positively, while
influencing others in a negative way. For instance, in the design of a printer one might
consider using stepper motors, DC servo-motors or a combination of both for driving
the sheets of paper through the paper path. While stepper motors have the advantage

1This chapter is based on the work published in the proceedings of the 16th annual international sympo-
sium of the International Council on Systems Engineering (INCOSE) [72].
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of being cheaper (particularly as they do not require expensive encoders and because
of their long lifetime), they are in general less accurate in positioning the sheets of
paper. This causes a conflict between the design drivers printing accuracy on the one
hand and cost price on the other. Of course, more design drivers might play a role in
such a decision (e.g. size, power consumption, etc).

This chapter applies the technique of threads of reasoning [58] to find such con-
flicts in the design of the paper flow control in the printer. The technique aims at
composing a clear overview of how the conflicts relate to the design drivers. As these
relations typically involve multiple design drivers, design choices and their conse-
quences, we refer to these relations as threads. The technique is called threads of
reasoning as the threads typically reveal the reasoning applied by the systems engi-
neer. The details of the technique are presented together with a 5-step iterative scheme
on how to create the threads. Once the main conflicts are identified qualitatively, a
further quantitative investigation by modeling and measurements is necessary. The
specific model-based investigations are only indicated briefly.

In several communities there are alternative and / or related techniques available
to identify the main relations and conflicts in the design of a product. For instance,
in requirement engineering and more particular in [85] one uses the term “problem
bundle” that has similar properties as a thread of reasoning. In [85] these bundles
are adopted for structuring a design problem at hand and relating this to the solution
space. In product line engineering one has methods like Pulse (see e.g. [9]) and in
the system engineering community one uses risk management approaches (see [42,
Ch. 6]). These techniques create similar overviews, but more retrospective. Threads
of reasoning, on the other hand, is applied throughout the complete system design
process and in the various design phases. Therefore, the threads are not static, but
continuously changing as the design evolves.

Also in VAP (visual architecting process) (see [57, Ch. 2]) and in ARES (Architec-
tural Reasoning for Embedded Software) [43] related techniques can be found which
are especially focussed on software design problems. In TRIZ [3] two important con-
cepts are introduced that are also crucial in our reasoning method: formulating the
“ideal” solution to a problem and identifying the conflicts in realizing the ideal prod-
uct. Quality function deployment (QFD) [65] relates product requirements of the cus-
tomer to design choices, which from an abstract point of view resembles the reasoning
used in this chapter. However, a distinguishing feature of threads of reasoning is that
it is graph- instead of matrix-oriented. Matrix-oriented techniques have the tendency
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that the number of relationships easily explodes and one easily looses overview of the
essential threads. Threads of reasoning is particularly focused on keeping only the
essential conflicts, which we consider an advantage. As a consequence, it is possible
to graphically represent the overview of the most important design issues. Moreover,
most of the mentioned methods have a tendency to move more towards the customer
context and less to the realization aspects. The case study here shows how threads
of reasoning can also be used to support conceptual and realization choices of the
technical design.

The disadvantage of the explosion of the number of relationships is also encoun-
tered in a complementary approach in which one archives the design process includ-
ing the conceptual and realization choices [2]. Often the argumentation why a certain
choice has been made is included as well. The documentation typically consists of
a chronologically ordered sequence of choices with the aim of traceability: how was
a certain choice made at some point in time? If some design changes are made in a
later stage, one can still apply the reasoning as kept in the archive. In practice creating
and maintaining such an archive is often not feasible due to the enormous complexity.
This results in a “tracing” that is not kept up-to-date, with the consequence that its
value diminishes. The threads of reasoning technique aims at keeping the essence of
the design choices and helps to keep overview.

The outline of this chapter is as follows. In the next section we present the prob-
lem statement and put it in the perspective of the multi-disciplinary design of the
printer. In section 2.3, the “threads of reasoning” technique is described. In section
2.4, threads of reasoning is applied to identify the most important conflicts in the case
study. This leads to conflicts that require a further study via modeling, measurements
or other techniques to obtain a well-founded trade-off. In the same section, we indicate
briefly which models have been applied to do the in-depth analysis. In section 2.5, the
conclusions are stated.

2.2 Problem scope

The problem scope of this chapter is the embedded control design of the paper flow
through the printer. The main (most important) design drivers for this part of the
design are:

• throughput (pages per minute),

• printing accuracy (positioning of the image on the sheet),
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• time-to-first-print (the time it takes before the first sheet comes out of the printer,
after pressing “start”)

• power usage,

• cost price and

• time-to-market.

The first three items of this list are typical performance requirements of the printer.
Items four and five are constraints on important resources. The last one, time-to-
market, is a constraint that is imposed by the organization. The design should be such
that all design drivers are satisfied within certain predefined margins.

For the case study considered in this chapter, we assume that the mechanical lay-
out is already given, meaning that positions of (paper transport) rollers, the length and
shape of the paper path, etc are known. The design process is in the phase of selecting
the control architecture, including:

• Selection of actuators (type and number of motors),

• Selection of sensors,

• Selection of processing architecture (e.g. centralized versus distributed control),

• Selection of operating system (event-driven or periodic architectures?),

• Scheduling of sheets for print jobs.

To support the design process at this stage, the technique of threads of reasoning is
applied.

2.3 The technique of threads of reasoning

Threads of reasoning is a graph-based, iterative technique to identify the most impor-
tant conflicts in the design problem and potential solutions. The system architect uses
threads of reasoning implicitly to integrate various views in a consistent and balanced
way, in order to design a valuable, usable and feasible product. Architects perform
this job by continuously iterating over many different points of view and sampling the
problem and solution space to build up an understanding of the case. These threads
are made explicit by the technique of threads of reasoning.

This technique, as presented in the next section, is based on the work by Muller
[58, Ch. 12]. A difference between the technique used here and the one by Muller
lies in the used categories. The categories are the components of the threads, which
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are coupled through their relations. In particular, threads of reasoning in [58] uses
the CAFCR framework that adopts the “Customer objectives” (addressing the “what”
question from the customer perspective), “Application” (addressing the “how” ques-
tion of the customer), “Functional” (addressing the “what” question of the product),
“Conceptual” and “’Realization” views (addressing the “how” of the product). Instead,
it was more suitable in our case to use the following four categories:

• main design drivers: limited set of the most important design drivers (typically
applying to system level), see section 2.2,

• sub drivers: drivers, derived from the main design drivers (typically applying to
subsystem level),

• design choices: possible solutions or realizations,

• consequences: indicating consequences of a design choice.

The threads themselves are formed by multiple connections between the categories
above.

2.3.1 Overview of threads of reasoning

Figure 2.1 gives an overview of the iterative process of the threads of reasoning tech-
nique. Step 1 is to select a starting point for the process. After step 1 the iteration
starts with step 2 create insight. Step 3 is deepening the insight and step 4 is broaden-
ing the insight via suitable questions. Step 5 defines and extends the thread. Moreover,
the next iteration is prepared by step 5. In step 5, first the most important and critical
threads are selected and one aims at finding conflicts. This insight and refinement
might lead to selecting the next need or problem for the new iteration. During this
iteration continuous effort is required to communicate with the stakeholders (the ones
involved in the specific design decisions) to keep them up-to-date, and to consolidate
in simple models the essence of the problem, and to update the documentation to
capture the insights obtained.

As mentioned before, the focus of threads of reasoning is to select the critical de-
sign issues (step 5) that require in-depth studies to make a sound design trade-off. The
in-depth studies are essentially step 3 in figure 2.1. The limited models for consolida-
tion, communication and reasoning are derived from these possibly more complex and
detailed models for analysis. Especially, since these in-depth studies require a major
part of the design time, one has to be selective in the ones that are actually carried
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2. create insight
- story telling

- narratives

- use cases

3. deepen insight

- tests, measurements

- models, simulations

4. broaden insight
- questions: why, what, how

5. define and extend the thread
- what is the most important / valuable?

- what is the most critical / sensitive?

- look for the conflicts

1. select starting point

- actual dominant need or problem

Continuously

consolidate in

simple models,

communicate to

stakeholders

and update

documentation.

Figure 2.1: Overview of the threads of reasoning approach.

out. Of course, this does not mean that once the answers of these analyses have been
obtained, the thread of reasoning is finished. On the contrary, it might actually be
altered based on the findings or continued given these new pieces of information.

Below we will describe each of the individual steps in more detail. Moreover, we
will present one thread of reasoning as an example from the case study to illustrate the
steps.

Step 1: Select a starting point. A good starting point is to take a need or problem
that is hot at the moment, within the problem scope. If this issue turns out to be
important and critical then it needs to be addressed anyway. If it turns out to be
not that important, then the outcome of the first iteration serves to diminish the
worries in the organization, enabling it to focus on the really important issues.
In practice there are many hot issues that after some iterations turn out to be
non-issues. This is often caused by non-rational fears, uncertainty, doubt, ru-
mors, lack of facts, etc. Going through the iteration, which includes fact finding,
quickly clarifies the relevance of the issues.

Example. An important issue in the paper flow control is the question how
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many processing nodes should be used. Because of the size and the complexity
of the software, which is both soft real-time and hard real-time for the various
implemented functions, it is almost impossible to process all the code on one
node, i.e. one processor. Nevertheless, there are various ways to distribute the
software functionality over different (numbers of) nodes. There can be several
‘local nodes’ that handle separately the control of single motors. Another op-
tion is to have only two big processing nodes that handle the entire paper flow
control. This design issue is selected as the starting point of the thread.

Step 2: Create insight. In this phase one wants to obtain a rough overview of and
insight in the chosen issue. The selected issue can be considered by means of
one of the many (sub)methods to create more understanding. Typically, this
can be done by the submethods story telling [58, Ch. 11], narratives [19] or
scenario-based reasoning using e.g. use-cases [19]. Using these submethods, it
will quickly become clear what is known (and can be consolidated and com-
municated) and what is unknown, and what needs more study and hence forms
input for the next step.

Example. To create some first insight into the problem of selecting the
number and sizes of the processors in the control architecture, we linked this
issue to the main design drivers section 2.2. For the time-to-market to be short,
it is important to have a predictable development process. Therefore, a concur-
rent design process is preferred, which is in favor of having multiple processing
nodes. On the other hand, we also want the cost price to be low. Here, the ques-
tion pops up how the cost price relates to the number of nodes. Looking at the
design driver power consumption, there is an obvious relation that more nodes
require more power, but more specific information is needed to reveal the exact
relation and its importance.

Step 3: Deepening the insight. The insight is deepened by gathering specific facts.
This can be done by modeling (and model-based analysis), or by tests and mea-
surements on existing systems. Since the presented technique is iterative, in
a first iteration one aims at using simple models, measurements or facts that
are obtained in a reasonably short time. Typically, back-of-the-envelope cal-
culations or rules of thumb that are known from previous projects are useful.
In a second or subsequent iteration one selects the essential issues (most un-
certain, most important) that require more modeling and analysis effort. This
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aspect is coupled directly to the Boderc design methodology [39] based on
multi-disciplinary modeling: to discover and select the in-depth modeling ac-
tivities that have to be performed to support the system architect in taking (well-
founded) design choices. In the design it is important to only spend time on
the crucial issues and not on trivial ones to keep both the design effort and the
time-to-market limited. Typically, the models are aimed at shedding light on the
conflicts, which were identified earlier (step 5, first iteration).

Example. To get deeper insight in the issues of cost price and power us-
age of processors, more specific information is needed. A rough quantitative
estimate for the cost price showed that a node costs typically about 40 euros,
of which 10 euros is calculated for the controller and 30 euros for the printed
circuit board (PCB). Because for every node a separate PCB is used, doubling
the number of processors roughly means doubling the cost price, although the
cost price of the processor can be somewhat less for simple variants. Looking at
power demands, it turned out that both the smaller and the bigger processors use
about 3 Watt. It would therefore be beneficial to have as few processors as pos-
sible. On the other hand, if we look at the power demands from other modules
in the printer, that use up to 2 kW, we can assume that the power demand from
the processors is of minor importance [27]. Therefore, the power issue will not
be included in this thread of reasoning as we aim at describing only the most
important aspects.

Step 4: Broadening the insight. Needs and problems are never nicely isolated from
the context. Therefore, the insight is broadened by relating the need or problem
to the other categories. This can be achieved by answering why, what and how
questions. Examples: How can a main design driver be realized by sub drivers?
How is a certain issue tackled? Why is a certain design choice good for a spe-
cific design driver? What are the consequences of a design choice? How is
the consequence related to a specific driver? The insight in the main design
driver dimension can also be broadened by looking at the interaction with re-
lated system qualities: what happens with safety or reliability when we increase
the performance?

Example. What happens if all software would run on two processors?
An issue that arises almost immediately from this question are possible syn-
chronization difficulties. This is a typical aspect that needs to be considered in
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further iterations. Other example questions for the case-study are: If we sepa-
rate the software over multiple nodes, how efficiently can the software still be
implemented? How would multiple processors be connected?

Step 5: Define and extend the thread. In the previous steps and corresponding dis-
cussion of the needs, design choices and problems, many new issues popped
up. A single problem can trigger an avalanche of new problems. Key in the
approach is not to drown in this infinite ocean full of issues, by addressing the
relevant aspects of the problem. This is done by evaluating the following as-
pects:

1. Which specification and design decisions seem to be the most conflicting?

2. What is the value or the importance of the problem for the customer?

3. How difficult it is to solve the problem? It is important to realize that
problems that can be solved in a trivial way should immediately be solved.

4. How critical is the implementation? The implementation can be critical
because it is difficult to realize, or because the design is rather sensitive
or rather vulnerable (for example, hard real-time systems with processor
loads close to 70% or higher, due to which low priority tasks could be
blocked for too long).

To evaluate the above aspects, the system architect often uses ‘gut-feeling’ based
on many years of experience. Analysis techniques, such as Failure Mode Effects
and Criticality Analysis (FMECA) can be used to analyze the impact of potential
problems in the system in a more structured way. Typically, these techniques
are used when the design is finished but they can be equally productive during
other life-cycle phases of the design process. To compare various solutions,
trade studies ([42], section 11.16) can effectively be applied as well.

The next crucial step is to define the thread. In this step the important relations
between the design drivers, design choices and consequences are represented in
a concise diagram. Furthermore, the important conflicts should be clear from
the diagram. The problem, that serves as the starting point for the next iteration,
can be formulated in terms of this conflict. We believe that a clearly articulated
problem is half of the solution.
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Figure 2.2: Example thread in the design of the paper flow control.

The insights obtained so far, in terms of the most crucial and critical conflicts,
should help to select the new need or problem to go into the next iteration (back
to step 2).

Example. At this moment in our reasoning on the number and size of pro-
cessing nodes, the first thread becomes visible, as visualized in figure 2.2. The
thread is structured by means of the framework of the categories as introduced
before. The interpretation of this visualization is as follows:

• On the top of the picture, the relevant main design drivers are given in
capitals,

• From the main design drivers, sub drivers are derived, indicated in bold
face,

• Specific design choices that satisfy the sub drivers, indicated in italic,
• The consequences that come with specific choices, are depicted with small

dashed arrows,
• The main conflicts, that are identified between any of the above mentioned

aspects of the system, are depicted with thick double arrows.

Note that in step 3 we already concluded that the main design driver power
should not be included in this thread. Hence, a step 5 action of discarding less
relevant aspects of a thread was already applied. We see that from the question
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of how many processing nodes to use, a conflict arises between the drivers ‘time-
to-market’ and ‘cost price’. As the most profound conflict is identified now, this
can be input for step 2 and subsequently step 3. More detailed models (in com-
parison with the simple estimates of cost price done earlier) would be useful to
deepen the insight, which would support in making the trade-offs in the early
design phase. From our first simple models we concluded that for reasons of cost
price we want as few processing nodes as possible. However, a proper software
design should still be feasible within a limited time span (influencing time-to-
market). Therefore, we used a Parallel Object Oriented Specification Language
(POOSL) model [62]. With this modeling language and analysis techniques,
several possible architectures are evaluated and compared on their feasibility
with respect to software timing requirements. Note that a part of the argumen-
tation of a particular choice is captured now in the specific models made. In
another setting (or a different architecture) this can be used to reevaluate the
design choice. So some kind of “tracing” - as discussed in the introduction of
this chapter - is kept.

The thread of reasoning of figure 2.2 was obtained by iterating one-and-a-half
times through the 5-step scheme of figure 2.1. As we will see, this is typical for
the case at hand as the aim of threads of reasoning in this setting is to select the in-
depth models to be made. Normally more iterations - for instance, continuing after the
modeling step - are used to find the essential conflicts.

2.4 Threads of reasoning for the case study

The structure that covers the most important threads and their relationships can be
complicated for the design of complex systems, like a high-volume document printing
system. In addition to the thread presented previously, we will describe two other
essential threads in the control of the paper flow. In the presented figures we will use
the same interpretation of the visualization as in figure 2.2.

2.4.1 Stepper motors versus DC servo-motors

In this second example thread, the starting point is the use of stepper motors instead
of the originally used DC servo-motors for driving the rollers in the printer paper
path. The use of DC servo-motors is common for the printer manufacturer and less
experience with stepper motors is present.
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To create insight (step 2), the use of stepper motors was related to the identified
main design drivers. It was easy to see that stepper motors relate to the cost price of
the system, as the reason to select them in the first place was the fact that they are
cheap. DC servo-motors are more expensive because of their need for (expensive)
encoders and shorter lifetime. The use of stepper motors also relates to the printing
accuracy. The accuracy of a stepper motor is limited because of various reasons,
such as its mechanical construction, cogging and overshoot [28]. Because the stepper
motors have to control the movement of the sheet, the sheet can only be controlled
with limited accuracy. With a DC servo-motor (in combination with an encoder) the
movement of the sheet can be controlled up to much higher accuracy and therefore is
no issue.

To see whether the aspects discussed above are really important, we need to deepen
our insight (step 3); in this case by quantifying the reasoning. The first aspect was the
cost price. The average price of a (low power) stepper motor does not differ that
much from the average cost price of a DC-motor. Both can be obtained (for large
quantities) for typically less than 10 euros. For both types of motors an electrical driver
is required, which also costs about the same for a stepper motor as for a DC-motor,
i.e. circa 3 euros for low power applications. An encoder, which is solely needed to
control the DC-motor, cannot be obtained below 20 euros for high resolution rotary
encoders. This is one of the main reasons why the use of stepper motors is preferred.

Another aspect that needs some quantification is the accuracy of the stepper motor.
First measurements reveal that this indeed is an important issue. Figure 2.3 shows a
plot of position against time of a stepper motor running at 1 rotation/sec. Four steps
are visualized of a 200 steps/revolution motor. The dashed line corresponds to the
reference position, the solid line to the actual measured position. The horizontal grid
lines indicate the size of the four steps that are visualized. Each step of the motor
can be translated to a step-size in the order of 0.2 mm of the paper. From the figure
it can be seen that the inaccuracy in the motors position is about 1 step size, i.e. 0.2
mm. As the printing accuracy is defined at 1 mm, the paper needs to be positioned
with an accuracy well below 1 mm. The obtained value of 0.2 mm is therefore critical
and needs to be evaluated further. It is nevertheless hard to quantify the impact on
the real position of the sheet, because of load differences, the occurrence of slip and
interactions between two motors that are controlling the same sheet of paper for some
period of time. Therefore, more extensive models are needed.

Note that the above reasoning illustrates the typical back-of-the-envelope calcula-
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Figure 2.3: Measurement result of stepper motor.

tions that quantify the reasoning.
Like in the first example thread, we broaden our insight by means of the how,

what and why questions (step 4). The first question could be how the motor should be
controlled. The answer to this question is that a frequency generator needs to be imple-
mented as for every step of the rotor, a drive pulse is needed. The follow-up question
to this answer is how this frequency generator could be implemented. This pinpoints
the question whether to do this with dedicated hardware or in software. Note that this
question is a common struggle in industry nowadays. It comes down to the question
whether cost price or accuracy and predictability is more important. Normally, hard-
ware implementations are more reliable and faster or more accurate, but increase the
cost price of the system.

The last step in this first iteration is the visualization of the thread. This is depicted
in figure 2.4. We see that two important conflicts have been identified that need more
attention. The first one is the use of dedicated hardware for the frequency generator in
relation to the use of few components to reduce the cost price. The second conflict is
identified between the limited accuracy of stepper motors and the requirements on the
control accuracy of the sheets.

2.4.2 Time sliced versus event-driven architecture

During the design, a time sliced architecture was proposed for the processing nodes on
which, for each node, multiple tasks are scheduled. The idea is that by assigning each
task its own time slice, the execution of different functions is temporally separated
and task interference is thus avoided. Therefore, software functions can be developed
and tested separately while guaranteeing that it will work after combining them on
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Figure 2.4: Thread of the example of stepper motors.

one processor if each task fits in a slice and there are enough slices. The fact that this
choice also has some important disadvantages, makes it a good starting point for a new
thread (step 1). To create insight (step 2), we again relate the issue to the main design
drivers. The main reason for adapting the time sliced architecture is to shorten the
time-to-market, as it enables predictable and composable software design. Further-
more, we can use existing knowledge from past experience of the printer manufacturer
(since the time sliced architecture has been applied in the past).

One of the disadvantages of using time slices is the inefficient use of available
processing power. Because each task gets a pre-determined part of the available pro-
cessor time, tasks cannot use the slack time of each other. To quantify the inefficiency
of the time sliced scheduling in our case (step 3), we created a simple spread-sheet
model which shows the tasks, the expected processor usage and the size of the slices.
It also includes an estimation of the interrupts that can occur. Because the interrupts
can interrupt any task, a task can effectively take longer to execute than its measured
execution time (without interruption). To guarantee the composability of the system,
we have to take this interrupt overhead into account for every slice. It turned out that
the overhead of the interrupts in a time sliced approach is 20%, while if we replace the
time sliced approach by e.g. an earliest deadline first scheduler [79], it becomes much
less: 3%.

To broaden our insight (step 4), we could ask ourselves what the influence of the



2.4. Threads of reasoning for the case study 27

Figure 2.5: Overview of several combined threads of reasoning.

choice of the time sliced architecture would be on the printing accuracy. From past
experience, but also from literature it is known that the time sliced architecture intro-
duces a limited action-reaction speed. As we need tight paper-image synchronization
for accurate printing, this choice does influence the printing accuracy and therefore
needs further in-depth investigation (via modeling).

Figure 2.5 visualizes this thread, together with the first two example threads. From
the analysis above, a conflict is identified between the limited action-reaction speed,
caused by the time sliced architecture, and the requirement of tight paper-image syn-
chronization.

2.4.3 Total overview

The three example threads are visualized in figure 2.5 in one overview graph. It is
interesting to see how these conflicts relate to each other. One example is found in the
printing accuracy. The requirement of a high printing accuracy not only conflicts with
the use of stepper motors, but also with the use of a time sliced architecture.

With the global overview we have obtained a clear list of conflicts where multi-
disciplinary models can be made for deepening the insight (step 3). In figure 2.5, the
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light grey boxes are added to indicate the models that have been made. These models
give more insight into the identified conflicts. As mentioned before, the threads of rea-
soning obtained here originate from one-and-a-half cycles through the 5-step scheme
to end up with the in-depth models to be made. Although figure 2.5 originates from a
limited set of starting issues, related to only a subsystem of the complete printer, and
from only one-and-a-half iterations, it already shows a quite complicated structure.
Nevertheless, the overview already captures the most important conflicts in the design
of the control architecture for the paper path.

2.4.4 Detailed models to obtain insight in conflicts

To deepen the insight, specific models have been made, especially at design consid-
erations where conflicts are identified. Figure 2.5 shows the objects of study of the
models in the light gray boxes. To obtain more insight in the conflict explained in
section 2.3 (the size and number of processing nodes), a POOSL (Parallel Object Ori-
ented Specification Language) model is created [62]. With this modeling language and
the analysis techniques, several possible architectures are evaluated and compared.

A second model was made in the language POOSL to analyze the processor load
for the scenario in which the time sliced architecture is ‘polluted’ with interrupts,
which are necessary to make optimal use of components. This is a more detailed
model than the spread-sheet model described in section 2.4.2. Both models can also
be used to see what the consequences are when the frequency generators for the stepper
motors are implemented in software.

To optimally use the processors (and minimize the number of processors), a model
was made to calculate optimal schedules for tasks in a time sliced architecture [7]. A
stepper motor model, created in Matlab/Simulink, was used to analyze the positioning
accuracy of stepper motors [28].

2.5 Conclusions

In this chapter, the technique of threads of reasoning was applied to identify the most
important conflicts in the multi-disciplinary design of the paper flow control of the
printer. This technique helps to structure in the typical chaos of uncertainty and the
huge amount of realization options present in early design phases.

Threads of reasoning is one of the techniques used in the (Boderc) design method-
ology that aims at using multi-disciplinary models to predict system performance in an
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early design phase, while respecting the business constraints of available man power
and time-to-market. The restriction in available design time (related to time-to-market
and available man power) implies that in-depth and often time-consuming modeling
and analysis should be performed only for the essential and critical issues. Threads of
reasoning turns out to be - at least in the case of designing the control architecture for
a printer - an effective means to find these issues and to create overview.

Combined with the in-depth models, threads of reasoning provides the system ar-
chitect with valuable insight that supports him in making the important design trade-
offs and to reduce some of the uncertainty in the early design phase. It results in a con-
cise picture with the important conflicts depicted explicitly. It forces the designer to
quantify choices by replacing hand-waving with facts. This stimulates and focuses the
discussion with the consequence of a shorter time-to-market and a more predictable
design process. Moreover, a part of the argumentation of a particular design choice is
captured now in the specific models made and techniques used.

It is a true observation that threads of reasoning itself does not create knowledge.
It stimulates to make implicit knowledge explicit and indicates where knowledge is
lacking and development time should be invested. In this line of reasoning, one could
argue whether a technique like this is part of an engineering discipline. This does,
nevertheless, not diminish the value of the technique.

Based on the case study, the following suggestions for the use of threads of rea-
soning can be given:

• Keep the number and the size of the threads limited by selecting the most im-
portant ones to keep overview and not to drown in details. In our case study
the entanglement was much larger in a first instance of figure 2.5. Additional
iterations were used to regain focus and gave rise to figure 2.5 in its present
form.

• Whether of not certain conflicts are important, depends, amongst other things,
also on the level of the system design. The higher the level, the less detail
has to be taken into account. Often though, some iterations will have to go
quite deep in a short time to gather some facts that influence design choices at
a much higher level. It helps to quantify things (even if the numbers might be
uncertain in an early design phase) as it sharpens the discussion and replaces
‘gut-feeling’ by facts. In particular, back-of-the-envelope calculations, figures-



30 How to focus on the right trade-offs

of-merit and rules-of-thumb help to identify the essential conflicts and to discard
the unimportant ones.

• In the reasoning process, fast exploration of the problem and solution space im-
proves the quality of the design decisions. It is important to sample specific
facts and not to try to be complete. The speed of iteration is much more impor-
tant than the completeness of the facts. Otherwise the risk is to get stuck within
one particular aspect. It is often sufficient to know the order of magnitude and
the margin of error for the trade-off analysis (especially in early design phases).
Be aware that the iteration will quickly zoom in on the core design problems,
which will result in sufficient coverage of the issues anyway.

• It is essential to realize that such an exploration is highly concurrent; it is neither
top-down, nor bottom-up. It is typically viewpoint hopping and taking different
perspectives all the time.

We applied thread of reasoning to a relatively simple case study, compared to
for instance the design of a complete aircraft. To abstract up to more complicated
systems, one can apply thread of reasoning recursively on various levels of detail, for
the system and subsystem design. In the example of an airplane, one could start with
applying threads of reasoning to the overall design, restricting oneself in not taking
too much detail into account. Separate threads can then be created of the various
decomposed parts of the airplane, such as the motors and the navigation instruments.
In the example of the printer, we could have created a separate thread of the image
processing and corresponding hardware up to a less detailed thread for the complete
system.

An open question still is how to learn the “skill” of threads of reasoning. Being
able to iterate fast through the design space and views seems to be hard and tends to
be driven by experience. Making the trade-offs in little time seems to be a skill that
you can only learn by doing it. However, the guidelines given in this chapter and the
presented examples in the case study provide a first step towards learning it.
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Event-driven control

3.1 Introduction
3.2 Examples of event-driven

control

3.3 Event-driven control in the
case study

3.4 Contributions in event-driven
control

3.1 Introduction

Most of the research in control theory and engineering considers periodic or time-
driven control systems where continuous-time signals are represented by their sampled
values at a fixed sample frequency. This leads to equidistant sampling intervals for
which the analysis and synthesis problems can be coped with by the vast literature on
sampled data systems. The actions, occurring at this fixed frequency, we refer to as
synchronous in time, as indicated in the first plot of figure 3.1.

The control community typically assumes that the real-time platforms used for im-
plementing controllers are able to guarantee these deterministic sampling intervals. In
reality this is, however, seldom achieved, as computation and/or communication de-
lays of networked control systems [46, 61, 86] are inevitable and hard to predict due to
the presence of caches and instruction pipelines in modern hardware platforms and the
interference between tasks on processors. This typically results in semi-synchronous
actions, as shown in the second plot of figure 3.1. By semi-synchronous we mean
that actions occur at some average rate, but the sampling intervals vary within certain
limits. The delay and jitter introduced by the computer system can degrade the con-
trol performance significantly [10]. To study these effects in control loops, in [17] the
tools Jitterbug and Truetime are advocated. These tools are mainly based on stochas-
tic analysis and simulations. Other approaches adapt the periodic sampled data theory
to incorporate the presence of delay and jitter in servo-loops in the control design.
Typically, in this line of work, see e.g. [6, 18, 45, 54, 86], the variations in the “event
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Figure 3.1: Classification of distributions of actions over time: Actions occur synchronously
in time if the length of the time interval in between each two successive actions is
exactly equal. Actions occur semi-synchronously in time if there exists a partition-
ing of the time scale into periods with equal lengths, so that each period contains
exactly one action. Actions occur asynchronously in time otherwise.

triggering” are considered as disturbances and one designs compensators that are ro-
bust to it.

In this research we address the research issue of using event-driven controllers that
are not restricted to the synchronous occurrence of the controller actions. We claim
that this synchronous sample period is one of the most severe conditions that con-
trol engineers impose on the software implementation, which we aim at relaxing (see
chapter 1). For event-driven controllers, actions might as well occur asynchronously,
as indicated in the third plot of figure 3.1. For these controllers, it is the occurrence of
a specific event that triggers the actions to execute. An example can be found in the
situation in which the pulse of an encoder is the trigger for the controller to perform an
update [36]. When the speed of the motor to which the encoder is connected increases,
the rate with which pulses arrive increases as well, which increases the rate at which
the controller runs.

For time-driven controllers it is the autonomous progression of time that triggers
the execution of actions. To illustrate the difference between time-driven control and
event-driven control, take the example of a mailman delivering packages to customers
[44]. In the time-driven situation every customer uses the wall clock to check the door
for a new package every 5 minutes. When no package has arrived, they can resume
their work. In the event-driven situation the mailman rings the doorbell of the specific
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Figure 3.2: Embedded controller scheme.

customer who he has to deliver a package. This customer opens the door and accepts
the package. The other customers can continue their work without being interrupted.
This example clearly illustrates one of the possible benefits of event-driven control,
which is a reduction of the work load, as customers do not have to open their doors
unnecessarily. In a control application this is translated to a reduction of, for instance,
the communication bus load and processor usage. From a control performance point of
view, the real advantage of event-driven control is the reduced response times. When
a package is delivered, the customer is alerted and can open the door immediately. In
the time-driven situation it may take up to 5 minutes after delivery until customers
take action to it.

3.2 Examples of event-driven control

Figure 3.2 shows how a controller is normally embedded in a physical system. The
controller is connected to one or more actuators to control a specific process. This
process is observed by one or more sensors which communicate their observations
with the controller. In most cases, the controller is implemented in software. The
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controller algorithm is typically just a small part of the complete software, although it
is critical in many system performance aspects. It is also possible to have the controller
implemented in digital or analogue hardware.

In this thesis, the aim of event-driven control is to create a balance between the
control performance and other system aspects. As we will show, event-driven control
can for instance reduce the processor load, while maintaining a high control accuracy,
by only computing control updates when the measured signal deviates significantly
from the reference signal (chapter 5 and 6), or only when new measurement data be-
comes available (chapter 4). Also sensor resolutions can be reduced considerably, by
designing the controller such that it specifically deals with the event-based nature of
the sensor (chapter 4). These reduced sensor resolutions have clear cost price advan-
tages.

In literature, only few examples of event-driven control have been presented and
hardly any theory on control performance analysis can be found. We believe that
in industrial practice event-driven controllers are applied, but because of the lack of
theory for these controllers theoretical work is scarce.

An overview of event-driven control examples is found in [4]. Differences in event-
driven controllers are related mainly to the event-triggering mechanism used:

• The event-based nature of the sampling can be intrinsic to the measurement
method used, for instance, when encoder sensors for measuring the angular po-
sition of a motor are used [36]. Other “event-based” sensors include level sen-
sors for measuring the height of fluid in a tank (see e.g. [24, 56]), magnetic/optic
disk drives with similar measurement devices [60] and transportation systems
where the longitudinal position of a vehicle is only known when certain markers
are passed [16]. The event-based nature of these sensors becomes more evident
when resolutions are low. This is typically the case when the system cost price
becomes important, as high resolution sensors are typically expensive.

• The physical nature of the process being controlled can also be a source for
event-based sampling, e.g., in satellite control with thrusters [21], or in systems
with pulse frequency modulation [21].

• In modern distributed control systems it is difficult to stick to the time-triggered
paradigm. This is specially the case when control loops are closed over com-
puter networks [17, 86] or busses, e.g., field busses, local area networks and
wireless networks [46, 61], that introduce varying communication delays.
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Next to the various (natural) sources of event-triggering and their relevance in
practice, there are many other reasons why the use of event-driven control is of interest:

• As already introduced, a reason why event-driven control is of interest is re-
source utilization. An embedded controller is typically implemented using a
real-time operating system. The available CPU time is shared between the tasks
such that it appears as if each task is running independently. Occupying the CPU
resource for performing control calculations when nothing significant has hap-
pened in the process is clearly an unnecessary waste of resources [4, 5, 22, 41].
The same argument also applies to communication resources. In the case the
number of control updates can be reduced this leads directly to a reduction in
the number of messages to be transmitted and thus the bus load. As communi-
cation busses have limited bandwidth, reducing the bus load is beneficial for the
total system. Moreover, when wireless communication is used, lower bus loads
also save energy. Especially for battery-powered devices, this is an important
aspect as wireless communication is a severe power consumer. Lots of research
is carried out in the reduction of power usage for battery-powered devices like
wireless sensors [23, 82].

• Also from a technology point of view, event-driven controllers are becoming
increasingly commonplace, particularly for distributed real-time sensing and
control. For example, for sensors in sensor networks, TinyOS, an event-based
operating system, is rapidly emerging as the operating system of choice [53]. In
software design, one often uses event-driven algorithms rather than time-driven.
These are then scheduled using a priority-based scheduler. In [49] a comparison
is presented between the event-driven and the time-driven approach applied in
responsive computer systems. This comparison focusses on the temporal prop-
erties and considers the issues of predictability, testability, resource utilization,
extensibility, and assumption coverage.

• As stated in [4], event-driven control is closer in nature to the way a human
behaves as a controller. Indeed, when a human performs manual control his
behavior is event-driven rather than time-driven. It is not until the measurement
signal has deviated sufficiently enough from the desired setpoint that a new
control action is taken [59].

Although it seems in many situations logical to study and implement event-driven
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controllers, their application is scarce in both industry and academia. A major reason
why time-driven control still dominates is the difficulty involved in developing a sys-
tem theory for event-based systems. This is mainly due to the fact that the analysis
is mathematically more complicated than for time-driven control systems. To add in
building up an event-based system theory, we consider two specific event-driven con-
trol schemes. The practical value of these controllers is validated in the printer case
study.

3.3 Event-driven control in the case study

In the printer case study many controllers can be found. As already mentioned in
the introduction, most of these controllers are implemented to control the position or
velocity of motors. These motors can be found at various places in the printer, like in
the paper path where they are used to drive the rollers that transport the sheets of paper,
or in the finisher, where paper trays are moved to the right position to catch the sheets
of paper. Next to controlling motors, controllers are applied for various other purposes
in the printer. For instance the control of the temperature at the location where the
image is fused onto the sheet. Also controllers can be found that are not controlling
a physical element of the printer, but for instance taking care of synchronized timing
over the multiple processors in the system.

For the case study used in this thesis, we specifically study the motor controllers.
Nevertheless, most of the theory and methods presented are not restricted to this type
of application, but can be applied in a broader context. In particular, we will study the
motor controllers applied at two locations in the printer. The first one, discussed in
chapter 4, deals with event-driven control applied to control the motion of the motor
that drives the image belt, based on a low resolution encoder. This belt transports the
image from the location where the image is created from toner particles to the point
where the image is fused onto the sheet of paper (figure 3.3). Secondly, we study a
specific type of event-driven controller to control the motors that drive the sheets of
paper through the paper path, with the aim to reduce processor load in comparison to
traditional time-driven approaches. This is presented in chapters 5 and 6.

Conventionally, all controllers in the printer were time-driven. However, as cost
price is becoming more important in the printing industry, system requirements are
changing and conventional components and methods do not satisfy anymore. How
this affects the motor controllers is visualized in figure 3.4, by means of a threads of
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Figure 3.3: Fusing images on sheets of paper.

reasoning diagram (as explained in chapter 2). In the figure it is shown that the reasons
to choose either an event-driven controller or a time-driven controller originate from
the main design drivers cost price, printing accuracy and time-to-market. To reduce
the cost price, the choice was not to apply the conventional high resolution encoders
anymore, because they are far too expensive. As time-driven controllers assume ex-
act measurements at synchronous controller sample moments, they cannot easily cope
with low resolution encoders that only supply position information at certain discrete
angular positions, i.e. at asynchronous time instants. An event-driven controller, how-
ever, can use the exact position measurement at the moment a pulse is detected.

For cost price reasons one also wants to make optimal use of resources, like pro-
cessing power, communication bandwidth and electrical power. Time-driven con-
trollers, however, operate with a constant load for resources like processing power,
also at moments when nothing significant has happened in the system. For this reason,
one would like to design event-driven controllers with minimum (average) processor
load, that are only active when really necessary. (think of the mailman example in the
introduction of this chapter).

The printing accuracy depends crucially on the performance of the motor con-
trollers that control the motion of the sheets of paper as well as the motion of the
image through the printer. To obtain a high control performance, small response times
for the control software are necessary to react fast on changing conditions. For these
small response times one should choose high sample frequencies when applying time-
driven control. This, however, is in contradiction with the minimization of processor
load, as high sample frequencies result in high processor loads. Also in combination
with low resolution encoders, time-driven control might likely not give the required
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Figure 3.4: Threads of reasoning diagram for event-driven control in printer case study.

control performance. As event-driven controllers are not bound to a constant sam-
ple frequency, one can design and implement the event-driven controller such that it
responds fast to these changing conditions.

The main advocate of time-driven control is related to the chosen time sliced ar-
chitecture and thus to the main design driver time-to-market, as explained in section
2.4.2. As the time sliced architecture is designed to schedule tasks with a fixed period
time, it is not efficient to implement an asynchronous event-driven controller.

3.4 Contributions in event-driven control

In this thesis, two types of event-driven control schemes are presented, that have been
successfully applied in the printer case study. The first one, presented in chapter 4,
uses an (extremely) low resolution encoder to measure the angular position of a mo-
tor. The event-driven controller is designed such that actuation is performed right after
the detection of an encoder pulse. In this way, the controller can use the exact position
measurement, and is not affected by the quantization errors of the encoder. Moreover,
the controller can respond fast to measurement data. When the motor is not running
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at constant velocity, the updates are not equidistant in time. It is therefore not possible
to use the classical design methods which all assume that updates are equally spaced
in time. We can however apply variations on classical design methods if we define our
models of the plant and the controller in the (angular) position domain instead of the
time domain, as proposed in [36]. This idea is based on the observation that the en-
coder pulses arrive equally spaced in the position domain. It is shown in chapter 4 that,
by applying this event-driven controller, we not only decrease the encoder resolution
- and therefore the system cost price - but also the average processor load, compared
to the conventional controller. This was accomplished without degrading the control
performance, with respect to the originally applied controller.

The focus of the second type of controller, presented in chapters 5 and 6, is to ob-
tain a high control performance on one hand and realizing a reduction of the resource
utilization (processor load, communication bus load) on the other. This is realized by
updating the controller only when the (tracking or stabilization) error is larger than
a threshold and holding the control value if the error is small. Already in 1962, the
need for such controllers was addressed [22], but few research has been spent in this
subject since. The research presented in chapter 5 aims particularly at a mathematical
analysis of such controllers to start building an event-based system theory. The pro-
posed controller is furthermore experimentally validated to research the real benefit in
terms of processor load reduction and not only the number of control updates. This is
presented in chapter 6.

Hence, the main drivers for event-driven control in the printer case study, as pre-
sented in figure 3.4, are effectuated.
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Sensor-based event-driven
control1

4.1 Introduction
4.2 Problem formulation
4.3 Observer-based control
4.4 Event-driven control
4.5 Implementation issues

4.6 Simulation results
4.7 Measurement results
4.8 Selection of quantization frequency
4.9 Discussion
4.10 Conclusions

4.1 Introduction

In industry we observe an ever increasing search for better performing products at
decreasing cost prices. Especially for consumer products that are sold in large quan-
tities, like dvd-players and televisions, the price must be low to compete in the tough
market. Although cost price should decrease, the requirements rise. In the example
of dvd-players, consumers want both more functionality and higher recording speeds
and quality.

In the document printing industry the same trend is observed. Printers should
operate at higher printing speeds, be able to handle more media simultaneously and
produce more accurate prints for the same or even a lower cost price. Next to that,
the demands for power consumption and machine size are tightened. Because of these
challenging requirements and the need to reduce the cost price, trade-offs appear for
many aspects in the product design and system designers are forced to come up with
creative solutions for these hard problems.

One of these challenging problems in the design of a printer, but also in many other
high-tech systems, is the servo control of several motors at high accuracy. Because of
cost price requirements conventional solutions are often not feasible anymore. High
resolution encoders are too expensive and high sample frequencies are also prohibitive

1This chapter is based on the work submitted for journal publication [73].
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Figure 4.1: Schematic representation of the ‘Copy Press system’.

as controllers have to run on low-cost processors with processing power that is shared
with many other tasks.

One of the leading companies in high volume document printing systems is Océ
Technologies BV. The technology that this company has developed for high speed
laser printing is the ‘Copy Press system’ (see figure 4.1). In this technique the toner of
the image is transported from the masterbelt to the fuse roll (where the image is fused
onto the sheet) with the Toner Transfer Fusing (TTF) technology. This technology
uses a special belt (TTF belt) that transports the image. This TTF belt is accurately
controlled by a brushless DC-motor. Accurate control is important as the positioning
accuracy of the image directly influences the printing quality.

The brushless DC-motor includes three Hall sensors (sensors that can detect mag-
nets connected to the rotor, and therefore the position of the rotor) to implement cor-
rect commutation, as no brushes are available, like in the more commonly used DC-
motors. Because of the omission of brushes, brushless DC-motors have a large lifetime
and high reliability. In controlling the motor, conventional control algorithms use ex-
pensive, high resolution encoders to accurately measure position. For instance, in the
conventional printer setup, typical encoder resolutions are 500 pulses per revolution
(PPR), with controllers running at 500 Hz. By using these high resolution encoders,
measurement quantization errors can be neglected.

To keep the system cost price limited, our aim is to use only the Hall sensors to
control the motor. The obtainable resolution is thereby limited to 12 PPR in the prac-
tical case-study (after demodulation). However, now the quantization errors become
significant and are not negligible anymore. To still achieve satisfactory control perfor-
mance, this requires an adaption to conventional control algorithms to deal with this
low-resolution encoder signal.



4.1. Introduction 43

Most applied and researched solutions that deal with noisy and low resolution
sensor data use an observer-based approach to estimate the data at synchronous con-
troller sample moments, based on asynchronous measurement moments [11, 16, 29,
31, 50, 60, 67, 84]. In these solutions, the continuous-time plant is translated into a
discrete-time model which is time-varying, as it depends on the time between suc-
cessive measurement instants. The probably most applied example in the field of
automatic control is the Kalman filter [33]. In Kalman filtering, the estimate of the
system state is recursively updated by processing a succession of measurements. Each
controller sample moment, the measurement data is compared with a model-based
estimate of the measurement. The difference is used to correct the estimate of the
state. To deal with asynchronous measurements, the authors of [50] use an oversam-
pled Kalman filter between two controller time instants. The computation rate of the
filter however remains equal to the controller sample frequency, as the Kalman filter
equations can be evaluated in batches at the controller sampling instants. [67] presents
an adapted distributed Kalman filter to deal with asynchronously operating sensors.
The paper presents how the Kalman filter equations can be adapted to deal explicitly
with the time a measurement has been taken, not necessarily being a controller sample
moment. In [31] a similar structure is presented to perform velocity estimation from
irregular noisy position measurements. In the paper, the method is compared to con-
ventional methods based on pulse counting and a method based on extrapolation over
the last measurements.

Next to the Kalman-based approaches, several other approaches are presented in
literature to estimate the data at synchronous controller sample moments, based on
asynchronous measurements. For instance in [60], a Luenberger-type observer is used
to use asynchronous measurement data in combination with a multi-rate controller
scheme. In tracking applications, a well-known technique is the αβ-tracker [11, 29]
to estimate position, velocity and acceleration in a time-discrete manner, often based
on extrapolating and filtering measurements. Other methods include backward dif-
ference, Taylor series expansion and polynomial fitting through a number of past
measurements (e.g. least-squares). An overview of these methods and a compari-
son between them is presented in [84] in the application of using optical incremental
encoders to measure position and velocity.

All above discussed methods have proven to achieve a better control performance
compared to the situation in which one neglects the quantization and sensor noise
in the measurements. However, the main drawback of these methods is that they
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generally require a high computational effort for computing the observer estimates.
Furthermore, next to the control parameters, also the observer parameters need to be
tuned to get good overall control performance.

A completely different approach has been taken in [36], in which a simple control
structure is presented for the control of a slave motor in a master-slave combination,
that does not suffer from the added complexity of an observer. The control structure is
an asynchronous control scheme in which the control updates are triggered by the slave
position measurement (encoder pulse). The idea of the asynchronous controller is
based upon the observation that at an encoder pulse the position is exactly known and
thus there is no need for an observer as in the before mentioned approaches. However,
as the velocity of the motors vary over time, both measurement and control updates are
not equidistant in time. This requires a completely new design strategy for these event-
driven controllers of which initial proposals are made in [36]. The applied design
techniques form the basis of the current work.

This chapter applies a similar controller structure as proposed in [36] and extends
the controller analysis and design techniques to accurately control the brushless DC-
motor in the printer on the basis of a very low resolution Hall encoder. The method
to design and tune the controller is presented. A parameter-varying / gain sched-
uled controller is proposed for the case wherein a printer is able to print at multiple
speeds. Furthermore, it is explained how typical control measures, like bandwidth,
sensitivity plots, settling behavior, etc, can be derived for the event-driven controller.
Simulation and experimental results are compared with an αβ-tracker approach, as
originally applied to control the motion of the TTF belt. This latter approach we call
the observer-based controller. For the experiments we used the industrial setting of a
newly developed high speed printer.

The outline of this chapter is as follows: First a problem statement is given. Next,
sections 4.3 and 4.4 present two solutions for the problem: The conventional industrial
solution in the form of an observer-based controller based on the αβ-tracker approach,
and an event-driven controller, respectively. The design methods for the event-driven
controller are presented in section 4.4 as well. Section 4.5 discusses the main im-
plementation issues. Simulation and measurement results are presented in sections
4.6 and 4.7, respectively. Section 4.8 presents results on the implementation trade-
off between control performance and processor load. The chapter is concluded with
discussion and conclusions.
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4.2 Problem formulation

The brushless DC-motor that is driving the TTF-belt (figure 4.1) is modeled by the
second-order model

θ̇(t) = ω(t)
ω̇(t) = 1

Jm
[(−k2

R −B)ω(t) + k
Ru(t)− d(t)]

(4.1)

where θ(t) [rad] is the angular position of the motor axis, ω(t) is its angular velocity
[rad/s], u(t) the motor voltage [V ] and d(t) the disturbance torque [Nm] at time
t ∈ R. The motor parameters are obtained from data sheets of the motor manufacturer:
the motor inertia Jm = 0.83 · 10−4 kgm2, the motor torque constant k = 0.028
Nm/A, the motor resistance R = 1.0 Ω and the motor damping B = 3.0 · 10−5

Nms/rad.
To the motor axis, several loads are coupled via the TTF belt. The total load is

modeled as an inertia Jl = 1.0 · 10−4 kgm2. For frequencies of input signals and
disturbances well below the lowest resonance frequency of the real system, we can
model the load by combining the motor inertia and the load inertia: J = Jm + Jl =
1.83 · 10−4 kgm2. For higher frequencies we could use a fourth order model, derived
with techniques as described in [26]. In this research we will use the second order
model as given in (4.2), as the required control bandwidth (of 4.0 Hz, as explained be-
low) is well below the lowest resonance frequency (which is located at approximately
10 Hz).

θ̇(t) = ω(t)
ω̇(t) = 1

J [(−k2

R −B)ω(t) + k
Ru(t)− d(t)]

(4.2)

The industrial requirements for throughput and printing accuracy in the printer result
in a feedback and feed-forward controller combination such that:

• The deviation from the steady-state position error is at most 0.25 rad during
printing. Only deviations from a constant position error will be visible in the
print quality.

• Position profiles are tracked corresponding to constant velocities ranging from
200 rad/s to 500 rad/s.

• Disturbances are rejected sufficiently up to frequencies of at least 4.0 Hz. This
is defined as the required controller bandwidth. Below the derivation of this
bandwidth is further explained.
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Figure 4.2: Disturbance torque pulse at the motor axis, induced by a sheet entering the fuse
roll.

The main disturbances are caused by sheets that enter the fuse roll. The main
component of this disturbance is due to the torque needed to open the fuse roll such
that the sheet can enter. From measurements at the motor axis that drives the TTF-
belt, the disturbance signal as induced by one sheet entrance in the fuse was obtained,
as depicted in figure 4.2.

The requirement on the controller bandwidth is derived from the disturbance with
the highest frequency that the controller needs to compensate. This disturbance is
caused by the roll that is coupled to the motor and drives the TTF belt. As the gear ratio
between motor and roll is 20:1, the main component of this disturbance has a period
of 20 · 2π rad at the motor axes. Because the disturbance is varying with the angular
position of the motor, the frequency content of this signal varies with the velocity at
which the motor is operated. At maximum printing speed of 100 pages per minute,
which corresponds to a motor velocity of 500 rad/s, a disturbance at 500

20·2π = 4.0 Hz
is observed. This disturbance can be modeled as a disturbing torque. From this the
requirement was derived that the controller has to sufficiently suppress disturbances
up to at least 4.0 Hz.

To measure the angular position of the motor axis, the Hall pulses are used as an
encoder with a resolution of 12 PPR. This results in a position update every 0.52 rad
of the motor axis, which is equal to an image displacement of about 0.4 mm. It is
important to note that the Hall sensors are positioned along the motor axes with an
inaccuracy of ±0.2 rad (which is equal to 3% of one revolution).

Of course, there are some limiting factors in the controller design, such as input
saturation, which will be discussed in section 4.5.
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Figure 4.3: Typical pulse sequence for observer-based controller.

4.3 Observer-based control

In the observer-based control scheme, as originally implemented to control the motion
of the TTF-belt, the actuator signal is updated at a constant rate with sample period
Ts (i.e. synchronous in time) but measurements are done asynchronously in time as
depicted in figure 4.3. Each moment a new Hall pulse is detected, a time-stamp (τm)
is taken. At each synchronous control update, this time-stamp is used to estimate ω

and θ at the control update times (kTs) from the asynchronous measurements. The
estimates are denoted by ωest and θest, respectively. This is done in two steps:

• Based on ωest((k − 1)Ts) (computed at the previous control update time (k −
1)Ts) the latest measured angular position θm(τm) is translated into an extrapo-
lated angular position (θextr) at the next synchronous control update time kTs.
This is done by linear extrapolation at the discrete-time instants k = 0, 1, 2, ...:

θextr(kTs) = θm(τm) + (kTs − τm)ωest((k − 1)Ts), (4.3)

where (k − 1)Ts ≤ τm < kTs.

• To deal with high frequency measurement noise, caused by the inaccurate po-
sitioning of the Hall sensors, the αβ − tracker structure [29] was adopted to
compute θest(kTs) from θextr(kTs). At the same time, the αβ − tracker also
computes ωest(kTs). The state-space description of the αβ − tracker is as
follows:

[
θest(kTs)
ωest(kTs)

]
=

[
1− α (1− α)Ts

−β
Ts

1− β

] [
θest((k − 1)Ts)
ωest((k − 1)Ts)

]

+

[
α
β
Ts

]
θextr(kTs)

(4.4)

This can also be written as a weighted sum of the estimated values, based on
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information at time kTs, and the “innovation terms”, as derived from the extra-
polated measurements:

θest(kTs) = (1− α){θest((k − 1)Ts) + Tsωest((k − 1)Ts)}+ αθextr(kTs)
ωest(kTs) = (1− β)ωest((k − 1)Ts) + β θextr(kTs)−θest((k−1)Ts)

Ts

(4.5)

Based on the difference between the reference values for θ and ω (denoted by θr

and ωr, respectively) the error signals can be calculated that enter the controller:

eθ(kTs) = θr(kTs)− θest(kTs)
eω(kTs) = ωr(kTs)− ωest(kTs)

(4.6)

To control the motor, a PD controller with feed-forward was used with the follow-
ing structure:

u(t) = Kpeθ(kTs) + Kdeω(kTs) + Kffωr(kTs) (4.7)

for kTs ≤ t < (k + 1)Ts (i.e. using zero-order hold). In this controller the differential
component is in fact calculated from the αβ − tracker that acts as a differentiator
and low-pass filter (by choosing both α and β smaller that 1). The last term in the
above equation is the velocity feed-forward that is added to the control output with
static feed-forward gain Kff. As only deviations from the steady-state position error,
for constant velocity reference tracking, are important for the print quality, we do not
need an integral term in the controller.

When tuning the controller we need to find values for Ts,Kp,Kd,Kff, α and β.
The sample frequency ( 1

Ts
) of the observer-based controller for the existing implemen-

tation in the printer was chosen at 250 Hz, which is about 50 times the required band-
width of 4 Hz. The sample frequency was chosen this high since all controller tuning
was done in continuous-time. Discretization by approximating the continuous-time
controller was used to implement the controller in discrete-time. This approximation
requires the high sample frequency. We will use this same sample frequency in com-
bination with the observer-based controller (4.3)-(4.7) as a reference for comparison
with the event-driven controller, presented in section 4.4. In section 4.6 we will inves-
tigate how this observer-based controller performs for a much lower sample frequency
of only 62 Hz. This will require some re-tuning of the controller.

The values for the PD controller were chosen at Kp = 2, Kd = 0.3, α = 0.75
and β = 0.25 such that the relative damping of the system is larger than 0.45 and
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Figure 4.4: Root-locus of the system controlled by the observer-based controller.
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Figure 4.5: Sensitivity of the system controlled by the observer-based controller.

disturbances are sufficiently rejected at least up to 4.0 Hz. Figure 4.4 shows the root-
locus of the system with the closed-loop poles indicated with ‘+’ signs for feedback
gain 1. To obtain this root-locus we assumed no quantization and estimation errors
caused by the Hall sensors in combination with the interpolation mechanism. A plot
of the sensitivity, that indicates how well the disturbance d is rejected, is depicted in
figure 4.5. In this figure it can be seen that disturbances are rejected up to 4.8 Hz
which satisfies the requirement. The feed-forward gain Kff was set to 0.029.
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Figure 4.6: Typical pulse sequence for event-driven controller.

The parameters for the αβ − tracker were mainly chosen on the basis of simula-
tions. When decreasing α and β, the measurement noise from the measured position
and estimated velocity is filtered better, i.e. less “confidence” is expressed in the inno-
vation terms. A disadvantage of lowering the values for α and β is the increased delay
in the system. Increasing the delay influences tracking performance but also stability
in a negative way.

4.4 Event-driven control

For the event-driven controller we propose to execute both the measurement and the
control update at the moment of a Hall pulse, as depicted in figure 4.6. When the
motor is not running at a constant velocity, the updates are not equidistant in time. It
is therefore not possible to use the classical design methods which typically assume
that control updates are equally spaced in time.

However, we can apply variations on classical design methods, if we define our
models of the plant and the controller in the spatial (angular position) domain instead
of the time domain, as initially proposed in [36]. This idea is based on the observation
that the Hall pulses arrive equally spaced in the spatial domain, as the Hall sensors
have an equidistant distribution along the axis of the motor (which is true up to ±0.2
rad as explained in section 4.2). To use this reasoning, we first have to transform the
motor model as given in equation (4.2) to an equivalent model in which the motor an-
gular position is the independent variable. After that we will show how the controller
design can be performed using classical control theory.
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4.4.1 Transformation to spatial domain

The transformation ideas are explained in [36]. We will recapitulate the main steps of
the transformation for this specific example.

The transformation is performed via the following relation:

dθ

dt
(t) = ω(t) ⇒ dt

dθ
(θ) =

1
ω(θ)

, (4.8)

where ω(θ) denotes the angular velocity of the motor and t(θ) denotes the time, re-
spectively, at which the motor reaches position θ. Under the assumption that ω(t) 6= 0
for all t > 0, a one-to-one correspondence between θ and t exists and an interchange of
their roles is possible. Note that ω(t) 6= 0 is valid under normal operating conditions
for the considered example, as the motor does not change direction.

Using (4.8) on (4.2) we obtain the motor model in the spatial domain:

dt
dθ (θ) = 1

ω(θ)
dω
dθ (θ) = 1

J [− d(θ)
ω(θ) − (k2

R + B) + k
R · u(θ)

ω(θ) ]

y(θ) = t(θ)

(4.9)

where d(θ) and u(θ) denote the disturbance torque and the motor voltage, respectively,
at motor position θ. Note that time t is now a function of θ and became a state variable
in this new description. To consider the disturbance d as a function of the angular posi-
tion θ is an advantage for many controller designs, as disturbance are often coupled to
the angular position, instead of time. This will be further elaborated in section 4.9.2.
Moreover, the output y(θ) is now the time t(θ) at which the motor reaches position θ.

The error that is input for the feedback controller is now selected to be the differ-
ence between the measured time of a Hall pulse (tm(θ)) and the time at which the Hall
pulse ideally should have occurred based on the reference trajectory (which is denoted
by tr(θ)):

et(θ) = tr(θ)− tm(θ). (4.10)

This is illustrated in figure 4.7. In this figure it is also shown how the time error can be
translated into a position error. When ωr is constant and non-zero in the time interval
(tr(θp), tm(θp)), or (tm(θp), tr(θp)) when tm(θp) < tr(θp), where θp is the angular
position at an encoder pulse detection, then it holds that

eθ(tp) = −ωret(θp). (4.11)
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Figure 4.7: Errors in t and θ.

When ωr is not constant, equation (4.11) can be used as an approximation.
The control objective, that the controller bandwidth should be at least 4.0 Hz,

should be translated into a similar requirement in the spatial domain. To define the
frequency content of the disturbance, independently of the motor velocity, we analyze
the spatial frequency [rad−1]. The spatial frequency is a characteristic of any struc-
ture that is periodic across position in space. It is a measure of how often the structure
repeats per unit of distance (completely analogous to “ordinary” frequency with re-
spect to time). The concept of spatial frequency is especially used in wave mechanics
and image processing [32]. For the considered disturbance signal, the main compo-
nent is located at a spatial frequency of 1

20·2π = 8.0 · 10−3 rad−1 (section 4.2). Some
discussion on the advantages and disadvantages of control requirements in the spatial
domain can be found in section 4.9.2.

4.4.2 Controller design

As can be seen from equation (4.9), the resulting model is non-linear. A common way
to deal with such a system is by linearizing the model around steady-state trajectories.
The steady-state trajectory is chosen straightforwardly at a constant angular velocity
ωe of the motor after start-up:

(te, ωe, de, ue) = (
1
ωe

θ, ωe, de, kωe +
(Bωe + de)R

k
) (4.12)

where de is chosen as the mean value of the disturbance d. The variations around
this steady-state trajectory are denoted by (∆t,∆ω, ∆d, ∆u). Hence, t = te + ∆t,
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ω = ωe + ∆ω, etc. Around the steady-state trajectory, the linearized dynamics are

d∆t
dθ (θ) = − 1

ω2
e
∆ω(θ)

d∆ω
dθ (θ) = 1

Jωe
[−(k2

R + B)∆ω(θ)−∆d(θ) + k
R ·∆u(θ)]

∆y(θ) = ∆t(θ)

(4.13)

We can now design a feedback controller that generates the compensation for the
first-order variations, ∆u(θ), as defined in (4.13). This is schematically depicted in
figure 4.8. The control value applied to the plant should be u = ue + ∆u. As ue =
kωe + BωeR

k + deR
k and we do not know de, the feed-forward term takes care of

(k + BR
k ) ·ωe and the additional term has to be compensated for by the PD controller.

Using the model parameters from section 4.2, we can verify the feed-forward gain
that was chosen for the observer-based controller in section 4.3: Kff = k + BR

k =
0.028 + 3.0·10−5·1.0

0.028 = 0.029.
We have chosen to design a PD controller (like in the observer-based controller

case) and tuned it in the discrete position domain. We aim at using a minimal encoder
resolution that satisfies the design objectives (section 4.2). The advantage for choos-
ing a minimal encoder resolution is that the software is interrupted as less as possible
to perform control updates, which is beneficial for the processor load. We will inves-
tigate if we can achieve sufficient control accuracy with an encoder resolution of only
1 PPR. For this we only need to use one of the three Hall sensors available. Choosing
this ultimately low resolution has the advantage that we do not have to deal anymore
with inaccurate sensor distributions along the motor axis (of ±0.2 rad). A more ex-
tensive discussion about the rationale behind this choice of encoder resolution will be
presented in section 4.9.1. To tune the controller, equation (4.13) was first discretized
in the spatial domain, using a sample “distance” of 2π rad.
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Figure 4.9: Root-locus for ωe = 388; controller (4.14).

The PD controller was chosen as

Hc1(ẑ) = ωt · (Kp + Kd)ẑ −Kd

ẑ
(4.14)

where the notation ẑ is used instead of z to emphasize that the discretization has been
made in the spatial domain, instead of the time domain. Furthermore, this event-driven
controller takes the time error as input, while the observer-based controller takes the
position error as input. To normalize the controller parameters of both controllers,
equation (4.14) is premultiplied by the constant velocity ωt. The subscript t indicates
that the controller is tuned for this specific velocity.

To find the values for the controller parameters Kp and Kd, we used the root-locus
design method [25]. For ωt = 388 rad/s and choosing Kp = 1.0 and Kd = 12 we
obtain the root-locus as depicted in figure 4.9. The ‘+’ marks indicate the roots for
feedback gain 1.

To evaluate the disturbance rejection for this controller, we computed the sensi-
tivity function as the transfer function from the disturbance ∆d(θ) to ∆ud(θ). Both
signals are indicated in figure 4.10, which shows a graphical representation of equation
(4.13) together with the feedback controller (4.14). Note that ŝ is used instead of s to
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Figure 4.11: Bode magnitude plot of transfer from ∆d(θ) to ∆d′(θ) for ωe = 388 rad/s.

emphasize that the integration is performed in the spatial domain. The Bode magni-
tude plot of this discrete-position transfer is depicted in figure 4.11. We see that spatial
frequencies up the 0.01 rad−1 are attenuated. This satisfies the required bandwidth as
given in section 4.4.1, being 8.0 · 10−3 rad−1.

4.4.3 Multiple printing speeds

Now the case is investigated wherein a printer is able to print at multiple printing
speeds. For this reason, the system should be analyzed for different values of ωe.
Figure 4.12 depicts the closed-loop poles for ωe = 200, 300, 400 and 500 rad/s for the
above derived controller. It can be seen that for the various values for ωe the closed-
loop system is behaving differently. For ωe = 200 rad/s the system is even unstable as
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Figure 4.12: Pole locations; ωe = 200, 300, 400 and 500 rad/s; controller (4.14).

the closed-loop poles lie outside the unit circle.
To solve this problem, we propose to schedule the controller gain proportionally

with ωe, i.e. to use a linear parameter-varying (LPV) controller. When the controller
is tuned such that it matches (4.14) for ωt, we only need to replace ωt by ωe in (4.14),
while keeping the same values for Kp and Kd:

Hc2(ẑ) = ωe · (Kp + Kd)ẑ −Kd

ẑ
(4.15)

From the pole locations, as depicted in figure 4.13, we observe that performance is
improved, but for ωe = 200 rad/s the system is close to instability.

A second possibility is to schedule the controller gain in a similar way as pro-
posed in chapter 5, section 5.2. There, a PID controller is designed in continuous-time
and then transformed into a discrete-time controller with an approximation method
(e.g. Euler, Tustin). With this approximation, the gain for the differential action is
divided by the sample time Ts. In the asynchronous application presented in chapter
5 the sample time is kept as a parameter in the PID control algorithm. The “sample
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Figure 4.13: Pole locations; ωe = 200, 300, 400 and 500 rad/s; controller (4.15).

time” Ts is substituted in the algorithm online as the difference between the present
and last control update time.

As we have a one-to-one relation between the time and the angular position of
the motor axis, we can use the angular velocity and multiply Kd with ω instead of
dividing Kd by Ts. In our analysis we multiply Kd with ωe, as we only analyze the
control performance for a specific steady-state velocity. We keep the scheduling as
proposed in [36], as the proposed method in section 5.2 also takes the position error
as a function of time as input. To again achieve similar performance at ωt with the
same tuning parameters as found before, we compensate Kd by dividing it by the
constant ωt.

Hc3(ẑ) = ωe ·
(Kp + Kd

ωe

ωt
)ẑ −Kd

ωe

ωt

ẑ
(4.16)

The pole locations for the system controlled by controller (4.16) are given in figure
4.14. We observe that for this controller all examined closed-loop poles lie well inside
the unit circle. Still, the performance of the controller changes significantly with the
choice of ωe.

To find the controller that creates a system with equal pole locations for any value
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Figure 4.14: Pole locations; ωe = 200, 300, 400 and 500 rad/s; controller (4.16).

of ωe, we derive the pole locations of the closed-loop discrete position system mathe-
matically, as a function of ωe. To do so, we first derive for equation (4.13) the transfer
function P (ŝ) from input ∆u(θ) to output ∆y(θ), which yields

P (s) =
∆y

∆u
=

1
ω2

e

· k

JRωeŝ2 + (BR + k2)ŝ
(4.17)

We then transform (4.17) to the discrete-spatial domain using bilinear approximation.
The bilinear approximation, also known as Tustin’s approximation [25], maps all the
stable poles at the left half of the ŝ-plane to the interior of the unit circle on the ẑ-plane
with a one-to-one correspondence. Hence, stable ŝ-plane poles become stable ẑ-plane
poles.

P (ẑ) =
k

πω2
e

· ẑ2 + 2ẑ + 1
(JRωe

1
π + BR + k2)ẑ2 − 2JR 1

π ωeẑ + JR 1
π ωe −BR + k2

(4.18)

To find the closed-loop poles of the system, we solve C(ẑ)P (ẑ) = 1 with the general
PD controller C(ẑ) = (Kp+Kd)ẑ−Kd

ẑ . After simplification of the equations this gives
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us the equality for the pole locations

(Kp + Kd)ẑ3 + (2Kp + Kd)ẑ2 + (Kp −Kd)ẑ −Kd =
((αωe + β)ẑ3 − 2αẑ2 + (αωe − β)ẑ)ω2

e ,
(4.19)

where α = JR 1
π2k and β = BR+k2

πk . It can be derived from equation (4.19) that it is
not possible to schedule Kp and Kd such that the pole locations are independent of
ωe. We can however “minimize” dependability on ωe by choosing the controller

Hc4′(ẑ) = ω2
e ·

(Kp + Kdωe)ẑ −Kdωe

ẑ
(4.20)

The closed-loop poles are then found by solving

((α−Kd)ωe + β + Kp)ẑ3 − (2α + 2Kp −Kdωe)ẑ2+
((α−Kd)ωe − β + Kp)ẑ −Kdωe = 0

(4.21)

The controller gains were again chosen such that the poles for ωe = 388 rad/s match
the poles of controller (4.14) for ωe = 388 rad/s. This results in the controller

Hc4(ẑ) =
ω2

e

ωt
· (Kp + Kd

ωe

ωt
)ẑ −Kd

ωe

ωt

ẑ
(4.22)
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Figure 4.15: Pole locations; ωe = 200, 300, 400 and 500 rad/s; controller (4.22).
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Figure 4.16: Step responses; ωe = 200, 300, 400 and 500 rad/s; controller (4.22).

Figure 4.15 displays the closed-loop poles for controller (4.22). This controller
results in the approximate same control performance for all evaluated values of ωe in
the spatial domain. This can be observed in figure 4.16 in which the responses to a unit
step are depicted for the four evaluated values of ωe. The interpretation of a unit step
here is that the reference time instantaneously changes from 0 to 1 second at position
θ = 0 rad. Consequently, the step response displays the time variation (time error,
with respect to the steady state trajectory) when the motor reaches a certain position.

As explained earlier (see equation (4.11)), we can transform the error to the time
domain from et(θ) by means of equation (4.11), as ωr is constant after the step has
been applied. In the same way we can transform the position scale on the horizontal
axis of the step responses to a time scale. The results for the four step responses are
plotted in figure 4.17. It can be seen that the settling time decreases as ωe increases.
Hence, the developed controller does not have a (constant) settling time but at a (con-
stant) settling distance. This makes sense for the printer design, as printing accuracy
does not vary with the printing speed in this case.

4.5 Implementation issues

When implementing the event-driven controllers proposed above, there are various
issues that need to be considered. Some of these issues are caused by the fact that it
is not common to implement the event-driven type of controller. The other issues are
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Figure 4.17: Step responses; ωe = 200, 300, 400 and 500 rad/s; controller (4.22).

common design considerations that also apply for classical control algorithms (when
controllers are implemented on processing platforms with finite processing power that
is shared with other tasks). Only the most important issues are considered.

4.5.1 Friction

In our system model (4.2) we have not modeled any friction, such as the friction in
the bearings of the motor and TTF transportation rollers. Its effect does not have
significant influence at higher motor velocities. The effect will mainly influence the
start-up and will be considered in simulations. From measurements it turned out that
the following relation between the friction torque Tf and motor velocity ω is a good
approximation:

Tf = 4.6 · 10−2atan(0.1ω). (4.23)

This is depicted in figure 4.18 for the considered velocities.

4.5.2 Voltage and current limiting

Because of the limited functionality of the amplification circuitry, the current is re-
stricted to (−15, +15) amps. The motor voltage is bounded to (0, 24) volts. From
simulations we observe that we only hit the limiting bounds during acceleration and
deceleration phases (i.e. when the reference velocity is not constant). As we are mainly
interested in disturbance rejection during constant reference velocity, the limiting ef-
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Figure 4.18: Friction torque curve.

fect can be discarded in the analysis.

4.5.3 Time quantization

Because the software on the printer is scheduled by means of a time sliced scheduler
(i.e. in a time-driven manner), we can, unfortunately, only compute a new control
update at a constant frequency, which we refer to as the quantization frequency. As
Hall pulses do not arrive at a constant frequency, we have to deal with varying latencies
(after all). This phenomenon we call time quantization. Because the quantization
frequency is one of the controller design parameters, it is important to consider the
influences of this frequency on the control performance. In the next section we will
present simulations of the system for various values of this frequency. Section 4.8
gives some discussion on how to select the right value for the quantization frequency.
It is important to note that the time-stamping (to obtain ω) is not implemented in
software but in digital logic (FPGA), and therefore these time-stamps are not quantized
at the same (relatively low) frequency. A much higher frequency (in the order of 10
MHz) is available for this purpose.

4.5.4 Time delay

As computational power on the embedded processor is finite, we will need to take the
computation delay between the detection of a Hall pulse and the update of the actuator
signal into account. As the controller has to perform the same computation at every
update, this computation time can be estimated to be a constant value. From previous
implementations we have obtained an estimate of 0.05 msec. We will use this value as
a constant time delay in our simulations in the next section.
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4.5.5 Start-up

As the event-driven controller is triggered by the Hall pulses, we have a problem when
the motor is in stand-still. The controller will not update the motor voltage to a non-
zero value as long as no Hall pulses are received. But no Hall pulses will be received
if the motor is not rotating. We have solved this by applying a pulse onto the motor
voltage to generate the initial start-up, independently of Hall pulses. In the simula-
tions in the next section we have used a start-up pulse with an amplitude of 5 volts
and a width of 0.3 seconds. This signal was obtained via trial-and-error, under the
conditions that the motor should begin rotating, but when the first couple of pulses
are detected, the event-driven controller should take over without being influenced too
much by the start-up behavior. Of course, one could choose fancier start-up signals
to improve the tracking performance during start-up, but in the considered situation
the only controller requirement for the start-up is that the motor is accelerated to a
constant velocity in at most 1.3 sec. Note that this start-up pulse also takes care that
the motor starts rotating in the right direction, as the direction can not be measured by
the 1 PPR encoder.

4.6 Simulation results

Simulations have been carried out for both the observer-based controller as given in
(4.3-4.7) and the event-driven controller as given in (4.22), in which a constant refer-
ence velocity of 388 rad/s is tracked. At 3 seconds a disturbance torque pulse d, as
depicted in figure 4.2, is applied to the system. This pulse resembles the measured
disturbance d as induced by a sheet entry at the fuse roll.

The simulation results are depicted in figures 4.19 - 4.22 and show the position
error for various simulations with the observer-based controller and the event-driven
controller proposed in (4.22) with et(θ) as input.

For ωe in equation (4.22) we used an estimation of the actual speed, by using the
duration from the previous pulse (tp,k−1) until the time of the last pulse (tp,k), based
on the encoder resolution of 2π rad:

ωe =
2π

τp,k − τp,k−1
(4.24)

From figures 4.19 and 4.20 it can be seen that both controllers perform equally
well for the case in which the observer-based controller is running at 250 Hz and 12
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Figure 4.19: Simulation results for the observer-based controller (4.7) with 12 PPR encoder
and sample frequency 250 Hz.
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Figure 4.20: Simulation results for the event-driven controller (4.22) with 1 PPR encoder and
500Hz time quantization.

PPR and the event-driven controller running at 1 PPR (resulting in an average sample
frequency of 62 Hz) with the quantization frequency set to 500 Hz. Both position
errors vary within a range of about ±0.2 rad. The main difference is that the error is
smooth in the event-driven controller situation, but a high frequent ripple is visible in
the observer-based situation. This is caused by the small errors that are modeled as
inaccuracies in the distribution of Hall pulses over 1 rotation of the motor.

Figure 4.21 shows the position error for the same situation, but here a observer-
based controller in combination with a 1 PPR encoder, running at 62 Hz, was used.
This frequency was specifically chosen as the event-driven controller also runs at an
average frequency of 62 Hz. For this configuration the controller had to be re-tuned,
to still obtain a bandwidth of 4 Hz. The following parameter values were obtained:
Ts = 1

62s,Kp = 1,Kd = 0.05, α = 1 and β = 1. Because we only have 1 PPR,
the noisy characteristic due to the inaccurate Hall pulses has disappeared. For this
reason both parameters of the αβ − tracker could be set to one, i.e. no filtering
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Figure 4.21: Simulation results for the observer-based controller (4.7) with 1 PPR encoder and
sample frequency 62 Hz.
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Figure 4.22: Simulation results for the event-driven controller (4.22) with 1 PPR encoder and
50Hz time quantization.

was necessary (as can be seen from equation (4.5)). The value for Kd needed to be
lowered considerably as otherwise the computed actuator signal would be impossible
to realize with the motor amplifier. Comparing figures 4.20 and 4.21 we observe that
the event-driven controller outperforms the observer-based controller in this setting,
in the sense that the error deviation from the constant equilibrium value is 0.2 rad for
the event-driven controller and 0.5 rad for the observer-based controller, which is out
of spec.

Figure 4.22 depicts the result of a simulation where we have set the quantization
frequency to 50 Hz. Note that this frequency is even lower than the frequency at which
Hall pulses arrive. The time delay that is introduced is however never larger than 0.02
seconds. Comparing figures 4.20 and 4.22 it can be seen that the increased delay does
not influence the control performance much. Comparing figures 4.21 and 4.22 we see
that the event-driven controller at 50 Hz quantization frequency is performing better
than the observer-based controller at 62 Hz considering the deviation from the con-
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stant error. Apparently, the estimation errors that are made in the linear extrapolation
of the observer-based controller during non-constant velocity have stronger negative
influence on the controller performance compared to the time delay of the event-driven
controller.

4.7 Measurement results

To validate the simulation results of section 4.6, we compared the observer-based con-
troller (4.7) with the event-driven controller as proposed in (4.22) by implementing
them both on a complete prototype document printing system (as the one shown in
figure 1.3) at Océ technologies BV. Actually, the observer-based controller was already
implemented, as this was the original controller used by the printer manufacturer to
drive the TTF belt, and therefore acts as a reference controller.

The model used in section 4.2 was already matched with this prototype system.
Therefore, the controller parameters obtained from the analysis and synthesis de-
scribed in section 4.4.2 could be applied directly to control the TTF belt in the proto-
type.

The experimental results for both controllers are given in figures 4.23 and 4.24.
These figures show the position error during printing over 5 seconds (after start-up).
In this period, 5 sheets are printed at a speed of 80 pages per minute. As the control
performance was measured with the position error in rad, the results can be compared
with the simulation results (section 4.6). For the event-driven controller implementa-
tion a quantization frequency of 500 Hz was chosen. From simulations (figure 4.22)
we obtained that comparable control performance could be achieved at a quantization
frequency of 50 Hz, which is of course beneficial for the processor load. Unfortunately
we were only able to implement the event-driven controller for one quantization fre-
quency as the test time on the prototype was limited.

Comparing the results in figures 4.23 and 4.24 we observe, as expected from the
simulations, similar control performance for the observer-based controller and the
event-driven controller, both within spec. The maximum deviation from a the aver-
age position error is for both controllers about 0.15 rad, which is smaller than 0.25
rad as required (see section 4.2). However, keep in mind that the event-driven con-
troller operates with an encoder with a resolution that is a factor 12 lower than that
for the observer-based controller. Furthermore, the observer-based controller runs at
a (constant) control sample frequency of 250 Hz and the event-driven controller at a
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Figure 4.23: Experiment hybrid controller (4.7) with 12 PPR encoder and sample freq. 250 Hz.
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Figure 4.24: Experiment event-driven controller (4.22) with 1 PPR and 500Hz time quantiza-
tion.

much lower average frequency (approximately 62 Hz). The errors caused by the sheet
passings can be distinguished in both figures, although there are more disturbances (at
different frequencies) acting on the system as can be seen from the measurement data.

4.8 Selection of quantization frequency

From the two event-driven controller simulations in section 4.6 (see figures 4.20 and
4.22) it can be seen that increasing the quantization frequency is beneficial for the
control performance. In summary, this is caused by a decrease in the delay between
detection of the Hall pulse and update of the actuator signal. Higher values of the
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quantization frequency however increase the processor load, which is not desirable.
The challenge is to find a specific value for this frequency where a good compromise
is achieved between control performance and processor load. Of course, a good com-
promise for this trade-off has yet to be defined.

Lets take a system level perspective on this trade-off problem. Figure 4.25 depicts
the overview diagram of the threads of reasoning technique (see chapter 2), applied to
this part of the design. While chapter 2 focusses on the system level design choices,
here we zoom in on a specific part of the system design. Nevertheless, we are able to
link the reasoning to the main design drivers (section 2.2), as specified for the complete
printer, in a concise diagram. For illustration purposes, we kept a solved conflict in
the overview diagram. The solution is indicated by means of an extra arrow symbol,
as shown in the legend, starting in the conflict arrow.

In the figure it is shown that from the main design driver cost price we have ob-
tained that the conventionally applied encoder was too expensive. Therefore, we opted
to use the Hall pulses of the brushless DC-motor as position sensor, which makes it
impossible to control the motor with the classical control laws, as the sensor resolution
is too low to achieve the required control performance. This actually was a conflict
in one of the initial iterations through the process of the threads of reasoning tech-
nique. We opted two alternative solutions for this conflict: use the observer-based
controller or use the event-driven controller. These are indicated as design choices in
the diagram.

The main design driver time-to-market advocates a predictable and composable
software behavior. From this perspective, the choice was made for a time sliced sched-
uler to schedule the tasks on the processing platform (see also section 2.4.2). As all
tasks are executed at a constant frequency, it is not straightforward to implement the
event-driven controller, which is asynchronous. This gives rise to the first conflict, as
indicated in the figure. As a solution to this conflict we already proposed to update the
actuator signal at a constant frequency (quantization frequency). As the Hall pulses
do not arrive at a constant frequency, we have to deal with varying latencies between
receiving Hall pulses and the updates of the control algorithm.

When the quantization frequency is increased, the processor load is increased as
well. As we have to implement the controller on an embedded platform with limited
processor power, we would like to have the processor load for the control algorithm
as low as possible. On the other hand, if we decrease the quantization frequency, we
increase the control response time, which has a negative effect on the control perfor-
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Figure 4.25: Overview diagram of threads of reasoning applied to quantization problem.

mance. This is in conflict with the application driver of accurate motor control to
achieve a high printing accuracy. At this point in the overview diagram we identified
the trade-off qualitatively.

As we are able to choose any value of the quantization frequency (as long as the
system requirements are satisfied) we have to choose the value such that a good trade-
off is made between the control performance and processor load. Because we have
two objectives related to two different disciplines, this is a typical (and relatively easy)
example of a multi-disciplinary multi-objective optimization problem. To take a de-
cision for a specific value of the quantization frequency, we need quantitative data
for both objectives. This is expressed in two simple mono-disciplinary models that
express the relation between the quantization frequency and the control performance
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Figure 4.26: Maximum position error deviation as function of the quantization frequency.

and processor load, respectively, as presented in the following two sections. These
simple models are based on the complex models including lots of details of the mono-
disciplines. Section 4.8.3 gives some discussion on how the trade-off subsequently is
made, which partly is still an open issue.

4.8.1 Model of control performance

To obtain an abstract model that describes how the control performance is influenced
by the quantization frequency of the event-driven controller implementation, we per-
formed 1000 simulations for values of the quantization frequency in the range [20, 500]
Hz. As the measure for control performance, we take the peek-to-peek distance of the
position error, for a specific simulation with a specific constant reference velocity to
be tracked and a specific disturbance to be rejected. For the simulations we used the
exact same situation as described in section 4.6. That is, a constant reference of 388
rad/s to be tracked over 2 seconds, with a disturbance pulse after 1 second, as given in
figure 4.2.

The results are depicted in figure 4.26. It can be observed that the maximum error
decreases as the quantization frequency increases, as expected. Only below 62 Hz
the error deviation starts increasing rapidly, as below 62 Hz not every Hall pulse is
followed by a control update anymore. Because the motor is running at 388 rad/s and
the resolution of the position sensor is 1 PPR, Hall pulses arrive at 388

2π = 62 Hz.
Furthermore, we observe that for these values the results are more noisy, however a
clear trend is present.
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Figure 4.27: Predicted processor load for the event-driven controller as function of the quanti-
zation frequency.

4.8.2 Model of processor load

To see the effect of the quantization frequency on the processor load, we predict the
time the processor will need to execute the computations for the event-driven control
algorithm. For this we need a model of the processor and knowledge on how the
algorithm is implemented in software. Chapter 6 describes in detail how to model
the processor and how the processor load can be predicted. In this section we will
only present the software implementation and the resulting prediction results, without
going into full details.

The implementation of the controller is given in the pseudo code below. At a fixed
frequency, i.e. the quantization frequency, the code is executed. However, lines 3 and
4 are only executed when a Hall pulse has been detected.

1 input(Hall signal);

2 if (Hall signal updated) then

3 update controller;

4 output(actuator signal);

5 end;

Lets assume that the software will run on an Infineon XC167 CPU at a clock fre-
quency of 40 MHz. From the processor model we obtain that lines 3 and 4 will take
approximately 82 µs and that lines 1, 2 and 5 will take approximately 13 µs.

The processor load prediction results are given in figure 4.27. For this we used
the same simulations as described in the previous section, and recorded the number
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of checks (lines 1, 2 and 5) as well as the number of control updates (lines 3 and 4).
The number of checks can actually be straightforwardly calculated as the quantization
frequency times the simulation duration (i.e. 1.5 seconds). To obtain the processor
load, these numbers were multiplied by the predicted computation times for each check
and each control update.

In figure 4.27 we see that for quantization frequencies above 62 Hz the processor
load is linearly increasing. For values below 62 Hz, the increase is also linear but with
a larger slope. This is because Hall pulses are arriving at approximately 62 Hz when
the motor is running at constant velocity of 388 rad/s. For quantization frequencies
below 62 Hz we therefore execute less checks than Hall pulses are received. The values
depicted in figure 4.27 can be approximated analytically. For quantization frequencies
well below 62 Hz, the processor load is equal to

(13 + 85) · 10−6 · quantization frequency · 1.5 (4.25)

seconds. For quantization frequencies well above 62 Hz the processor load is equal to

13 · 10−6 · quantization frequency · 1.5 + 82 · 10−6 · # of encoder pulses (4.26)

seconds. In this last expression the number of encoder pulses is equal to 62 ·1.5 = 93.

4.8.3 Making the trade-off

Figure 4.28 shows both objectives in one graph for various quantization frequencies.
This figure clearly depicts the trade-off that has to be made, as only one point in this
graph will be selected for final implementation. An optimization perspective will be
taken on this selection problem.

The probably most well-known multi-objective optimization method is Pareto op-
timization. This optimization method finds all the solutions for which the correspond-
ing objectives cannot be improved without degradation in another. These solutions
are called Pareto-optimal [83, 87]. However, a Pareto optimization yields no single
solution. In the presented situation, Pareto-optimal solutions are even found in the
complete range of the quantization frequency. This is shown in figure 4.29 that de-
picts all Pareto-optimal solutions.

To actually select one solution, additional information is required. This additional
information is typically represented as weighting values assigned to each of the ob-
jectives, thereby reflecting their relative importance in the selection process. After
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Figure 4.28: Control performance versus processor load as function of the quantization fre-
quency.
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Figure 4.29: Pareto-optimal front.

weighting the objectives, the one solution with minimal “cost” is selected, unless this
solution does not satisfy the design requirements. Now we can talk really about an
optimal solution.

An open point is still how to choose appropriate weights, as criteria often have
different dimensions - “how to compare apples with pears”. In most design processes,
the system architect is entrusted with this task. Although he has the ability to reason
over the multiple disciplines, it is a difficult job that is dominated by subjective argu-
ments. Approaches are needed to make the trade-off decisions in a structured manner.
An example of such an approach that relies on both qualitative and quantitative data is
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Analytic Hierarchy Process (AHP) [68]. The AHP uses the human ability to compare
single properties of alternatives. It helps decision makers in choosing the best alter-
native, and provides a clear rationale for the choice. It is however still the task of the
system architect to feed the process with data that relies on views over the multiple
disciplines that are involved in the decision process. Creating structured approaches
to compute the “best” solution, based on the quantitative data from the individual
disciplines is an ongoing challenge of both industry and academia.

Considering the specific presented problem, one might select the solution around a
quantization frequency of 80 Hz, as for higher frequencies the control performance is
not improved significantly. However, when processor load is an important objective in
the design, and the printing accuracy is already high enough for error deviations below
0.27 rad, one might consider choosing a lower quantization frequency of for instance
40 Hz. When more objectives would play an important role in the trade-off making
process, the problem gets more complicated to be solved by such straightforward rea-
soning and using weighting factors might be more supportive, although selecting them
is not straightforward.

4.9 Discussion

4.9.1 Sensor resolution

For the event-driven controller we choose to use only one of the three Hall sensors
to obtain a sensor signal with a resolution of 1 PPR. From a physical point of view,
this is the lowest encoder resolution one can choose. In section 4.2 we explained that
the highest frequency we need to compensate for is located at a spatial frequency of
0.008 rad−1 and is caused by the roll that is coupled to the motor and drives the TTF
belt. (see section 4.2). According to the Nyquist sampling theorem, we need at least a
spatial sample frequency of 2 · 0.008 = 0.016 rad−1 to measure the signal. However,
as we know from the waterbed effect (Bode’s sensitivity integral [14]), we need to up-
date the controller at a higher frequency to compensate for the disturbance. This can
also be observed in figure 4.11, where the Nyquist sample frequency is located at the
right most frequency in the graph. When we tune the controller to attenuate frequen-
cies up to a higher frequency, disturbances at frequencies closer to the Nyquist sample
frequency are amplified even more. The 1 PPR encoder gives us a spatial sample fre-
quency of 0.16 rad−1, which is 10 times higher than the Nyquist sample frequency,
and therefore gave us enough freedom to tune the controller to get satisfactory control
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performance.
The rationale behind the low sample frequency was system cost price. From this

perspective, the choice was made to implement all control software of the printer
paper path on one CPU. To accomplish this, the processor load of every individual
task was minimized. By decreasing the sensor resolution, the processor load for the
control algorithm was decreased considerably, as the sample frequency of the event-
driven controller varies relatively with the sensor data frequency (see section 4.9.3 for
discussion on the processor load). Furthermore, when only one of the three sensor
signals has to be acquired, we only need 1 input connection in stead of 3. This again
potentially reduces system cost price.

When using multiple pulses per revolution it is important to know how the pulses
are distributed along one full revolution. Typically, when using the Hall pulses of the
brushless DC-motor, we have to deal with inaccuracies in the position of the pulse
of ±0.2 rad (3%). To correct for these errors, we could use some calibration algo-
rithm (see [84]), but this would increase software complexity (and therefore also the
processor load) and could possibly also result in additional hardware (if an indexing
mechanism would be required). When using only one pulse per revolution we benefit
from perfect pulse “distribution”, i.e. exactly 2π rad in between each two sequential
pulses. We, therefore, have no measurement error.

4.9.2 Disturbances and resonant frequencies

As stated in section 4.2, the purpose of the implemented controllers is twofold: achiev-
ing satisfactory tracking and disturbance rejection. For disturbance rejection it is, in
this motion control case study, important to be aware of the fact that disturbances can
be categorized in two types:

1. Disturbances having a frequency content that varies with the velocity of the
controlled actuator,

2. and disturbances having a frequency content that is independent of the actuator
velocity.

In the considered example, most of the disturbances are of type 1. Examples can
be found in bearings, axes, rolls, traveling sheets of paper, etc, that all rotate with
a velocity that is controlled by the motor. When the motor velocity decreases, all
frequencies of the disturbances decrease with the same factor. An example of a type
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2 disturbance in this case study could be a vibration in the construction that is caused
by another actuator.

As we have seen in this chapter, one has a considerable advantage for type 1 distur-
bances when designing in the spatial domain, which was applied for the event-driven
controller. The reason is that the type 1 disturbances all have a spatial frequency con-
tent that does not change with the actuator velocity. When type 1 disturbances are to
be compensated for with conventional (time-driven oriented) control design, one has
to choose a specific steady state (constant velocity) and design the controller for this
particular situation. Further analysis should verify whether the required control perfor-
mance is achieved for all operational velocities. If, on the other hand, we are dealing
with a type 2 disturbance in the controller design using the spatial domain, we also
have to choose a specific steady state, as the spatial frequency of these disturbances
does vary with the motor velocity.

To achieve satisfactory tracking it is important to consider the resonant frequencies
of the system. At and around these frequencies the system will not achieve good
tracking or even show unstable behavior. Common practice is to design the system
such that these frequencies are outside the operational mode, such that the effects
can be neglected in analysis and synthesis. However, in some designs the controller
has to deal with this limitation of the system. This is often achieved by designing
notch filters tuned at the known resonant frequencies, such that they are not excited.
When designing an event-driven controller by means of the spatial domain analysis,
we cannot simply design a notch in the spatial domain, as its cut-off frequency will
change with the velocity of the motor. A solution to this problem is to implement a
time-varying notch filter [1].

4.9.3 Processor load

Next to the cost price reduction by using cheap encoders, another important reasons
to implement the proposed event-driven controller is to reduce the processor load. In
section 4.8.2 it was already predicted what processor power is needed for the event-
driven controller implementation. As a measure for the processor load we used the
time the processor would need to execute the controller computations for a particular
simulation. For this, the simulation data from section 4.6 was used. From figure
4.27 it can be seen that at a quantization frequency of 500 Hz, for which the control
performance is approximately equal to the control performance of the observer-based
controller, the processor load is 18 ms. For a quantization frequency of 40 Hz, the
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processor load is even reduced to less than 6 ms.
The processor load of the event-driven controller furthermore relates to the chosen

encoder resolution. When the resolution is increased, the control algorithm would be
computed more often. For instance, when a resolution of 2 PPR in combination with
a quantization frequency of 500 Hz, would be considered, the processor load would
be increased to 26 ms for the considered situation. Fortunately, 1 PPR resolution
was sufficient to control the motor according the required control performance. The
processor load varies also with the velocity of the motor. When the event-driven
controller in combination with the 1 PPR encoder and a quantization frequency of
40 Hz would control the motor at a velocity of 200 rad/s (instead of 388 rad/s as
considered above), the processor load would only be 2.3 ms.

For the observer-based controller, we have measured that each control action takes
104 µs. This is slightly more than the computation time of the event-driven controller
(which was 13 µs for the check at the quantization frequency and 82 µs for the update
of the controller), because of the complexity of the observer-based control algorithm.
For the simulation depicted in figure 4.19, in which the observer-based controller was
running at 250 Hz, we compute a processor load of 104 · 10−6 · 250 · 1.5 = 39 ms.
Therefore, we conclude that the event-driven controller implementation reduces the
processor load for the controller task with a factor 2 when the controller is running at
a quantization frequency of 500 Hz. This processor load reduction is even increased up
to a factor of 6 when the quantization frequency is set to 40 Hz, without deteriorating
the control performance too much.

4.10 Conclusions

In this chapter we presented the use of event-driven control to accurately control a
brushless DC-motor on the basis of a Hall encoder having a resolution of 1 pulse per
revolution. We considered an industrial control problem with a strong eye towards cost
price reduction. By means of analysis, simulation and experiments we showed that the
performance of the controller satisfied the requirements. Furthermore, we showed that
similar control performance was achieved compared to the industrial observer-based
controller. However, the event-driven controller was running at a much lower average
sample frequency, and therefore involving a significant lower processor load. The
advantages of the event-driven controller over the observer-based controller can be
summarized as follows:
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• Only a cheap encoder with a resolution of 1 PPR necessary, instead of 12 PPR

• Low computational load for the processor

• Enables reasoning in the spatial domain

• Lower number of tuning parameters

Hence, the system performance, as defined in the research hypothesis (chapter 1), was
improved considerably with this event-driven controller implementation.

To better suit the time sliced scheduler, we mapped the controller to an implemen-
tation in which the actuator signal was updated at a constant sample period. Compared
to the originally implemented observer-based controller implementation, a processor
load reduction could be obtained up to a factor 6 with the event-driven controller.

The analysis and controller synthesis were based on the observation that the con-
troller triggering is synchronous in the spatial domain. By transforming the system
equations from time domain to the spatial domain, we were able to write the control
problem, that was asynchronous in the time domain, as a synchronous problem in the
spatial domain. With this, we were able to apply classical control theory to design and
tune the controller. The obtained control parameters could directly be applied to the
implementation. Experiments on a prototype printer validate the results obtained from
analysis and simulations.

The resulting control performance, as obtained from the analysis, is defined in the
spatial domain. When disturbances are also acting in the spatial domain, which is often
the case, we can easily determine how these disturbances are rejected. Furthermore,
we can now use the settling distance as a control performance measure, instead of the
settling time. In many cases, also tracking requirements are better defined in the spatial
domain. It is however still possible to use approximated values in the time domain by
using a constant (or maximum) reference velocity.

As a systems engineering contribution, this chapter also presents the abstraction
from the mono-disciplinary details to simple models (expressed in the figures 4.26 and
4.27) that can be used by the system architect to make system level design choices.
This is an important step in the multi-disciplinary design of a system as all detailed
design choices at the low level contribute to the performance of the complete system. It
is still an open issue to create a structured approach to compute the “best” solution for
each specific situation, based on the quantitative data from the individual disciplines,
and is an ongoing challenge of both industry and academia.
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5.1 Introduction

Most research in control theory and engineering considers periodic or time-triggered
control systems where continuous time signals are represented by their sampled val-
ues at a fixed sample rate. Although it seems in many situations logical to study
and implement event-driven controllers, their application is scarce in both industry
and academia. A major reason why time-driven control dominates is the difficulty
involved in developing a system theory for event-driven systems. Typically, the con-
trol community tries to circumvent the event-driven nature of many control systems
in order to still use the system theory for time-driven systems. In case the sensors are
event-based (i.e. the measurement data arrives not equidistantly in time) often one de-
signs asynchronous observers that provide estimates of the state variable of the plant
at equidistant times. For instance, in [16, 31, 50] approaches based on Kalman filter
are used, while in [60] a Luenberger-type observer is applied. Since estimates of the
state are available at a constant sample rate, standard (state feedback) control analysis
and design methods can be applied. Another solution by the control community is
to simply assume (or impose as stringent conditions for the software engineers) that

1This chapter is partially based on the work that appeared in the proceedings of the American Control
Conferences 2005 [70] and 2006 [38], and is submitted for journal publication [40].
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the real-time platforms used for implementing controllers are able to guarantee deter-
ministic sample intervals. In reality this is, however, seldom achieved. Computation
and/or communication delays of networked control systems [10, 46, 61, 86] are in-
evitable and hard to predict due to the presence of caches and instruction pipelines in
modern hardware platforms and the interference between tasks on processors. The de-
lay and jitter introduced by the computer system can degrade the performance signifi-
cantly (see for instance [10]). To study these effects in control loops, in [17] the tools
Jitterbug and Truetime are advocated, which are mainly based on stochastic analysis
and simulations. Other approaches adapt the periodic sampled data theory to incor-
porate the presence of latencies (delays) or jitter (variations on delays) in servo-loops
in the control design. Typically, in this line of work (see e.g. [6, 18, 45, 54, 86]) the
time variations in the “event-triggering” can be considered as disturbances and one
designs compensators that are robust to it. In [76, 77] time-varying sample times are
considered. However, only a finite number of possible sample times are allowed. Then
one designs controllers and observers that use feedback or observer gains that depend
on the known sample time. Stability of the closed-loop is guaranteed via the existence
of a common quadratic Lyapunov function. However, knowing the (future) sample
time is unrealistic in various cases including event-driven control. Moreover, in the
event-driven context as proposed here a common Lyapunov function does not exist as
asymptotic stability cannot be achieved. Ultimate boundedness [12, 13] with small
bounds (a kind of practical stability) is the most one can achieve.

There is another fundamental difference between the previously mentioned work
and the current chapter. We will study event-driven controllers for which we design
both the control algorithm and the way the events are generated that determine when
the control values are updated. This is in contrast with the approaches in [6, 18, 45,
54, 76, 77, 86], where the variations in the sample times are considered as externally
imposed disturbances. In this chapter the selection of the event-triggering mechanism
suits a clear purpose: lowering the resource utilization of its implementation while
maintaining a high control performance. The approach taken here is to update the
control value only when the (tracking or stabilization) error is larger than a threshold
and holding the control value if the error is small. Event-driven control strategies
[4, 5, 22] have been proposed before to make such a compromise between processor
load and control performance. This is also the case for the controller presented in
chapter 4. However, the work presented in this chapter is the first that provides a
mathematical analysis of such controllers.
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To be more precise, this chapter provides theory and insight to understand and
tune a particular type of event-driven controlled linear systems. The performance
of these novel control strategies is addressed in terms of ultimate boundedness and
guaranteed speed of convergence [12]. Depending on the particular event-triggering
mechanism used for the control updates, properties like ultimate boundedness for the
perturbed event-driven linear system can be derived either from a perturbed discrete-
time linear system or from a perturbed discrete-time piecewise linear (PWL) system.
Since results for ultimate boundedness are known for discrete-time linear systems, see
e.g. [12, 13, 47, 48, 64], and piecewise linear systems, see e.g. [51, 63], these results
can be carried over to event-driven controlled systems. In this way we can tune the
parameters of the controller to obtain satisfactory control performance on one hand
and low processor/communication load on the other.

The outline of the chapter is as follows. In section 5.2 we present two numerical
examples that show the potential of the proposed event-driven controllers for reducing
resource utilization while maintaining a high control performance. After introducing
some preliminaries in section 5.3, we present the problem formulation in section 5.4.
In section 5.5 the main approach is given, while the main results are presented for
two particular types of event-triggering mechanisms in section 5.6 (the non-uniform
case) and 5.7 (the uniform case). Section 5.8 shows how the intersample behavior can
be included in the analysis. In section 5.9 it is indicated how the main results can be
exploited to compute ultimate bounds for event-driven linear systems in combination
with existing theory for linear and piecewise linear systems. Based on these results,
we develop tuning rules for event-driven controllers as explained in section 5.10. In
section 5.11 we present some examples that illustrate the theory and we end with the
conclusions.

5.2 Motivating examples

To show the potential of event-driven control with respect to reduction of resource
utilization we present two examples; one academic example using state feedback and
one event-driven PID controller with the aim of velocity tracking for a DC-motor, a
situation occurring often in industrial practice.
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Figure 5.1: eT versus the control effort and xmax for system (5.1)-(5.2).

5.2.1 Scalar state feedback example

Consider the following simple continuous-time plant

ẋ(t) = 0.5x(t) + 10u(t) + 3w(t) (5.1)

with x(t) ∈ R, u(t) ∈ R and w(t) ∈ R the state, control input and disturbance at
time t ∈ R+, respectively. The additive disturbance satisfies −10 ≤ w(t) ≤ 10. This
system will be controlled by a discrete-time controller

uk =




−0.45xk, if |xk| ≥ eT

uk−1, if |xk| < eT ,
(5.2)

that runs at a fixed sample time of Ts = 0.1 time units. Hence, xk = x(kTs) for
k = 0, 1, 2, . . .. Here, eT denotes a parameter that determines the region B := {x ∈
R | |x| < eT } close to the origin in which the control values are not updated, while
outside B the control values are updated in a “normal fashion.” In this chapter we will
refer to this situation as uniform sampling. We will also consider the (locally) non-
uniform case where reaching the boundary of B will be the event trigger - in addition
to a fixed update rate outside B - for updating the control values. Figure 5.1 displays
the ratio of the number of control updates in comparison to the case where the updates
are performed each sample time (i.e. uk = −0.45xk for all k = 0, 1, 2, . . .) and
the maximal value of the state variable (after transients) xmax := lim supt→∞ |x(t)|,
respectively, versus the parameter eT . The results are based on simulations. Hence,
one can reduce the number of control computations by 75% without degrading the
control performance in terms of ultimate bound xmax drastically (e.g. take eT = 3).
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5.2.2 Event-driven PID controller

The most common controller in industry is still the PID (Proportional Integral Deriva-
tive) controller. We will present an event-driven version of it. Also in [4] an event-
driven PID controller is proposed. However, a different event triggering mechanism
is used and the presence of noise is disregarded. Moreover, a formal analysis is not
presented in [4].

A standard transfer function for a continuous-time PID algorithm is

C(s) = Kp + Ki/s + KdsL(s) (5.3)

with L(s), a low-pass filter to deal with high frequency measurement noise. The
transfer function of this filter with a bandwidth ωd is given in (5.4).

L (s) =
ωd

s + ωd
(5.4)

To use this controller in a discrete-event environment, the first step is to discretize
the transfer function of the controller. This can be done by means of approximation
formulas. A common choice for approximating the integral part is to use Forward
Euler. To approximate the derivative part in combination with the filter L(s), the
Tustin approximation [25] is used. The resulting transfer function of the PID controller
in discrete-time is given in (5.5).

C (z) = Kp + Ki
Ts,k

z − 1
+ Kd

2ωd

2 + ωdTs,k

z − 1

z + ωdTs,k−2
ωdTs,k+2

(5.5)

The controller in (5.5) is suitable as an event-driven controller, with Ts,k as a
varying sample time and τk :=

∑k−1
j=0 Ts,j is the time instant at which the k-th control

update is performed. We call τk, k = 0, 1, 2, . . . the control update times. Note that in
conventional time-driven control Ts,k = Ts is fixed and the control update times are
equally spaced in time, but for event-driven control it is allowed to change over time. In
[4] it is shown that adapting Ts,k in (5.5) for every control update improves the control
performance considerably although it requires additional control computations and
thus a bit higher processor load (in comparison to the case where Ts,k is kept constant
as a kind of “average sampling period”).

The event-triggering mechanism (selecting τk) is based on the tracking error as
follows.

τk+1 = inf{t ≥ τk + Ts,min | |e(t)| ≥ eT } (5.6)
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in which eT > 0 is a threshold value and Ts,min > 0 is the minimum sample time.
We will refer to (5.6) as the locally non-uniform mechanism as opposed to the first
example. This mechanism uses a uniform sample time of Ts,min for large tracking
values e(t), but only when |e(t)| < eT the control value (so “locally”) is held longer
and the sample time varies. For shortness we refer to this mechanism as non-uniform
in the remainder of the chapter.

The event-driven PID controller is used in simulations to control the angular ve-
locity of a DC-motor. These results will be compared to a standard time-driven PID
controller. A simplified motor model is taken with input the motor voltage and output
the velocity of the motor axis. The transfer function is given by

P (s) =
A

(τ1s + 1) (τ2s + 1)
(5.7)

with the time constants τ1 and τ2 equal to 0.33 s and 0.17 s, respectively. The static
gain A is 10 rad/Vs.

The gains of the continuous-time controller in (5.3) are determined by loop-shaping
(see e.g. [26]) in Kp = 30 V s/rad, Ki = 40 V/rad and Kd = 2 V s2/rad. In in-
dustrial practice, the sample frequency of the time-driven controller is often chosen
approximately 20 times the bandwidth of the open-loop system, see e.g. [25]. This
bandwidth, defined as the zero-dB crossing of the open loop amplification, is 57 Hz

in the considered example. The sample frequency is therefore chosen to be 1 kHz. To
improve the performance of the controller, a feedforward term was added that feeds-
forward the set-point speed multiplied by a gain of 1

A = 0.1 V s/rad. Furthermore,
the output of the controller is saturated at +10 V and −10 V . The bandwidth of the
low-pass filter fd is chosen to be 200 Hz (and thus ωd = 2π · 200 rad/s).

Various simulations have been carried out with the reference velocity shown in fig-
ure 5.2. In figure 5.3, simulations of the standard time-driven PID controller (5.5) with
Ts,k = Ts fixed and equal to 1 ms and the event-driven controller (with adaptation of
Ts,k) are shown. For comparison, the parameter eT of equation (5.6) is chosen such
that the maximum error of the event-driven simulation approximates the maximum er-
ror obtained from the time-driven simulation. The value of Ts,min is chosen the same
as the sample time of the time-driven controller. The values are eT = 5 · 10−4 rad/s
and Ts,min = 0.001 s. As can be seen from figure 5.3, the event-driven controller does
not realize a zero tracking error (in contrast with the time-driven controller). How-
ever, in most industrial applications there are often only requirements given for the
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Figure 5.3: Simulation results of time-driven and event-driven simulation.

maximum value of the error.
The third plot in figure 5.3 shows the number of samples that is needed for the

control algorithms. This amount is equal to 10,000 for the time-driven controller as
it is running on a constant sample frequency of 1 kHz for 10 seconds. The number
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Figure 5.4: Simulation results with measurement noise added.

of samples needed for the event-driven controller based on (5.6) is 2400, leading to a
reduction of 76% in the number of control updates.

In the next simulations uniformly distributed measurement noise is added to the
output of the process in the range of [−0.003, 0.003] rad/s that is at maximum 3%
of the maximal measured velocity. To obtain the best results with the event-driven
controller, the value of eT needs to be increased to make sure it will not be triggered
continuously by the noise. The new value is eT = 7 · 10−3 rad/s. The results of the
simulations with measurement noise included are depicted in figure 5.4. A slightly
worse performance of the event-driven controller compared to the time-driven con-
troller is to be accepted here, especially considering the reduction of control updates
to less than 3100 (69% reduction).

Of course, the reduction in control updates has to be related to its effect on resource
utilization especially since the event-triggering mechanism creates some overhead as
well. Depending on the ratio between the (on-line) computational complexity of the
control algorithm, the overhead of the event triggering mechanisms and i/o access of
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the processor, the reduction of control computation indeed lowers the processor load
considerably.

Both examples indicate the potential benefits of event-driven control in practice.
However, as already mentioned in the introduction, a formal analysis of this type of
controllers is missing in the literature, which hampers the exploitation of event-driven
control. To contribute to fill this gap, we will analyze state feedback controllers using
the uniform sampling of section 5.2.1 and the (locally) non-uniform sampling of (5.6).
We will focus on the stabilization problem. A precise problem formulation will be
given in section 5.4 after introducing some preliminaries next.

5.3 Preliminaries

For a matrix M ∈ Rn×m, we denote MT ∈ Rm×n as its transposed. A matrix
M ∈ Rn×n is called positive definite, denoted by M > 0, if for all x ∈ Rn with
x 6= 0 it holds that xT Mx > 0. For a set Ω ⊆ Rn we denote its interior, its closure
and its boundary by intΩ, clΩ and ∂Ω, respectively. For two sets Ω1 and Ω2 of Rn,
the set difference Ω1 \ Ω2 is defined as {x ∈ Ω1 | x 6∈ Ω2} and the Minkowski sum
as Ω1 ⊕ Ω2 := {u + v | u ∈ Ω1, v ∈ Ω2}. The complement of Ω ⊂ Rn is defined as
Rn \ Ω and is denoted by Ωc.

Consider a time-varying discrete-time system

xk+1 = f(k, xk, wk) (5.8)

with xk ∈ Rn the state and wk ∈ Wd the disturbance at discrete-time k ∈ N :=
{0, 1, 2, . . .} or a time-varying continuous-time system

ẋ(t) = f(t, x(t), w(t)) (5.9)

with x(t) ∈ Rn the state variable and w(t) ∈ Wc the disturbance at time t ∈ R+.
Wc and Wd denote the disturbance sets, which are assumed to be convex, compact
and contain 0. We define the set L1([t1, t2] 7→ Rp) as the Lebesgue space of in-
tegrable functions on [t1, t2] to Rp and Lloc

1 ([t1, t2] 7→ Rp) as the Lebesgue space
of locally integrable functions from [t1, t2] to Rp. Similarly, Lloc

1 ([t1, t2] 7→ Wc)
denotes all {w ∈ Lloc

1 ([t1, t2] 7→ Rp) | w(t) ∈ Wc for almost all t ∈ [t1, t2]}. Analo-
gously, for discrete-time signals we write W∞

d for the set of infinite sequences given
by {(w0, w1, w2, . . .) | wk ∈ Wd, k ∈ N}.
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Definition 5.1 (Robust positive invariance) The set Ω ⊆ Rn is a robustly positively
invariant (RPI) set for the discrete-time system (5.8) with disturbances in Wd, if for
any x ∈ Ω, k ∈ N and any w ∈ Wd it holds that f(k, x, w) ∈ Ω. The set Ω ⊆ Rn

is a robustly positively invariant (RPI) set for the continuous-time system (5.9) with
disturbances in Wc, if for any time tini ∈ R+, any state xini ∈ Ω and any disturbance
signal w ∈ Lloc

1 ([tini,∞) 7→ Wc) it holds that the corresponding system trajectory
satisfies x(t) ∈ Ω for all t ≥ tini.

Definition 5.2 (Ultimate boundedness) [12] We define that the discrete-time differ-
ence equation (5.8) is ultimately bounded (UB) to the set Ω, if for each x0 ∈ Rn there
exists a K(x0) > 0 such that any state trajectory of (5.8) with initial condition x0

(and any arbitrary realization of the disturbance w : N 7→ Wd) satisfies xk ∈ Ω for all
k ≥ K(x0). Similarly, we call (5.9) ultimately bounded (UB) to the set Ω, if for every
initial condition x0 ∈ Rn there exists a T (x0) > 0 such that any state trajectory of
(5.9) with initial condition x(0) = x0 (and any arbitrary realization of the disturbance
w :∈ Lloc

1 ([0,∞) 7→ Wc)) satisfies x(t) ∈ Ω for all t ≥ T (x0).

5.4 Problem formulation

We consider the system described by

ẋ(t) = Acx(t) + Bcu(t) + Ecw(t), (5.10)

where x(t) ∈ Rn is the state, u(t) ∈ Rm the control input and w(t) ∈ Wc the un-
known disturbance, respectively, at time t ∈ R+. Wc ⊂ Rp is a convex and compact
set, which contains the origin. Ac ∈ Rn×n, Bc ∈ Rn×m and Ec ∈ Rn×p are constant
matrices. The control goal, which will be made more precise soon, is a “practical sta-
bilization problem” in the sense of controlling the state to a region close to the origin
and keep it there irrespective of the presence of disturbances. Note that asymptotic
stability cannot be obtained due to the possible persistence of the disturbances.

As a controller for system (5.10) a discrete-time state-feedback controller with gain
F ∈ Rm×n is considered, i.e.

uk = Fxk, (5.11)

where xk = x(τk), uk = u(τk) using the zero-order hold u(t) = uk for all t ∈
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[τk, τk+1). Hence, the system is given by

ẋ(t) = Acx(t) + Bcu(t) + Ecw(t) (5.12a)

u(t) = Fx(τk), for t ∈ [τk, τk+1) (5.12b)

The control update times τk are in conventional time-driven control related through
τk+1 = τk + Ts, where Ts is a fixed sample time meaning that the control value is
updated every Ts time units according to (5.11). To reduce the number of required
control calculations, we propose not to update the control value if the state x(τk) is
contained in a set B close to the origin. As such, we consider a set B that is open2,
bounded and contains the origin. We will consider two event-triggering mechanisms,
which were already discussed in section 5.2.

• The non-uniform mechanism as used in the example of section 5.2.2 is given by

τ1 = inf{t ≥ τ0 | x(t) 6∈ B} and τk+1 = inf{t ≥ τk + Ts | x(t) 6∈ B}, k > 0.

(5.13)

• The uniform mechanism as used in the example of section 5.2.1 is given by

τk+1 = inf{jTs > τk | j ∈ N, x(jTs) 6∈ B}. (5.14)

We will use τ0 = 0 as the first control update time (irrespective if x(0) ∈ B or not).
In the non-uniform case we have a kind of “start-up behavior” as τ1 is defined a bit
differently than τk+1 for k > 0. In both the uniform and the non-uniform case the
system is controlled with a fixed sample time Ts when the state x(t) is far away from
B. In the uniform case still every Ts time units it is checked, whether or not the state
x(jTs) lies in B and the set of control update times is a subset of {jTs | j ∈ N}. The
latter set can be considered the collection of control check times. The non-uniform
case does not have this constant checking rate, but has locally (inside B) a non-uniform
character as new control updates are triggered by reaching the boundary of B. It might
be the case that for certain initial conditions x(0) = x0 and disturbance signals w ∈
Lloc

1 ([0,∞ 7→ Wc) there are only a finite number of control update times (i.e. τk+1 =
∞ for some k and thus τk+2, τk+3, . . . do not exist). In this case we have that the
corresponding state trajectory denoted by xx0,w lies inside B for all times t > τk + Ts

in the non-uniform mechanism and for all control check times jTs > τk in case of
2This is merely a technical condition to make the following exposition more compact and clear. This is

not a restrictive condition.
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the uniform mechanism. Hence, for state trajectories where this phenomenon occurs
we already have some ultimate boundedness properties. We introduce the notation
S(x0, w) in this context as the index set corresponding to all finite control update
times for initial state x0 and disturbance signal w. The notation S ′(x0, w) is the index
set corresponding to all control update times τκ that are not only finite themselves, but
also the next control update time τκ+1 is finite. In the above situation with τk < ∞
and τk+1 = ∞, S(x0, w) = {0, . . . , k} and S ′(x0, w) = {0, . . . , k − 1} .

With regard to practical implementation, it has to be observed that the uniform
mechanism is easier to implement, although it is more difficult to analyze, as we will
see.

As already mentioned, the control objective is a “practical stabilization problem”
in the sense of controlling the state towards a region Ω close to the origin and keeping
it there.

Problem 5.1 Let a desired ultimate bound Ω ⊂ Rn containing 0 in the interior be
given. Construct F and B such that the system (5.12) with the control update times
given by either (5.13) or (5.14) is UB to Ω.

For the moment, we ignore the transient behavior of the event-driven system. The
reason is that this is easily inherited from properties of the discrete-time linear system
with the fixed sample time Ts (cf. (5.15) below). We will return to this issue later
in section 5.10 in which it is explained how to tune the controller to get a satisfactory
ultimate bound Ω and convergence rate towards Ω.

5.5 Approach

Problem 5.1 will be solved in two stages as is typical for sampled-data systems. First
properties on UB to Ω are obtained for the event-driven system (5.12) on the control
update times only. Next bounds on the intersample behavior (see section 5.8 below)
will be derived that enlarge Ω to Ω̃ such that the ultimate bound Ω̃ is guaranteed for
all (continuous) times t.

We first introduce the formal definitions of robust positive invariance and ultimate
boundedness “on the control update times” for the system (5.12) together with a par-
ticular event-triggering mechanism.

Definition 5.3 Consider the system (5.12) with either (5.13) or (5.14) as the event-
triggering mechanism.
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• For this system the set Ω ⊆ Rn is called robustly positively invariant (RPI) on
the control update times to the set Ω for disturbances in Wc, if for any initial
state x0 and w ∈ Lloc

1 ([0,∞) 7→ Wc) the corresponding state trajectory xx0,w

of the system has the property that xx0,w(τk) ∈ Ω for some k ∈ S ′(x0, w)
implies xx0,w(τk+1) ∈ Ω.

• This system is ultimately bounded (UB) on the control update times for distur-
bances in Wc, if for any initial condition x0 there exists a K(x0) such that for
any w ∈ Lloc

1 ([0,∞) 7→ Wc) the corresponding state trajectory xx0,w satisfies
for all k ∈ S(x0, w), k ≥ K(x0) that xx0,w(τk) ∈ Ω.

Note that we only impose robust positive invariance or UB-related conditions on
the finite control update times and not for time instants beyond. However, as noted
in the previous section, for state trajectories x with S(x0, w) = {0, . . . , k} a finite
collection, it holds that xx0,w(t) ∈ B for t > τk + Ts in the non-uniform mechanism
and xx0,w(jTs) ∈ B for all jTs > τk in case of the uniform mechanism. Hence, we
already have some ultimate boundedness properties with respect to the set B in this
situation.

In the analysis the discrete-time system

xd
k+1 = (A + BF )xd

k + wd
k = Aclx

d
k + wd

k (5.15)

with
A := eAcTs

B :=
∫ Ts

0
eAcθdθBc

wd
k :=

∫ τk+1

τk
eAc(τk+1−θ)Ecw(θ)dθ

Acl := A + BF

(5.16)

will play an important role. Indeed, for both the uniform and non-uniform sampling
case, the system behaves away from the set B (at the control update times) as (5.15).
We use the shorthand notation xx0,w(τk) = xd

k here. This system is only representing
the system (5.12) at the control update times, when τk+1 = τk + Ts. The bounds on
w(t) via Wc are transformed into bounds on wd

k given by

Wd := {
∫ Ts

0

eAc(Ts−θ)Ecw(θ)dθ | w ∈ L1([0, Ts] 7→ Wc)}. (5.17)

Since Wc is convex, compact and contains 0, Wd is convex, compact and contains 0.
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5.6 Main results for non-uniform mechanism

The first theorem below states that ultimate bounds for the linear discrete-time system
(5.15) can be used to find ultimate bounds for the event-driven system (5.12) on the
control update times {τk}k with non-uniform sampling (5.13).

Theorem 1 Consider the system (5.12)-(5.13) with Wc a closed, convex set contain-
ing 0, F given and B an open set containing the origin. Let Wd be given by (5.17).

1. If Ω is a RPI set for the linear discrete-time system (5.15) with disturbances in
Wd and clB ⊆ Ω, then Ω is a RPI set for the event-driven system (5.12)-(5.13)
on the control update times for disturbances in Wc.

2. If the linear discrete-time system (5.15) with disturbances in Wd is UB to the
RPI set Ω and clB ⊆ Ω, then the event-driven system (5.12)-(5.13) on the control
update times is UB to Ω for disturbances in Wc.

Proof 1) Let an arbitrary initial state x0 and w ∈ Lloc
1 ([0,∞) 7→ Wc) be given

and consider the corresponding state trajectory xx0,w of the system (5.12)-(5.13) and
assume that xx0,w(τk) ∈ Ω for some k ∈ S ′(x0, w). Since τk+1 is finite as well, there
are two possibilities:

• τk+1 = τk + Ts. This means that the update of the state over the interval
[τk, τk+1] is governed by (5.15) for some wd

k ∈ Wd. Since Ω is a RPI set for
(5.15), this means that xx0,w(τk+1) ∈ Ω (irrespective of the realization of the
disturbance).

• τk+1 6= τk + Ts. Note that for k > 0 it holds that τk+1 > τk + Ts. Only for
k = 0, it may hold that τ1 ≤ τ0 + Ts. According to (5.13) this implies that
xx0,w(τk+1) ∈ ∂B ⊂clB. Since clB ⊆ Ω, it holds that xx0,w(τk+1) ∈ Ω.

This proves that Ω is RPI for (5.12)-(5.13) on the control update times for disturbances
in Wc.

2) Consider an initial state x0. If x0 ∈ Ω, then due to the RPI property of Ω
on the control update times as proven in the first part of the proof, the state trajectory
xx0,w stays within Ω on the control update times (irrespective of the disturbance signal
w ∈ Lloc

1 ([0,∞) 7→ Wc)), i.e. xx0,w(τk) ∈ Ω for k ∈ S(x0, w). Hence, one can take
K(x0) = 0 in definition 5.3. Suppose x0 6∈ Ω. Since (5.15) is UB to Ω for disturbances
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in Wd, there exists a time K(x0) such that any discrete-time trajectory xd with initial
condition xd

0 = x0 of (5.15) satisfies xd
k ∈ Ω for k ≥ K(x0) (irrespective of the

disturbance signal w ∈ W∞
d ). We claim that this K(x0) satisfies also definition 5.3

for x0.
Indeed, let w ∈ Lloc

1 ([0,∞) 7→ Wc) and consider the trajectory xx0,w of (5.12)-
(5.13) for initial condition x(0) = x0 and disturbance signal w. Let k̄ ∈ S(x0, w)
satisfy k̄ ≥ K(x0). We proceed by contradiction. Assume that xx0,w(τk) 6∈ Ω for
k = 0, . . . , K(x0). Since xx0,w(τk) 6∈ Ω for k = 0, . . . , k̄, and thus xx0,w(τk) 6∈ B for
k = 0, . . . , k̄, it holds that τk+1 = τk +Ts and xx0,w(τk+1) and xx0,w(τk) are related
through (5.15) for some wd

k ∈ Wd for all k = 0, . . . , k̄ − 1. Hence, xx0,w(τk) = xd
k

for k = 0, . . . , k̄. However, xd
K(x0)

∈ Ω and k̄ ≥ K(x0). We reached a contradiction.
Hence, there is a k ∈ {0, . . . , K(x0)}, say k̃ such that xx0,w(τk̃) ∈ Ω. Since Ω is RPI
for (5.12)-(5.13) on the control update times, we have xx0,w(τk) ∈ Ω for all k ≥ k̃ and
k ∈ S(x0, w). As K(x0) ≥ k̃, this completes the proof of statement 2. ¤

5.7 Main results for the uniform mechanism

As mentioned before, the non-uniform update scheme is hard to implement in practice.
Uniform sampling might be more relevant from a practical point of view. However,
in contrast to non-uniform sampling the properties of the discrete-time linear sys-
tem do not transfer to the event-driven system in this case. As we will see, we will
need a discrete-time piecewise linear (PWL) model (see e.g. [37, 81]) to analyze the
event-driven systems using uniform sampling. We will present two approaches to this
problem. A first PWL model uses (xT (τk), uT (τk−1))T as state variable, while the
second PWL model only uses x(τk). This implies that the first model has a higher
(n + m)-dimensional state variable than the second (n-dimensional), but as we will
see next, it only needs two linear submodels, while the second PWL model might need
much more.

5.7.1 A bimodal higher order piecewise linear system

To derive results on ultimate boundedness on the control update times for the event-
driven system with the uniform mechanism, we will embed the control update times
{τk | k ∈ S(x0, w)} in its superset {jTs | j ∈ N}. From (5.12)-(5.14) together with
the discretization (5.16) it can be observed that the behavior of the system (5.12) and
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(5.14) on the control check times {jTs | j ∈ N} can be included in

(
xd

k+1

ud
k

)
=






A + BF 0

F 0





 xd

k

ud
k−1


 +


I

0


 wd

k, if xd
k 6∈ B


A B

0 I





 xd

k

ud
k−1


 +


I

0


 wd

k, if xd
k ∈ B

(5.18)

for wd
k ∈ Wd. Note that the fact τ0 = 0, i.e. at the initial time a control update

u0 = Fx0 is performed, can be included by considering initial states in the set X0 :=
{(xT

0 , ud T
−1 )T | ud

−1 = Fx0}.
We need the following definition.

Definition 5.4 Let Γ be a subset of Rn × Rm. The projection Πn(Γ) of Γ on the
first n components of the vector space Rn × Rm is defined as {x ∈ Rn | ∃u ∈
Rm such that (xT , uT )T ∈ Γ}

As {τk | k ∈ S(x0, w)} ⊆ {jTs | j ∈ N} for any x0 and disturbance signal w,
we will formulate a result on ultimate boundedness on the control check times, which
can be defined analogously as for the control update times in definition 5.3.

Theorem 2 Consider the system (5.12) and (5.14) with Wc a closed, convex set con-
taining 0, F given and B an open set containing the origin. LetWd be given by (5.17).
If the piecewise linear discrete-time system (5.18) with disturbances in Wd is UB for
initial states in X0 to the set Γ, then the event-driven system (5.12) and (5.14) on the
control check times is UB to Πn(Γ) for disturbances in Wc.

Proof As system (5.12) and (5.14) and (5.18) coincide on the control check times and
(5.18) is UB to Ω, we have that for any x0 there exists a K(x0, u

d
−1) with ud

−1 = Fx0

such that (xd T
k , ud T

k−1)
T ∈ Γ for all k ≥ K(x0, u

d
−1). Since ud

−1 is a function of x0,
it holds that there is a K̃(x0) := K(x0, Fx0) such that xx0,w(τk) ∈ Πn(Γ) for all
k ≥ K̃(x0).

5.7.2 A multi-modal lower order piecewise linear system

As already mentioned, the above approach leads to a piecewise linear system with an
(m + n)-dimensional state vector. As this might be prohibitive for numerical tools
computing ultimate bounds for PWL systems (when the number of control inputs m

is large), an alternative approach is presented in this section.
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5.7.2.1 The unperturbed case

Consider (5.12) on the control check times, which can be described by

xd
k+1 = Axd

k + Bud
k

ud
k =

{
Fxd

k, if xd
k /∈ B

ud
k−1, if xd

k ∈ B
(5.19)

with xd
0 := x0 and ud

−1 = Fx0. We make the following observation. When the state
xd

k is outside B the update matrices in (5.18) do not depend on ud
k−1 and hence, the

information on ud
k−1 is not necessary. Only in case xd

k ∈ B the previous control value
has to be known as it is going to be held for at least one, but possible multiple check
times. However, we can explicitly compute this update relation depending on how
many check times the control value is held. This update relation will map the state
just before entering B (at a control update time) to the state just after leaving B again
(at the next control update time). It will turn out that in this way a piecewise linear
(PWL) model is obtained in which we abstract away from the number of discrete-time
steps that the system is inside B. Using this PWL system properties related to UB can
again be translated to the original system (5.12) and (5.14) on the control update times.
The advantage with respect to (5.18) is that we only have an n-dimensional state vector
now.

To define the map hp for the different periods of time (denoted by p) that the state
stays in B, we consider first the case p = 0, i.e. xd

k 6∈ B and xd
k+1 6∈ B the system

update matrix is given by

xd
k+1 := h0(xd

k) = (A + BF )xd
k. (5.20)

For p = 1 we assume that xd
k /∈ B, xd

k+1 ∈ B and then xd
k+2 6∈ B. The function h1

defines the mapping from xd
k to xd

k+2 in this case. This update of the state variable is
given by xd

k+i = Axd
k+i−1 + Bud

k+i−1, i = 1, 2 with ud
k+1 = ud

k = Fxd
k (since the

control value is held). Hence,

xd
k+2 = h1(xd

k) := [A(A + BF ) + BF ]xd
k (5.21)

Similarly, suppose we stay p steps in B before leaving B again (i.e. xd
k 6∈ B, then

xd
k+1 ∈ B, xd

k+2 ∈ B, ..., xd
k+p ∈ B and then xd

k+p+1 /∈ B). We obtain the function hp

that maps xd
k to xd

k+p+1 as follows by using repetitively xd
k+i = Axd

k+i−1+Bud
k+i−1,

for i = 1, ..., p + 1. Since ud
k+p = ud

k+p−1 = . . . = ud
k = Fxd

k, we can express
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xd
k+p+1 as a function of xd

k:

xd
k+p+1 = hp(xd

k) := {Ap(A + BF ) + [Ap−1 + Ap−2 + . . . + I]BF}xd
k.

(5.22)
Now that the maps hp are defined, the regions Dp must be determined in which

the map hp is active. For p = 0, this is straightforward as D0 := Bc, which denotes
the complement of B. For p > 0 Dp is given by those xd

k 6∈ B that satisfies xd
k+1 ∈ B,

xd
k+2 ∈ B, ..., xd

k+p ∈ B and xd
k+p+1 6∈ B. Hence, for p = 0, 1, 2, . . . we have

Dp := {x 6∈ B | hj(x) ∈ B for j = 0, 1, . . . , p− 1 and hp(x) 6∈ B}. (5.23)

We also define the set of states that remain inside B forever after entering it from
outside B.

D∞ := {x 6∈ B | hj(x) ∈ B for all j = 0, 1, . . .}. (5.24)

Note that Di ∩Dj = ∅ if i 6= j.
Finally, we introduce the set RB which contains all possible values of xd

k outside
B, that can reach B within one discrete time-step:

RB := {x 6∈ B | h0(x) ∈ B}

. With these definitions, it holds that

Rn = B ∪RB ∪D0 and RB = D∞ ∪
∞⋃

i=1

Di. (5.25)

To obtain a finite representation of the piecewise linear system, we need the existence
of a pmax such that

RB = D∞ ∪
pmax⋃

i=1

Di (5.26)

in which pmax is the maximal (finite) number of discrete steps that the system (5.19)
can stay inside B after entering it from outside B.

Deriving conditions for which the existence of such a finite pmax is guaranteed
is an open issue. One of the complications is for instance that Di = ∅ does not
necessarily imply that Di+1 = ∅. Also the computation of D∞ is not straightforward.
A computational approach can be obtained by increasing pmax until the right-hand
side of (5.26) is equal to the left-hand side. However, still analytical results proving the
existence of a finite pmax and possibly an upper bound for it, would be very beneficial.
One such condition is formulated in section 5.7.2.2.
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The iteration parameter k related to the control check times kTs is replaced by
a new “discrete-time variable” l corresponding to the control update times τl after
abstracting away from the motion of the system’s state inside B. Therefore, we replace
xd

k+p+1 = hp(xd
k) by xd

l+1 = hp(xd
l ) and obtain the piecewise linear system xd

l+1 =
fPWL(xd

l ) with

xd
l+1 =





hp(xd
l ), when xd

l ∈ Dp

0, when xd
l ∈ D∞ ∪ B.

(5.27)

Some observations on the PWL system (5.27) are in order.

• The dynamics of (5.19) and (5.27) coincide on Bc \ D∞ =
⋃pmax

i=0 Di in the
sense that xx0(τl+1) = xd

l+1 = fPWL(xd
l ) = fPWL(xx0(τl)) for xd

l = xx0(τl) ∈
Bc \D∞, where xx0 denotes the solution of the event-driven system (5.12) and
(5.14) for initial condition x(0) = x0 and τl ∈ S ′(x0) a control update time.
Moreover, xd

l = xx0(τl) ∈ D∞ implies that τl+1 = ∞.

• On D∞ ∪ B the piecewise linear model was completed by adding dynamics to
the system for the case when xd

l ∈ D∞ and xd
l ∈ B. As will be proven below,

it is not important how the dynamics are chosen exactly on these sets as long as
they do not map outside B.

• A set Dp is in general not convex. It might even not be connected. See, the
second example in section 5.11.

We state now the main result of this section.

Theorem 3 Consider system (5.12) and (5.14) without disturbances and B is an open
set containing the origin. Assume that there exists a pmax < ∞ such that (5.26) holds.
Let Wd be given by (5.17). If the PWL system (5.27) is UB to the positively invariant
set Ω and B ⊆ Ω, then the event-driven system (5.12) and (5.14) is UB to Ω on the
control check times.

Proof The system (5.12) and (5.14) on the control check times is described by (5.19).
Therefore, we consider solutions in terms of trajectories xd of (5.19) in this proof.

If xd
0 ∈ Ω then we either have that the state trajectory of (5.19) satisfies xd

k ∈ Ω for
all k = 0, 1, 2, . . . (which is in accordance with the properties of the theorem) or the
state trajectory leaves Ω for some control check time. Hence, without loss of generality
we can consider the case that there exists a k0 (take the smallest) for which xd

k0
6∈ Ω
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and thus xd
k0
∈ Bc = D∞ ∪ ⋃pmax

i=0 Di because B ⊆ Ω. Observe that the dynamics
of (5.19) and (5.27) coincide on

⋃pmax
i=0 Di (modulo the motion inside B, which lies in

Ω and therefore is not affecting the UB to Ω). Hence, since xd
k0
∈ D∞ ∪⋃pmax

i=0 Di,
the system (5.19) follows the dynamics of the PWL system (5.27) (modulo the motion
inside B) for k ≥ k0 until D∞ is reached - if ever (say at k1 ≥ k0 with k1 possibly
equal to∞). If D∞ is reached, the state xd

k of (5.19) stays inside B ⊆ Ω for all k > k1

by definition of D∞. Hence, on the discrete-time interval [k0, k0 + 1, . . . , k1) the
state of system (5.19) follows the motion of (5.27) and hence, the inheritance of the
UB property follows. ¤

Remark 4 The theorem also holds for pmax = ∞. However, the use of theorem in
practice is lost due to the infinite character of the piecewise linear system.

Note that the larger p is, the more event times we are not updating the control
value and thus we are not using the CPU for performing control computations. So,
the larger pmax the more we can potentially save on processor load, but the complexer
(the more regions) the resulting PWL model will be for the performance analysis.
Advantageously, the computation of the ultimate bounds is performed off-line.

5.7.2.2 Finite PWL representations

In this section we present a sufficient condition that guarantees the existence of a finite
PWL representation (5.27) (i.e. the existence of a finite pmax such that (5.26) holds).

Theorem 5 Consider system (5.19). Assume that all the eigenvalues of the matrix
A lie outside the closed unit circle of the complex half plane and A + BF does not
have an eigenvalue 1 (which is typically the case as A + BF is chosen such that all
eigenvalues are inside the open unit circle). Then (5.26) holds for a finite pmax and
D∞ = ∅.

Proof We need two algebraic results in the proof, that will be established next.

• Since A has all its eigenvalues outside the closed unit circle, A−1 is Schur
(i.e. all eigenvalues inside the unit circle). This implies that there is a posi-
tive definite matrix P such that (A−1)T PA−1 − P < 0. Premultiplying the
latter inequality by AT and postmultiplying by A and noting that A is invertible



5.7. Main results for the uniform mechanism 99

yields P −AT PA < 0. Hence, there exists a γ > 1 such that

AT PA > γP (5.28)

• Next we prove that the matrix (A+BF )− (I−A)−1BF is invertible. Suppose
that (A+BF )z = (I−A)−1BFz. This implies A(I−A−BF )z = 0. Since A

is invertible this yields (A+BF )z = z. As A+BF does not have an eigenvalue
1, this give z = 0 and hence, the invertibility of (A + BF )− (I −A)−1BF is
proven.

To finish the proof, we recall that pmax is the maximal number of discrete steps
that the system (5.19) can stay inside B after entering it from outside B. Let x0 be the
last state outside B and x1 := (A + BF )x0 the first state inside B. Inside B the state
is governed by

xk+1 = Axk + BFx0. (5.29)

as the input is held at the value Fx0. For shortness of notation, we omit superscript d in
this proof. The system (5.29) has an (unstable) equilibrium at xeq := (I−A)−1BFx0.
If we define ∆xk := xk − xeq , k = 0, 1, 2, . . . then we can observe that ∆xk+1 =
A∆xk. Together with (5.28) this yields ∆xT

k P∆xk > γk−1∆xT
1 P∆x1. Note that

∆x1 = [(A + BF ) − (I − A)−1BF ]x0. Since B contains 0 in its interior, x0 6∈ B,
(A + BF ) − (I − A)−1BF is invertible and P is positive definite, it holds that
∆xT

1 P∆x1 ≥ µ for some µ > 0. Hence, ∆xkP∆xk ≥ γk−1µ (independent of x0).
The latter inequality indicates that xk will move arbitrarily far away from x1 ∈ B for
sufficiently large k. Indeed,

(xk − x1)T P (xk − x1) = (∆xk −∆x1)T P (∆xk −∆x1)

= ‖P 1
2 (∆xk −∆x1)‖2

≥ (‖P 1
2 ∆xk‖ − ‖P 1

2 ∆x1‖)2

> (
√

γk−1 − 1)2‖P 1
2 ∆x1‖2 ≥

≥ (
√

γk−1 − 1)2µ

Since B is bounded the expression δ := sup{(x− x1)T P (x− x1) | x ∈ B, x1 ∈
B} is finite. Hence, if k is large enough to satisfy (

√
γk−1 − 1)2µ > δ, it follows that

xk must be outside B (as x1 lies inside B). This completes the proof. ¤

An upper bound on pmax follows from the proof above.
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Corollary 6 Consider system (5.19). Assume that all the eigenvalues of the matrix A

lie outside the closed unit circle of the complex half plane and A + BF does not have
an eigenvalue 1.

• Let P > 0 be a solution to AT PA > γP for a γ > 1, which is known to exist.

• µ := minz 6∈B zT [(A+BF )−(I−A)−1BF ]T P [(A+BF )−(I−A)−1BF ]z >

0

• δ := sup{(x− x1)T P (x− x1) | x ∈ B, x1 ∈ B}

Let kmin be the smallest integer k that satisfies (
√

γk−1 − 1)2µ > δ. Then pmax ≤
kmin

5.7.2.3 The perturbed case

In this subsection we briefly indicate how the derivation given above needs to be mod-
ified in order to include additive disturbance in the event-driven system (5.12) and
(5.14). At the control check times the trajectory of the system (5.12) and (5.14) is
described by the discrete-time system

xd
k+1 = Axd

k + Bud
k + wd

k

ud
k =

{
Fxd

k if xd
k /∈ B

ud
k−1 if xd

k ∈ B.

(5.30)

for some realization of the disturbance wd
k ∈ Wd, k = 0, 1, 2, . . .. In this case we

will also compute a PWL system, but now the mappings hp will depend not only on
the state xd

k but also on the disturbance sequence (wd
k, wd

k+1, . . . , w
d
k+p). Suppose the

state trajectory stays p steps in B before leaving B again (i.e. xk 6∈ B, then xd
k+1 ∈ B,

xd
k+2 ∈ B, ..., xd

k+p ∈ B and then xd
k+p+1 /∈ B). We obtain the function hp that maps

xd
k to xd

k+p+1 similarly as in section 5.7.2.1

xd
k+p+1 = hp(xd

k, wd
k+p, . . . , w

d
k)

= Ahp−1(xd
k, wd

k+p−1, . . . , w
d
k) + BFxd

k + wd
k+p

= {Ap(A + BF ) + [Ap−1 + Ap−2 + . . . + I]BF}xd
k

+[Apwd
k + Ap−1wd

k+1 + . . . + wd
k+p].

(5.31)

One can observe that the dynamics depend on different sizes of the disturbance
sequence (wd

k, wd
k+1, . . . , w

d
k+p) ∈ Wd × . . .×Wd︸ ︷︷ ︸

p+1 times

=: Wp+1
d . In this sense we could
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describe the system by using an “embedding” in the product space Rn × ln∞, where
ln∞ denotes the space of (infinite) sequences (wd

0 , wd
1 , wd

2 , . . .) that are bounded in the
sense that supk∈N ‖wd

k‖ < ∞. Indeed, all the maps hp can be reconsidered as having
arguments in Rn × ln∞ by defining for p = 0, 1, 2, . . .

xd
k+p = Hp(xd

k, wd
k) = hp(xd

k, wd
k+p, . . . , w

d
k), (5.32)

for (xd
k, wd

k) ∈ Rn × ln∞, where wd
k = (wd

k, . . . , wd
k+p−1, w

d
k+p, . . .). Each map Hp is

valid on regions Dp that can be determined as

Dp := {(xd
k, wd

k) ∈ Bc ×W∞
d | Hj(xd

k, wd
k) ∈ B for j = 0, 1, . . . , p− 1

and Hp(xd
k, wd

k) 6∈ B}. (5.33)

In a similar manner as for the unperturbed case, we also define the set of states and
disturbance sequences that remain inside B forever after entering it from outside B .

D∞ := {(xd
k, wd

k) ∈ Bc ×W∞
d | Hj(xd

k, wd
k) ∈ B

for all j = 0, 1, 2, . . .}. (5.34)

Note that Di∩Dj = ∅ if i 6= j. Moreover, observe that in this case the “switching” of
the dynamics is dependent on the disturbance input as well and not solely on the state
as in the unperturbed case.

Finally, we introduce the set RB which contains all possible values (xd
k, wd

k) in
B× ln∞ for which xd

k can be reached within one discrete time-step starting from a state
xd

k−1 outside B by disturbance input wd
k−1:

RB := {(xd
k, wd

k) ∈ Bc ×W∞
d | H0(xd

k, wd
k) ∈ B}. (5.35)

Similarly to the unperturbed case, (5.25) holds. However, it does not hold in Rn, but
in the embedding space Rn ×W∞

d . Moreover, to obtain a finite representation of the
PWL system, we need the existence of a pmax such that (5.26) holds, where pmax is the
maximal (finite) number of discrete steps that the system (5.19) can stay inside B after
entering it from outside B (for a particular disturbance realization). In the perturbed
case, there are two reasons for the “infinite representation” of the PWL system; first
of all the number of regions can be infinite (as in the unperturbed case), but also the
length of the disturbances sequence determining the update from xd

k to xd
k+p+1 can

be infinite. Hence, the existence of a finite pmax leads on one hand to a finite number
of regions of the PWL system and on the other implies that the infinitely dimensional
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space Rn× ln∞ can be replaced by Rn×(Rn)pmax+1. Indeed, if we abstract away from
the motion inside B and replace the iteration parameter k corresponding to the control
check times by the new discrete-time variable l corresponding to the control update
times, we obtain the PWL system xd

l+1 = fPWL(xd
l , w

d
l ) with

xd
l+1 =





Hp(xd
l , w

d
l ), when (xd

l , w
d
l ) ∈ Dp, p = 0, 1, . . . , pmax

0, when (xd
l , w

d
l ) 6∈

⋃pmax
p=0 Dp

(5.36)

with wd
l ∈ Wpmax+1

d . Note that there is a slight abuse of notation in (5.36) as we
replaced wd

k ∈ W∞
d by wd

l ∈ Wpmax+1
d in both Hp and Dp.

A similar result as theorem 3 can be derived in this case as well.

5.8 Including intersample behavior

The above results only provide statements on the control update or control check times.
The behavior of the system in between these control check/update times is not char-
acterized. However, since at the control check/update times we obtain UB to a set Ω,
we know that the state trajectories enter Ω in finite time. Using this observation, an
ultimate bound including the intersample behavior of (5.12) together with (5.13) or
(5.14) can be computed from

xx0,w(t)− xx0,w(τk) = [eAc(t−τk) − I]xx0,w(τk) +
∫ t

τk
eAc(t−θ)Bcu(τk)dθ

+
∫ t

τk
eAc(t−θ)Ecw(θ)dθ,

(5.37)
where t ∈ [τk, τk+1).

In the non-uniform case we either have xx0,w(t) ∈ B or t− τk < Ts in (5.37). In
the latter case using the boundedness of Wc we can easily see that

‖xx0,w(t)− xx0,w(τk)‖ ≤ CTs(‖xx0,w(τk)‖+ 1 + ‖F‖‖xx0,w(τk)‖) (5.38)

for all Ts ∈ [0, Tmax
s ]. The constant C = C(Ac, Bc, Ec, T

max
s ,Wc) depends on the

system parameters, Ac, Bc, Ec,Wc and Tmax
s . Hence, if the system (5.15) is UB to a

RPI set Ω with clB ⊆ Ω (as in theorem 1), then the event-driven system (5.12)-(5.13)
is UB to the set Ω̃ := Ω ⊕ B(0, ε) with ε := supx∈Ω CTs(‖x‖ + 1 + ‖F‖‖x‖) and
B(0, ε) := {x | ‖x‖ ≤ ε}.
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In the uniform case a similar bound holds as in (5.38) with the minor modification

‖xx0,w(t)− xx0,w(jTs)‖ ≤ CTs(‖xx0,w(jTs)‖+ 1 + ‖F‖‖xx0,w(τk)‖), (5.39)

where jTs and τk are the largest control check time and largest control update time
smaller than t, respectively. Two situations can occur: Either S(x0, w) is a finite or
an infinite set. In the latter case both xx0,w(jTs) and xx0,w(τk) lie ultimately in Ω,
which yields a similar bound as in the uniform case.

In the former case, there is a k̄ such that xx0,w(kTs) ∈ B for k ≥ k̄, but it might
be the case that xx0,w(τk) is outside Ω (it is just the last state at which a control
update was performed). The only information on xx0,w(τk) is that it lies in RB (in the
unperturbed case) or there exists a wd

k such that (xx0,w(τk), wd
k) ∈ RB (the perturbed

case). In case that A + BF is invertible, the set RB is bounded, which gives a bound
on ‖xx0,w(τk)‖. Hence, using (5.39) a bound on the intersample behavior can be
derived. Note that D∞ = ∅ implies that this case is absent. Hence, if the conditions
of theorem 5 are fulfilled, D∞ = ∅ and this situation does not have to be considered.

Alternatively, in case there are physical reasons that the control inputs are restricted
to a bounded set or if the method outlined in section 5.7.1 is used in which also ultimate
boundedness of the u-variables is proven, a bound like CTs(‖xk‖+1) can be directly
computed independent of the designed controller gain F .

5.9 Computational aspects

5.9.1 Computational aspects for the non-uniform case

In theorem 1 it was shown that properties of robust invariance of sets and UB for the
discrete-time linear system (5.15) carry over to the event-driven system (5.12)-(5.13)
on the control update times. As such it is of importance to be able to compute RPI sets
and UB for discrete-time linear systems.

Definition 5.5 (Minimal Robustly Positively Invariant Set F∞) The set F∞ is the
minimal robustly positively invariant set of the discrete-time linear system (5.15), if

1. 0 ∈ F∞,

2. F∞ is robustly positively invariant of (5.15) with disturbances in Wd,

3. and any other robustly positively invariant set F of (5.15) with disturbances in
Wd satisfies F∞ ⊆ F .
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It is well-known [12] that µF∞ for µ > 1 forms also a RPI set for the system (5.15)
with disturbances in Wd and is even an ultimate bound if A + BF is Schur. Selecting
µ > 1 large enough such that clB ⊆ µF∞ gives an ultimate bound for (5.15) satisfying
the conditions of theorem 1. Hence, in this way an ultimate bound for (5.12)-(5.13) is
obtained on the control update times. The forward algorithm of [48] can be used to
compute F∞. If Wd contains the origin in its interior, then it is even known that the
algorithm terminates in finite time (as A + BF is Schur).

Besides the forward algorithm to findF∞, there are various other ways to compute
RPI sets for discrete-time linear systems, see e.g. [12, 13, 47, 48, 64]. We will present
here one approach based on ellipsoidal sets as in [48]. To use the ellipsoidal approach
of [48], we assume that Wd is included in the ellipsoid of the form ER−1 := {w |
wT R−1w ≤ 1} with R > 0. Techniques to find such an over-approximation are given
in [15].

Along the lines of [48] it can be shown that feasibility of

P − γ−1AclPAT
cl − (1− γ)−1R > 0 and P > 0 (5.40)

for some γ ∈ (0, 1) yields (using Schur complements) that

(Aclx + w)T P−1(Aclx + w) < γxT P−1x + (1− γ)wT R−1w.

From this it is easily seen that xT P−1x ≤ 1 and wT R−1w ≤ 1 imply (Aclx +
w)T P−1(Aclx + w) ≤ 1. This shows that Ω = {x | xT P−1x ≤ 1} is a RPI set for
(5.15). By suitable scaling such that clB ⊆ µΩ for µ > 1 again an ultimate bound is
obtained for the event-driven system (5.12)-(5.13) on the control update times.

5.9.2 Computational aspects for the uniform case

Also for PWL systems several ways to compute invariant sets are available [51, 63].
For the higher-order bimodal PWL system (5.18), we observe that in the first mode

the x-evolution is given by xd
k+1 = (A+BF )xd

k +wd
k. This means that when xd

k0
6∈ B

for some k0 the trajectory will eventually satisfy xd
k+1 ∈ µF∞ for a µ > 1 with clB ⊆

µF∞. F∞ is again the smallest RPI set containing 0 for xd
k+1 = (A + BF )xd

k + wd
k

and disturbances in Wd. However, the set F∞ can be replaced by any other RPI set
for the linear system containing 0 (e.g. based on ellipsoidal sets as in the previous
section). Hence, any state trajectory xd for the bimodal PWL system (5.18) reaches
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the set
{(

(A + BF )xd
k + wd

k

Fxd
k

)
| (A + BF )xd

k + wd
k ∈ µF∞, wd

k ∈ Wd

}
.

at some point. If one constructs now a RPI set Γ for the system (5.18) containing
the above set, then Πn(Γ) is an ultimate bound for the event-driven system (5.12) and
(5.14) on the control check times.

In case of the lower-order PWL model we will present an approach based on el-
lipsoidal sets although techniques using reachability analysis can be exploited as well.
Actually, the example in section 5.11.2 uses both the ellipsoidal and the reachability
approach for illustration purposes.

Theorem 7 Consider the event-driven system (5.12) and (5.14) without disturbances.
Let P > 0 be a solution to AT

clPAcl − γP < 0 for some γ ∈ (0, 1). Take α∗ small
such that α∗ > max1,...,pmax sup{xT Px | x ∈ hp(Dp)} and α∗ > max{xT Px |
x ∈ clB}, where hp(Dp) denotes the image of the map hp with its arguments in
Dp. Define the set Ω(α∗) := {x | xT Px ≤ α∗}. Then the PWL system (5.27) and
consequently the event-driven system (5.12) and (5.14) on the control check times are
ultimately bounded to the set Ω(α∗).

For brevity we omit the proof.
Also one could use techniques based on Input-to-State-practical-Stability for piece-

wise affine systems [52] or on robust convergence [34, Ch. 8.5] to compute ultimate
bounds for (5.18), although these approaches typically rely on the fact that the ‘local’
dynamics around the origin is stable, which is typically not the case in our setting.
Also these approaches do not use the structure of the problem at hand. In this section,
we exploited the particular structure of the constructed PWL systems.

5.10 Tuning of the controller

In this section we indicate how the ultimate bound Ω depends on B for (5.12), thereby
facilitating the selection of desirable ultimate bounds by tuning B. We will present
here results for the non-uniform case and for the unperturbed case with uniform sam-
pling.
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5.10.1 Non-uniform sampling

The following result can be inferred from [12].

Theorem 8 Consider the system (5.12)-(5.13) with Wd a closed, convex set contain-
ing 0, F given and B an open set containing the origin.

• If Ω is a RPI set for the discrete-time linear system (5.15) containing clB, then
for any µ ≥ 1 µΩ is a RPI set for (5.15) containing µclB.

• If the discrete-time linear system (5.15) is UB to Ω containing clB, then for any
µ ≥ 1 (5.15) is UB to µΩ containing µclB

This result shows that Ω scales “linearly” with B for scaling factors larger than one.
Consider the minimal RPI set F∞ containing {0}. For small B this gives the ultimate
bound3 for the event-driven system on the control update times as long as the chosen
clB lies inside F∞. If B is taken larger and clB is not contained in F∞ anymore, the
linear scaling effect as in theorem 8 occurs. This effect is nicely demonstrated in the
first example below.

For the tuning of the controller one typically selects the state feedback with gain
F for arriving at suitable transient behavior. Indeed, outside B the dynamics is given
by the discrete-time linear system (5.15), which implies that the convergence towards
the ultimate bound is determined by F . Selecting F such that A + BF has desired
eigenvalues, yields a desired speed of convergence. If an ultimate bound Ω with clB ⊆
Ω is computed for a pre-selected B, one tunes the size of the stabilization error µΩ by
scaling µB. However, a fundamental limitation is given by F∞ as this is the error
bound caused by the disturbances when B = {0}. One cannot go beyond this ultimate
bound without changing F , although still the effect of the disturbance remains present.
However, in the unperturbed case any scaling factor holds for any µ > 0 (as F∞ =
{0}).

5.10.2 Uniform sampling for the unperturbed case

We consider the unperturbed case here (Wc = {0}).

Theorem 9 Consider the system (5.12) and (5.14) with Wc = {0} and B is open
and contains the origin. If the PWL system (5.27) corresponding to B is UB to the

3Strictly speaking, an ultimate bound is the set µF∞ for any small µ > 1 as F∞ is only approached
asymptotically by some trajectories of the discrete-time linear system (5.15).
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positively invariant set Ω and B ⊆ Ω, then for any µ > 0 (5.27) corresponding to µB
is UB to the positively invariant set µΩ and µB ⊆ µΩ

Proof In the proof we will indicate the dependence of fPWL, hp and Dp on the set B
via superscripts, i.e. fBPWL, hBp and DB

p , respectively. Let µ > 0. The mappings hBp
do not depend on B, only on p, the number of discrete-time steps the control value is
held. Hence, hµB

p = hBp . This yields together with the linearity of the mappings that
DµB

p = µDB
p and DµB

∞ = µDB
∞. Hence, fµB

PWL(µx) = µfBPWL(x). Indeed, if x ∈ DB
p ,

then µx ∈ µDB
p = DµB

p . As a consequence, it holds that fµB
PWL(µx) = hµB

p (µx) =
µhBp (x) = µfBPWL(x). The same reasoning can be applied to x ∈ B and x ∈ DB

∞.
If we denote the state trajectory xd,x0,B of the system (5.27) corresponding to B from
initial state x0, then we obtain the relation xd,µx0,µB = µxd,x0,B. From the latter
relationship, the result in the theorem follows. ¤

This theorem gives a means, similarly to the non-uniform case, to tune the ulti-
mate bound by suitably selecting the event-triggering mechanisms parameterized by
B. Scaling B with a constant µ > 0 leads to an ultimate error bound that is µ times
the bound belonging to B. Note that due to the absence of perturbations, we can scale
B with any µ > 0 instead of µ > 1.

Analogous results can be derived for the bimodal PWL system (5.18) without dis-
turbances.

5.11 Examples

5.11.1 Non-uniform sampling

To illustrate the theory in case of non-uniform sampling (5.13) we will use the ex-
ample (5.1) of section 5.2 with F = −0.45. Note that in the introduction we used
uniform sampling. In figure 5.5 the ratio of the number of control updates in com-
parison to the case where the updates are performed each sample time (i.e. ud

k =
−0.45xd

k for all xd
k) and the maximal value of the state variable (after transients)

xmax := lim supt→∞ |x(t)| (the “minimal ultimate bound”), respectively, versus the
parameter eT are displayed, where B = {x | |x| < eT }.

The figure of the ultimate bounds can nicely be derived from the theory. First, we
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Figure 5.5: The control effort and xmax versus eT for the example of section 5.2.1.

compute for the system (5.1), the discretized version (5.15) with sample time Ts = 0.1:

xd
k+1 = 1.051xd

k + 1.025ud
k + wd

k; ud
k = −0.45xd

k (5.41)

or
xd

k+1 = 0.590xd
k + wd

k (5.42)

with 3.076 ≤ wk ≤ 3.076. The minimal RPI set F∞ for (5.42) containing {0} is
equal to the “ellipsoid” [−7.50, 7.50]. Hence, note that as long as eT < 7.50 the
ultimate bound of the system (5.12)-(5.13) is equal to F∞ (or strictly speaking to the
set µF∞ for a small µ > 1 as discussed in the footnote in section 5.10). This explains
the constant line in the xmax versus eT plot in figure 5.5 up to eT = 7.50. At the
moment eT becomes larger than 7.50, the condition of theorem 1 that clB ⊂ F∞
does no longer hold. However, we can now use the “scaling effect” from theorem 8.
Theorem 8 implies that eT

7.50F∞ is RPI and the linear system (5.42) is UB to eT

7.50F∞
when eT > 7.50. Since clB ⊆ eT

7.50F∞ holds, theorem 1 implies that eT

7.50F∞ is RPI
for (5.42) and the event-driven system (5.12)-(5.13) is UB to eT

7.50F∞. This explains the
linear part in the xmax versus eT plot in figure 5.5. Hence, we can reduce the number of
control updates with almost 80% in this set-up without reducing the control accuracy
(e.g. take eT = 5)!
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Figure 5.6: Sets RB, D1, D2, D3 in light grey and set B the dark grey rectangle.

5.11.2 Uniform sampling

To demonstrate the results of section 5.7.2.1 for uniform sampling, we have taken the
example of an unstable system with two states (n = 2) given by (5.12) with

Ac =

[
1070 270
270 40

]
Bc =

[
453
874

]
(5.43)

The controller matrix is taken to be F = [−2.4604 − 0.2340]. The matrices in the
discrete-time version (5.15) are equal to

A =

[
3.00 0.50
0.50 1.10

]
B =

[
1.00
1.00

]
(5.44)

for Ts = 0.001. Note that the the eigenvalues of Acl = A+BF are 0.7±0.7i and of A

are 0.97 and 3.12. B = {x | |x1| < eT , |x2| < eT } with eT = 6. We computed pmax

by continuously increasing its value and we reached the equality RB =
⋃pmax

i=1 Di

(which implies that D∞ = ∅). We find pmax equal to 3. Figure 5.6 displays the
calculated sets RB and Dp, p = 1, 2, 3 as given by equation (5.23).



110 Event-driven control to reduce resource utilization

The dynamics that are valid inside Dp, calculated with equation (5.22) are:

h0(xd
l ) =

[
0.537 0.264
−1.96 0.863

]
xd

l

h1(xd
l ) =

[
−1.82 0.985
−4.34 0.843

]
xd

l

h2(xd
l ) =

[
−10.1 3.13
−8.12 1.18

]
xd

l

h3(xd
l ) =

[
−36.6 9.73
−16.4 2.62

]
xd

l

(5.45)

As could be expected, the dynamics corresponding to h0 is asymptotically stable,
while the dynamics corresponding to h1, h2 and h3 are unstable. Note that typi-
cal approaches for stability analysis of PWL systems, based on common quadratic or
piecewise quadratic Lyapunov functions, fail in this situation.

Since we have obtained the PWL-description of the system we can apply the theory
presented in section 5.9.2. Using the ellipsoidal approach as presented in theorem 7
we obtain the ellipsoid Ω in figure 5.7. We also computed the reachable set Ωreach for
the PWL system from points in RB. For the computation of this set a combination
of tools from [51] and [47] was used. Note that Ωreach is a positively invariant set for
the PWL system. Since B ⊂ Ωreach and outside B the dynamics on the event times is
equal to xd

k+1 = Aclx
d
k, similar statements can be made for Ωreach as for Ω.

Figure 5.7 also shows a time simulation of the continuous time system. A dotted
line shows the intersample behavior in which the small diamonds indicate the val-
ues at the control check times. It can be seen that the trajectory is not restricted to
the depicted Ωreach (in dark grey), due to the intersample behavior. Bounds on the
intersample behavior can be obtained via section 5.8.

5.12 Conclusions

Although in many practical control problems it is natural and logical to use event-
driven controllers, their application is scarce in both industry and academia. A major
reason why time-driven control still dominates is the absence of a system theory for
event-driven systems. However, due to the various benefits of event-driven control,
it is worthwhile to overcome the difficulties in the analysis of this type of control.
This chapter aims at using event-driven control to reduce the required (average) pro-
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grey.

cessor load for the implementation of digital controllers. An introductory example
already illustrated the reduction of control computations (up to 80%) that is achiev-
able. That this reduction of control computations indeed leads to a significantly lower
processor load, in spite of the introduced overhead of the event-triggering mecha-
nism, will be experimentally validated in the following chapter. However, one still
has to make the trade-off between this reduction in resource utilization on one hand
and the control performance on the other. This chapter provides theory that gives
insight in the control performance for a particular event-driven scheme. The control
performance is expressed in terms of ultimate bounds and speed of convergence to
this bound. It is shown how these properties depend on the parameters of the control
strategy. The results are based on inferring properties (like robust positive invariance,
ultimate boundedness and convergence indices) for the event-driven controlled system
from discrete-time linear systems (in case of non-uniform sampling) or piecewise lin-
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ear systems (in case of uniform sampling). We presented computational means and
tuning rules that support the design of these controllers.

Although this chapter analyzes a particular event-driven control structure, it al-
ready indicates the complexity and challenges for the analysis and synthesis of these
type of control loops. Given the advantages of event-driven controllers and the vari-
ous sources of event-triggering mechanisms present in industrial practice, it is fruitful
to continue this line of research and developing a mature event-driven system theory.
Future work will focus on the finite number of regions of the piecewise linear model,
on tuning theory for the perturbed event-driven system with the uniform mechanism
and on extending the current work to include reference tracking. From a broader per-
spective, we will consider also the analysis and synthesis of control schemes based on
other event-triggering mechanisms like low resolution sensors as was initiated in [36].
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6.1 Introduction

In most applications nowadays, digital controllers are implemented on embedded hard-
ware with strong requirements for both the control performance as well as resource uti-
lization like processor load. Often, a high update frequency of the control algorithm is
chosen to be able to guarantee good control performance. This, however, evokes high
processor loads. Conventionally, designers try to reduce the sample frequency of the
digital controller as much as possible, to minimize the processor load, while keeping
in mind the (minimal) required control performance. In almost all of the designs, the
sample frequency is taken constant, creating a constant distribution of the processor
load for the specific control task.

The sample frequency is normally chosen on the requirement to track fast changing
reference signals or to reject high frequency disturbances. However, in many cases
reference signals are not changing continuously and severe disturbances appear only
sporadically. Only during these periods a high sample frequency is needed, while in
other periods of time one does not have to require the same (high) sample frequency
of the controller. This rationale indicates that it would be beneficial to vary the sample
frequency to optimize over both the control performance and the processor load at the
same time.

1This chapter is partially based on the work published in the proceedings of the IEEE Conference on
Control and Applications 2006 [71] and is submitted for journal publication [74].
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In literature [4, 22, 41, 66], event-driven (or asynchronous) controllers are pro-
posed to make this trade-off between control performance and processor load. Spe-
cially designed event-generating mechanisms take care of triggering the controller to
update the actuator signal at specific moments in time. Already in 1962, research was
published in which a controller is presented with its sampling frequency varying rela-
tive to the derivative of the error signal. It was shown by simulations that over a given
time interval, fewer samples were needed with the variable sampling frequency system
than with a fixed-frequency sampling system while maintaining essentially the same
response characteristics. In [4], a similar idea is presented based on varying sample
frequency PID control to reduce the processor load of the implemented algorithm.
Simulations on a double-tank process show that it is possible to significantly reduce
the number of control updates with only a minor control performance degradation.
Henriksson and co-workers [41] use for example optimal controllers to distribute pro-
cessing power between three controllers running at varying sample frequencies. The
authors of [66] present a sample period dependent controller that regulates the proces-
sor utilization to avoid overload. In chapter 5 various control structures are analyzed
in which the sample frequency is chosen relative to the absolute value of the measured
tracking error. When the error is small, fewer or even no computations are carried
out and the actuator signal is held constant. This should reduce the processor load at
those periods of time. With this controller a trade-off can be created between control
performance and processor load.

In the above mentioned literature, all indications of processor load reduction are
obtained by simulating or analyzing only the update frequency of the controller. Sev-
eral assumptions are made to relate the simulated number of control updates to the
processor load, but experimental evidence has not been presented in literature so far.
One common assumption is that only relatively few overhead is needed to implement
the event-generating mechanism of the event-driven controllers. Furthermore, the in-
fluence of for instance context switches and varying communication loads are assumed
to be of minor influence on the time the control algorithm needs to execute. For these
reasons, the event-driven controller could even reduce the number of control updates,
while increasing the processor load.

The purpose of this chapter is to experimentally validate the promise of event-
driven controllers to reduce processor load. In particular, we will implement the type
of event-driven controller as proposed in chapter 5. Both a time-driven as well as an
event-driven controller are implemented on an experimental setup of a printer paper
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path, driven by multiple DC-motors. Furthermore, we investigate the possibility to
predict the processor load a priori, without having to implement the controller on a
test setup. This will be done by investigating the relation between the reduced number
of control updates and the resulting processor load. Hence, the trade-off between
control performance and processor load can be made model-based.

This chapter is outlined as follows: Section 6.2 presents the event-driven control
algorithm, that is used for simulations and experiments. Then, section 6.3 describes
the experimental setup. In section 6.4 results of simulations are described. Based on
these results, section 6.5 presents the prediction of the processor load. This prediction
is compared with the measurement results, presented in section 6.6. Finally, discussion
and conclusions are presented.

6.2 Event-driven controller

We consider a single input single output plant described by

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))

(6.1)

where x(t) ∈ Rn is the state, u(t) ∈ R the control input and y(t) ∈ R the output,
respectively, at time t ∈ R+. f : Rn×R→ Rn and h : Rn → R can be linear as well
as non-linear functions.

To control the plant (6.1), such that good tracking behavior is obtained, we use a
digital PI feedback controller, given by the following difference equation:

uk = Pek + (ITs − P )ek−1 + uk−1, (6.2)

where ek := y(kTs)− rk is the tracking error at time t = kTs and rk = r(kTs) ∈ R
is the value of the reference signal r at time kTs, k = 0, 1, 2, ..., Ts is the sample
time. By using zero-order hold, u(t) = uk for all t ∈ [kTs, (k + 1)Ts). P and I are
the proportional and integral gain of the PI controller. This is the conventional digital
setup, using a fixed sample time Ts is used, meaning that the control update times are
equal to kTs, k = 0, 1, 2, .... We call this a time-driven controller.

To reduce the number of required control calculations and actuator signal updates,
we propose that the control value is not updated if the error ek at t = kTs is smaller
than a threshold value eT . If the error is larger than eT , an update is performed ac-
cording to (6.2).
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Hence, the controller (6.2) is modified to

uk =

{
Pek + (ITs − P )ek−1 + uk−1 if |ek| > eT

uk−1 if |ek| ≤ eT

(6.3)

where again u(t) = uk for all t ∈ [kTs, (k +1)Ts). This is the particular event-driven
controller studied in this chapter. Whether the error is smaller than eT , is still detected
at a constant frequency (at times kTs, k = 0, 1, 2, ...). These times we call the control
check times. The control update times are here the times kTs for which |ek| > eT .
This is a uniform sampled event-driven controller as analyzed in chapter 5. Note that
the value of Ts is not changed when for some samples no control update is performed.

Loosely speaking, the aim of the control design (selecting Ts, eT , P and I) is to
get good control performance (in the sense that the maximal tracking error emax :=
maxt∈R+ |y(t)− r(t)| is acceptable) and the processor load is small.

6.3 Experimental setup

6.3.1 Plant

Figure 6.1 depicts a photograph of the experimental setup. The setup was produced at
the University of Twente for conducting experiments in a parallel project. It represents
a part of the paper path of a printer that consists of 4 identical motors which drive 4
rollers. These rollers drive the sheets of paper through the paper path. The goal of

motor

pinch

PIM

output tray

H-bridge
control system

Paper flow direction

Figure 6.1: Photograph of the paper path setup.
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the paper path is to transport sheets of paper from the paper input module (PIM), to
the output tray. During a print job, all motors in the paper path accelerate to a certain
constant velocity. Then, sheets of paper are injected into the paper path. At a certain
location in the paper path, an image is fused onto the paper. Next, the paper is turned
for duplex printing or the paper is transported to the output tray.

The particular motor used is the Maxon RE25 20 watt motor. The motor axes are
coupled to the rollers with stiff belts. To the other end of each motor axis, a 500-slit
rotary encoder is connected. This signal is acquired with quadrature demodulation,
resulting in a resolution of 2000 counts per rotation. H-bridge amplifiers are used to
control the motors. They operate at 22 volt and are limited to a maximum current of 3
ampère.

6.3.2 Control system

The digital control system consists of a PC104+ CPU (processor) board with a 600
MHz x86 compatible CPU, supplied with 256 MB RAM and a 32 MB Flash disk
which contains the real-time (RTAI) operating system. An FPGA is connected to the
CPU board via the PCI communication bus in order to perform the I/O operations.
In this setup the configuration for the FPGA contains four pulse width modulated
(PWM) outputs and four encoder quadrature inputs. The PWM output signals, that
drive the H-bridge amplifiers, operate at a frequency of 16kHz. The duty-cycle of
each PWM signal can be set in 2048 steps. Separate signal outputs determine the
rotation directions of the motors. The CPU sets the duty-cycles and direction signals
and the FPGA keeps these values until a new value has been received (implementing
uk = uk−1 as in equation (6.3)). Each encoder input increments a separate counter at
the FPGA on every edge received from the encoder. The CPU can read this counter.

6.3.3 Model

To simulate the behavior of one separate controlled motor, we created a model in
the simulation package 20-sim (University of Twente, The Netherlands [88]). This
model consists of an accurate description of the motor (delivered by the Maxon Motor
company), a description of the load together with a non-linear friction model of the
bearings, the PI feedback controller and the quantization effects caused by the encoder
and H-bridge amplifier. In terms of equation (6.1) y(t) is the angular velocity of the
motor and u(t) is the motor voltage.
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6.3.4 Controller design

As the paper path consists of identical motors with the same functionality, we only
explain the controller design for a single motor. At the setup, four separate but identical
controllers are implemented to control the four motors.

To control the angular velocity of the motor, the time-driven PI controller as given
in (6.2) was tuned to get good tracking behavior, using common design rules [25]
and implemented on the test setup with P = 0.1 and I = 1. The resulting closed-
loop response (from reference velocity r to output velocity y), depicted in figure 6.2,
was derived from the frequency response of the sensitivity function. The sensitivity
function was experimentally determined at the setup (using Welch’s method [35]), by
injecting white noise at the actuator signal and measuring the control output signal
u. Note that the values for frequencies below 6 Hz should be considered uncertain,
as the coherence of the sensitivity measurement was far below 1 for these frequencies
(see [35] for details). In the figure, the bandwidth is indicated at approximately 20
Hz. Rules of thumb advise to set the controller frequency at a minimum of 6 times
the closed-loop bandwidth, see e.g. [25, Ch. 11]. We chose the sample frequency at
100 Hz, which is only 5 times the obtained closed-loop bandwidth. The choice for this
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Figure 6.2: Closed-loop response of the motor.
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low sample frequency was made to assure an initial low processor load for both the
time-driven and the event-driven controller.

The event-driven controller, as given in (6.3), was implemented using the same
sample frequency of 100 Hz. Furthermore, the controller parameters for the event-
driven controller were chosen identical to the obtained parameters for the time-driven
controller. This means that no additional tuning was performed.

The event-driven controller can be written in pseudo code as follows:

1 pos = input(encoder);

2 vel = (pos - previous(pos))/Ts;

3 error = reference - vel;

4

5 if (error > eT OR error < -eT) then

6 uP = P*error;

7 uI = previous(uI)+I*previous(error)*Ts;

8

9 u = limit(uP+uI, min_u, max_u);

10

11 motor_voltage = output(u);

12 end;

where “pos” is the measured position and “vel” is the derived velocity. In line 9 the
computed controller output is limited to a 100% duty-cycle of the PWM signal, giving
the maximum and minimum voltage of 22 and -22 volt respectively.

The time-driven controller was implemented in a similar way, by omitting the lines
with numbers 5 and 12. Note that this indicates clearly the overhead introduced by the
event-driven controller. The potential benefit for the event-driven controller can also
be observed, as lines 6 to 11 are only executed under specific conditions.

6.4 Simulation results

Simulations are performed for one motor only, as the motors are of the same type.
The simulation results for the time-driven controller are depicted in figure 6.3. The
first graph gives the velocity reference signal in rotations per second (rps). In the
setup, this profile can be used for every motor (but shifted over time) to drive several
sheets of paper through the paper path sequentially (see section 6.6.3). The profile
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Figure 6.3: Simulation results of the time-driven controller.

starts and ends with a period of zero velocity. During this period, no sheets need to
be transported and therefore the motor can halt. The second graph shows the error
of the controller. When the motor is running at non-zero velocity, the error demon-
strates a noisy behavior. This is caused by the belt that inserts relatively high frequent
disturbances in the system. The third graph shows the number of control updates for
the time-driven controller, which is linearly increasing in time with 100 updates per
second for the 100 Hz controller.

The same signals are plotted in figure 6.4 for the event-driven controller simulation
with eT = 0.9 rps. The reference velocity is chosen the same, as for the time-driven
controller. As expected, the second plot shows a larger error (up to 1.85 rps) com-
pared to the time-driven controller simulation (error up to 1.2 rps). When the motor
is running at constant velocity, the error stays below the specified bound eT . The
third graph shows how the number of control updates increases over the simulation.
It can clearly be seen that when the motor is in stand-still, or when the motor is run-
ning at constant velocity, no control updates are needed. However, when more severe
disturbances would be present, updates might also be necessary during the constant
velocity phases. An example of such a disturbance could be a sheet of paper that is
traveling through the paper path, creating a disturbance torque onto the motor. This
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Figure 6.4: Simulation results of the event-driven controller for eT = 0.9 rps.

situation will be studied later in this chapter. In the third graph it can also be seen that
the controller takes more control updates per second when decelerating compared to
accelerating. This can be explained by the fact that the controller is followed by a zero-
order hold and that the motor decelerates faster than it is accelerating. To follow the
reference velocity during deceleration with comparable performance, more actuator
signal updates are needed per time interval.

As the control performance measure we use the maximum error (emax) over each
10 seconds simulation, as described at the end of section 6.2. Naturally, when eT is
increased, the maximum error increases. This relation between eT and emax is investi-
gated and depicted in the first plot of figure 6.5 (solid line). In this plot, the simulation
results for 300 different values of eT in the range [0, 2] are given. The straight dashed
line in this figure visualizes emax for the time-driven controller simulation (being 1.2
rps). This value is somewhat lower than the lowest maximum error that the event-
driven controller can achieve, which is equal to 1.3 rps and realized for eT < 0.25
rps. Note that when choosing eT = 0 rps, the event-driven controller still differs from
the time-driven controller. Indeed, when the error is exactly 0, the time-driven con-
troller will implement the control value based on the error of 0 rps. The event-driven
controller, on the other hand, will hold the last implemented control value, that was
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Figure 6.5: Simulation results of time-driven and event-driven controller. The event-driven
controller was simulated for 300 values of eT .

possible based on an error unequal to 0 rps.
It can be seen that the simulation results (emax) are quantized in steps of 0.05 rps,

because the position is measured at 2000 counts/rot at a frequency of 100 samples/s.
The solid line in the lower graph of figure 6.5 shows for each chosen eT the total

number of control updates needed in the simulation. When for the event-driven con-
troller eT is set to 0 rps, the total number of control updates already decreases from
1,000 to 700. This is because the reference velocity is zero for 3 seconds. No motor
voltage needs to be applied to keep the motor in stand-still. This is only true when no
excessive disturbance is present that could force the angular velocity of the motor to a
non-zero value. The quantization effect can again be observed. As the error is quan-
tized in steps of 0.05 rps, the total number of control updates only changes at values
of eT that are a multiple of 0.05 rps.

6.5 Prediction

From the number of control updates, obtained from the simulations, we can predict the
processor load. The processor load is defined here as the processing time needed for a
particular time-interval (in our case the 10 seconds time-interval). For this, we use the
processing time needed to execute the particular tasks in the control algorithm. The
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Table 6.1
multiplication of two floats * 20.0 ns
division of two floats / 140 ns
addition of two floats + 16.7 ns
subtraction of two floats - 16.7 ns
comparison of two floats < 96.0 ns
IO action to update PWM duty cycle IO 2.10 µs

Micro measurement numbers for PC104.

main tasks that can be distinguished in the event-driven control algorithm are: input
(lines 1-3), check (lines 5 and 12), calculation (lines 6-9) and output (line 11). The
numbers above coincide with the line numbers of the pseudo-code in section 6.3.4.
For the time-driven controller, check is omitted, but the other tasks are identical. The
computation times associated with these tasks, are indicated by tinput, tcheck, tcalc

and toutput, respectively. The total processing time of the time-driven controller for a
10 seconds experiment (t10td ), can be computed as follows:

t10td = 10fs(tinput + tcalc + toutput) (6.4)

with fs the sample frequency of the controller.
For the event-driven controller, the total processing time of a 10 seconds experi-

ment (t10ed) is given as:

t10ed = 10fs(tinput + tcheck) + c10(tcalc + toutput) (6.5)

with c10 the number of control updates over the 10 seconds experiment.
Quantitative estimates of the computation times for the individual tasks can be

obtained from micro measurements, also called benchmark numbers [69]. These mea-
surements give the time duration of individual basic operations, like e.g. the addition
of two floating point numbers (floats), and depend mainly on the speed of the proces-
sor, memory and on the floating point unit. The tasks that run on the processor can
be split up in terms of those basic operations. From this we can obtain the expected
computation times of the tasks. Table 6.1 gives the micro measurement numbers for
the PC104 board in the test setup. These are only the most time consuming numbers
that are used for the presented controller. Operations like a binary OR are assumed to
be executed in negligible time.
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Table 6.2
tinput 2.27 µs
tcheck 192 ns
tcalc 389 ns
toutput 2.10 µs

Estimated computation times of the individual tasks.

Next, we analyzed the C-code that was synthesized from the controller model to
obtain the set of basic operations from which the tasks are composed. For example,
input consists of 1 IO action, 2 subtractions and 1 division. From these sets, in com-
bination with the micro measurements numbers, we calculated the time that each task
needs to execute. The results are given in table 6.2. The relatively large amount of time
consumed by an IO operation is caused by context-switch time and the time it takes
to communicate with the slower PCI-bus. In order to perform an IO operation, com-
munication via a device-driver with the FPGA is necessary. A context-switch is made
to and from the kernel-space to access the device-driver. tinput is estimated some-
what larger than toutput, because some additional processing is involved to derive the
velocity measurement from the position data.

The computation times for the various operations can be assumed to be fairly con-
stant. For this specific example, the controller is the only real-time task running and
its size allows it to run entirely from cache memory, so no variations are expected.

Using equations (6.4) and (6.5), combined with the estimated computation times
of the individual tasks, we are able to predict the total computation times of both the
time-driven and the event-driven control algorithm for various values of eT . From the
simulation results, depicted in the bottom graph of figure 6.5, we obtained the number
of control updates as the value for c10 in (6.5). The results are given in figure 6.6.

From equations (6.4) and (6.5) we can also derive the maximal achievable gain in
processor load for the event-driven controller, compared to the time-driven controller.
The maximal gain is obtained when we take c10 = 0. This implies that no control up-
dates are needed to keep the error within the bounds of eT . The maximally achievable
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Figure 6.6: Predicted computation time for time-driven and event-driven controller using vari-
ous values of eT for the event-driven controller.

gain Gmax in this particular setup is:

Gmax =
10fs(tinput + tcalc + toutput)

10fs(tinput + tcheck) + c10(tcalc + toutput)

=
tinput + tcalc + toutput

tinput + tcheck
≈ 2 (6.6)

This can be verified in figure 6.6, as the time-driven controller uses approximately 5
ms and the event-driven controller 2.5 ms for large values of eT .

6.6 Experiments

6.6.1 Processor load measurement

To measure the processor load of the control algorithm, we measure the time the pro-
cessor needs from the start of input, to the end of output. For this purpose, we take

t
s

call return

read

time

Figure 6.7: Illustration of the process to take a time-stamp.



126 Processor load for event-driven controllers

two time-stamps; the first before line 1 in the pseudo-code, and the second after line
12. By subtracting the first time-stamp from the second, we obtain the elapsed time.

In order to take a time-stamp, a function is called which reads a time counter and
returns its value (see figure 6.7). As indicated in this figure, time will elapse between
the call and the read and between the read and the return, as on an x86-compatible
CPU, time measurement is not atomic. The total time it takes to take a time-stamp,
which is not necessarily constant over time, is called τs.

To perform correct time measurements, we need to subtract τs from each obtained
time measurement. To obtain τs we take two successive time-stamps. We do this at
every sample (after the second time-stamp has been taken), to obtain a recent value of
τs and to check the variance over time. The time difference of the two values returned
is equal to τs. To guarantee that the action of taking a time-stamp is not interrupted, it
is assigned to the highest priority. For the particular setup τs was measured to be 0.98
µs with a maximum variation of ±3%.

6.6.2 Experimental results for one motor

The measurement results of the experiment with one motor are depicted in figure 6.8.
Here we chose eT = 0.9 rps. One can compare these plots with the simulation results
depicted in figure 6.4, as the same value for eT was chosen and the same reference
velocity was used. Note that no sheet disturbances are active yet. The second plot of
the figure, which depicts the velocity error, shows that the results for the experiment
are similar to the simulation results. This is also the case for the third plot, in which the
number of control updates are plotted. The fourth plot shows the measured execution
time of the control algorithm at each sample time, i.e. every 0.01 second. The offset,
estimated at 2.5 µs (which is tinput + tcheck), can clearly be distinguished. The extra
time at the moments of the peeks in the plot during non-zero velocity in the reference
signal, is the time that is needed for calc and output (estimated at: tinput + tcheck +
tcalc + toutput = 4.9µs).

The performance results (emax) of 20 experiments for different values of eT are
depicted in the first graph of figure 6.9, together with the simulation results. The
experimental results are similar to the simulation results as we observe the same lower
bound and trend. The maximum error of the time-driven controller experiment was
also the same as obtained from simulation. The second graph of figure 6.9 shows
the number of control updates for these 20 experiments, together with the simulation
results. Again, a nice fit between simulation and experiment is observed.
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Figure 6.8: Experimental results of the event-driven controller for eT = 0.9 rps.

The cumulated measured computation time for the same 20 experiments is de-
picted in figure 6.10, together with the predicted computation times. This is also
shown for both the time-driven and the event-driven controller. It can be observed
that the measurement results match the predictions closely.

6.6.3 Experimental results for paper path

To show the real industrial advantage of the event-driven controller, we have imple-
mented the controller for every motor in the paper path, and inserted sheets in the
path. The reference velocities are depicted in figure 6.11. The ramps of the profiles
are chosen such that they do not coincide. This choice for the profiles is common in
industry from a power perspective, as during the ramp-up phases the motors consume
the most power. By separation of these ramps the peak power is kept low. For the
presented event-driven controller, this also has a benefit for processor load, because
the most processor power is needed during acceleration and deceleration.

When all motors have reached their steady state velocity, sheets are ejected from
the Paper Input Module (PIM, see figure 6.1) into the first roller of the paper path at
times 3.00, 3.25, 3.50, 3.75 and 4.00 s. The effect can clearly be observed in figure
6.12 which shows the error signals of the four motor controllers in the paper path (note
the different scale of the magnitude in the first plot). Especially the first motor, of
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Figure 6.9: Experimental and simulation results of time-driven and event-driven controller.
The event-driven controller was measured for various values of eT .
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Figure 6.10: Experimental and predicted results of computation time for time-driven and event-
driven controller using various values of eT .

which the error signal is depicted in the first graph, shows peaks in the error as the
speed of the PIM is not synchronized with the speed of the motors in the paper path.
The first motor corrects this problem and therefore the error signal of the other motors
show much less reaction to incoming sheets. In the first two graphs of figure 6.12 it
can be seen that after the motor has accelerated, the error stays smaller than eT for
most of the time until the sheets are inserted. The tracking errors of motor 3 and 4
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Figure 6.11: Reference signals for the 4 motors in the paper path.
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Figure 6.12: Error signals for the four motors in the paper path.

are only smaller than eT in the period after the sheets have been handled but before
the motors start decelerating. The obtained errors are acceptable to transport sheets of
paper through a printer.

In figure 6.13 we show the total computation time of all four controllers for each
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Figure 6.13: Added computation time for all motor controllers per sample.

sample moment. Also the computation time for the implementation with four time-
driven controllers is depicted, which shows a fairly constant load of approximately
18 µs every sample (at 100 Hz). For the event-driven controller case an offset can
be distinguished, like in the bottom graph of figure 6.8. Because at every sample
moment four encoder counter values need to be communicated, the offset is here four
times higher: 8.8 µs. For each controller that is active in a specific sample moment,
approximately 2.6 µs is added to the computation time. It can be seen that indeed
during the acceleration and deceleration phases, mostly just one of the four controllers
is active. When sheets travel through the paper path, we see that all controllers need
to be active to compensate for the disturbances, but still at a lower pace than the time-
driven controller. For short periods of time, this results in the situation where all four
controllers are active and therefore a computation time of 19.5 µs, which is slightly
higher than for the time-driven controller. If we add all the computation times for
every sample over the whole experiment time of 7 seconds, we obtain that it took 7.88
ms in total to execute the controllers (versus 12.6 ms for the time-driven controller).

When looking more carefully at the results, we see that on the average every con-
troller only uses at maximum 50% of all control check times to perform an update, also
at peak loads. This leads to the conclusion that we could schedule the controllers in a
smart way such that we also reduce the peak load of the total computation time. The
major advantage of this result is that we could possibly choose for a smaller processing
unit or to schedule more tasks on the same processor. For this reason we scheduled
the four controllers such that controller 3 was only executed if controller 1 was not
executed in the same sample. In the same way, controller 4 was only executed when
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Figure 6.14: Added computation time for all motor controllers per sample for the scheduled
case.

controller 2 was not executed in the same sample. With this implementation, at max-
imum two controllers can be executed during the same sample, resulting in a lower
peak load of the processor. Moreover, when controllers 3 or 4 are not executed, the in-
put and check for these controllers do not have to be executed as well. This means that
at those moments the offset of 8.8 µs will be lowered too with 2.2 µs per controller
(resulting in 6.6 µs or 4.4 µs respectively).

The resulting computation time per sample for this implementation is depicted in
figure 6.14. It can be seen that the peak load is reduced from 19.5 µs to 12 µs. For
the whole experiment we obtained a total computation time of 7.20 ms. Note that the
proposed scheduling of the controllers involves that controllers 3 and 4 are sometimes
delayed. This, however, did not have significant influence on the performance of the
system, as the introduced delay for controllers 3 and 4 was not more than one or,
occasionally, 2 samples.

6.7 Discussion

When comparing the results of the time-driven controller with the results of the event-
driven controller, we observe a reduction up to 95% in the number of control updates,
for high values of eT (eT = 2 rps). This resulted in a saving of the processor load of
only 46%, due to the relative high offset caused by the value of tinput (as this has to
be performed at 100 Hz in the event-driven controller as well). When we choose for
example eT = 0.4 rps in the presented application, we already obtain a saving in the
processor load of 39%. This only increased the maximum error from 1.2 rps to 1.7
rps.
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Table 6.3
PC104 AVR Pentium DSP

* 20.0 ns 21.7 µs 2.46 ns 1.04 µs
/ 140 ns 66.3 µs 16.0 ns 7.03 µs
+ 16.7 ns 18.4 µs 1.55 ns 1.33 µs
- 16.7 ns 19.8 µs 1.75 ns 1.39 µs
< 50.0 ns 13.1 µs 8 ns 0.879 µs
IO 2.10 µs 0.214 µs 2.00 µs 0.392 µs

Micro measurement numbers for several processing platforms.

Of course, these figures depend heavily on the chosen setup. Important aspects of
the setup in this context are: the complexity of the control algorithm, the processing
platform together with the communication mechanisms, the reference signal to be
tracked and the disturbances acting on the plant. For the experiments we used a simple
(PI) control algorithm, that does not need much processing power to execute (i.e. tcalc

is small). If we choose a more complex control algorithm, the savings in processor
load increase. On the other hand, the check was also chosen simple (tcheck small). A
more complex check would have increased the overhead for the event-driven controller,
and the savings in processor load would decrease. For the presented application, most
processing time was assigned to the input and output actions. The largest processor
load reduction was therefore caused by the reduced number of actuator updates that
had to be performed. The reduction was bounded due to the constant number of input
actions that had to be executed.

To investigate the dependence of the processing platform on the processor load,
we performed the same micro measurements on several other platforms. The results
are given in table 6.3. The first column repeats the data for the PC104 as used in the
case study (see also table 6.1). For the data in the second column we used an 8-bit
RISC micro controller from Atmel: AVR ATmega32, running at a clock frequency of
8 MHz. The third benchmark was performed at a high speed office PC: Pentium 4
processor, 3.40 GHz, hyper-threading CPU. The last benchmark was performed on a
DSP: ADSP-21992, which is a mixed signal DSP controller suitable for a variety of
high performance industrial motor control and signal processing applications, running
at a clock frequency of 16 MHz. For the DSP and the AVR, no operating system was
used because of the limited memory capacity.
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Figure 6.15: Predicted computation time for time-driven and event-driven controller running
on the AVR micro controller.

Figure 6.15 gives the prediction of computation time for one single motor in which
the controller would run on the 8-bit AVR micro controller. It can be seen that in
this situation a maximum saving in processor load of 65% can be achieved for the
event-driven controller, with eT = 2 rps. This saving is still limited compared to
the reduction in the number of control updates due to the time needed to perform the
division of two floating point numbers in the check. For the Pentium, we could save at
maximum 53% and for the DSP 50% for the considered situation.

The considered examples are just four typical examples out of many possible alter-
natives. It can be seen however that the gain in processor load can be easily predicted
for each new situation. If sensor and actuator data have to be communicated over a
network with limited bandwidth, savings of these kinds might be considered as well.
As communication busses have limited bandwidth, reducing the buss load is benefi-
cial for the total system. Moreover, when wireless communication is used, lower buss
loads also save energy. Especially for battery-powered devices, this is an important
aspect as wireless communications is a severe power consumer. Lots of research is
carried out in the reduction of power usage for battery-powered devices like wireless
sensors [23, 82].

When applying the considered event-driven controller for a single motor, we only
decrease the average processor load and not the peak load. Therefore, it should be
noted that the processing power that comes available temporarily should also be used
to create an advantage for the total system. An example to reduce the overall processor
load, is the case in which soft-realtime tasks (e.g. image processing), running on the
same processor, can use the released processing power. It is the task of the scheduler
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on the real-time operating system to take care of this.
In the example in which we control all 4 motors of the paper path setup, we see

that the possible gain is also related to the moments at which reference signals change
and disturbance is present. For the presented situation it is clear that the controller
does not need to ‘work’ equally hard at every moment in time. In applications where
the controller needs to run at a certain sample frequency continuously to keep the error
within the required bounds, this specific event-driven control algorithm will not show
the same benefit as in the presented application. The presented example however, is
one that is representative for many controlled industrial systems found in practice.

6.8 Conclusions

The contribution of this chapter is twofold:

1. The potential of event-driven controllers was validated on an industrial setup.

2. The relation between reduced number of control computations and a lower pro-
cessor load was studied.

This chapter experimentally validated the potential of event-driven controllers.
Experiments showed that event-driven controllers can be used in practice to reduce
the processor load by a factor of almost 2, when compared with conventional time-
driven controllers. This involved only a small degradation of the control performance.
We also argued that for the particular controller setup on a different processing plat-
form, the processor load could have been reduced by a factor of 3, which shows the
value of event-driven controllers and future research in this domain.

From simulation results, we were able to predict the processor load in the exper-
iment accurately. This was done with relative low effort, despite the fact that many
complex implementation factors are to be accounted for. For this purpose, micro mea-
surements were used to estimate the processor load of the various tasks of the control
algorithm. The main benefit of the prediction method is that one does not have to actu-
ally build the setup to quantify the trade-off in processor load and control performance
for the event-driven controllers.
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7.1 Conclusions 7.2 Recommendations

7.1 Conclusions

Event-driven control is presented in the research hypothesis as a control design method
to achieve a better overall system performance, compared to classical time-driven ap-
proaches, by relaxing one of the most stringent conditions that control engineers im-
pose: a fixed sample frequency. System performance has to be understood in the sense
of the combination of aspects that are influenced by the controller implementation.
These are in particular: control performance (in terms of tracking, stabilization and
disturbance rejection), software performance (in terms of processor load), amongst
other aspects like communication bus load and system cost price.

In this thesis, we presented two particular event-driven control structures. The
first one shows that by relaxing the equidistant sampling constraint, event-driven con-
trollers can respond faster to changing conditions. The update of the proposed con-
troller is triggered by new sensor data that comes available, which are the individ-
ual pulses of an encoder in the considered case. This means that the exact position
measurement is used, instead of some estimation with a non-zero measurement error,
which opens up the possibility to achieve high control performance, while operat-
ing with cheap, low resolution sensors. The controller tuning, for this fundamentally
different controller compared to classical time-driven controllers, was performed by
transforming the system equations from the time domain to the spatial domain. In
the spatial domain, the encoder pulses, and therefore the controller triggering, occur
equidistantly spaced. In this way, we are able to write the control problem as a syn-
chronous problem such that variations on classical control theory can be applied to
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design and tune the controller. The resulting control performance measures are also
expressed in the spatial domain, in the sense that we obtain the bandwidth in the spa-
tial frequency and aim at settling distances instead of (classical) settling times. When
disturbances are also acting in the spatial domain - which is often the case - it can
easily be determined how these disturbances are rejected. The proposed event-driven
controller is experimentally validated in the printer where a one pulse per revolution
encoder is used to accurately control the motion of images through the printer in the
case study. By means of simulations and experiments on a prototype printer we show
that with the event-driven controller a similar control performance can be achieved,
compared to the originally applied observer-based controller in combination with a 12
pulse per revolution encoder. Furthermore, we showed that the processor load for the
controller was reduced up to a factor 6.

The aim of the second proposed event-driven controller is to reduce the resource
utilization (such as processor load and communication bus load) for the controller
tasks by only updating the controller when necessary and not wasting computation
time when there is no real need for it. For the particular presented application the
controller was not updated when the tracking/stabilization error was below a certain
threshold. By choosing this threshold, a trade-off is made between control perfor-
mance and processing load. To get insight in this trade-off, theory is presented to ana-
lyze control performance in terms of ultimate bounds for the closed-loop system. The
theory is based on inferring properties (like robust positive invariance, ultimate bound-
edness and convergence speed) for the event-driven controlled system from discrete-
time linear systems (in case of “non-uniform sampling”) or piecewise linear systems
(in case of “uniform sampling”). Next to the theoretical analysis, simulations and ex-
periments are carried out on a paper path test-setup. It is shown that for the particular
application, the processor load was reduced by a factor 2 without significant influence
on the control performance in comparison to a time-driven implementation.

To validate the potential of event-driven controllers for the processor load, a tech-
nique is presented to accurately estimate the processor load, prior to implementing the
controller on a processing platform. This was done with relative low effort, despite
the fact that many complex implementation factors are to be accounted for. For this
purpose, micro measurements were used, together with simulation data to determine
the number of control updates, to estimate the required processor load for the control
algorithm.

From each of the presented examples of event-driven control, multiple trade-offs
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become apparent. As this thesis focussed on the disciplines software and control en-
gineering, these trade-offs involve control performance and software performance,
amongst other system aspects like system cost price. One of the difficulties in sys-
tem engineering discipline is to focus on the right, most important, trade-offs. For this
purpose, the technique “treads of reasoning” was proposed and extended to identify
the most important conflicts in the multi-disciplinary design of the paper flow control
of the printer. This technique helps to structure in the typical chaos of uncertainty and
the huge amount of realization options present in early design phases.

Threads of reasoning provides the system architect with valuable insight that sup-
ports him in making the important design trade-offs qualitatively. To quantify the de-
sign choices, simple models (like the models in section 4.8) are presented that capture
the essence of the problem in the multiple domains. An open issue, however, is how
to make the well balanced trade-offs based on these models. One solution is to use
weighting functions, but the question then remains how to choose appropriate weights,
as criteria often have different dimensions - “how to compare apples with pears” so
to say. Therefore, in most design processes, the system architect is entrusted with this
task. Although he should have the ability to reason over the multiple disciplines, it
is a difficult job that is dominated by subjective arguments. Finding an approach that
copes with this problem is an ongoing challenge of both industry and academia.
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7.2 Recommendations

As event-driven control is a widely open and a barely explored field of research, many
new applications can be considered that have great potentials for both industry and
academia. The importance of this field is more and more recognized by industry, as
they have to produce more complex systems for decreasing cost prices. This involves
hard multi-disciplinary designs for which one cannot design controllers that only focus
on the control performance, while posing hard demands on other systems aspects, like
software implementation and sensor specifications.

7.2.1 Sensor-based event-driven control

This thesis proposes two examples of event-driven control, but the presented theory to
analyze the controllers is certainly not limited to these specific examples. The analysis
presented in chapter 4, could be applied to all kinds of applications in which sensors
supply data that can be considered synchronous in the spatial domain. Examples are
presented in chapter 3 (e.g. [16, 24, 56, 60]). Furthermore, examples are thought of
in which sensor data is synchronous is another domain, like for instance temperature
control, where the temperature is measured with a resolution of 0.1 degrees. The
presented event-driven control design approach might have great potential for those
systems as well.

In chapter 4 we have only presented one typical design of an event-driven con-
troller implementation in the spatial domain. To be applicable in a much broader
range of applications, more research has to be carried out for designing controllers in
the spatial domain. An interesting question arises whether or not there are applications
in which ‘spatial’ models are more natural than models with time as the independent
variable. E.g. some of the disturbances in the printer are typically position dependent.
One important area that automatically emerges is spatial identification. An interest-
ing topic is how identification could be carried out by using low resolution sensors.
Furthermore, it would be interesting to research how the spatial analysis could be in-
corporated in the design of other controller types, like H∞, LQG and MPC.

7.2.2 Event-driven control to reduce resource utilization

The kind of analysis presented in chapter 5 could possibly be extended to analyze
control over a network where package loss is involved. When a package is lost, the
controller is in practice often implemented such that it holds the output, until new data
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has arrived. This situation can be considered similar to the presented case of uniform
sampling for the event-driven controller in chapter 5, where the output is held when
the error is below a certain threshold. A difference with the situation analyzed in this
thesis is that the loss of packages occurs randomly and is generally not coupled to a
state of the system. An advantage in the case of package loss is that it is logical to
assume that the time span, for which the control value cannot be updated, is limited.
This guarantees the existence of a finite piecewise linear representation of the system
for the presented analysis in the uniform case.

Although chapter 5 analyzes a particular event-driven control structure, it already
indicates the complexity and challenge for the analysis and synthesis of these type of
control loops for which the controller triggering cannot be considered synchronous
in another domain. This work provides a first step towards a proper analysis of these
types of control loops. Future work is to extend the theory with reference tracking.
Moreover, to be applicable in industry, methods are required that can be applied to
analyze control loops within minutes, as industry has to develop high-tech systems in
very limited time spans.

Given the advantages of event-driven controllers and the various sources of event-
triggering mechanisms present in industrial practice, it is fruitful to continue this line
of research and to develop a mature event-based system theory.
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trol timing affect performance? Analysis and simulation of timing using Jitterbug and
TrueTime. In: IEEE Control Systems Magazine, Vol. 23, No. 3, pp. 16–30.

[18] Cloosterman, M., N. van der Wouw, W.P.M.H. Heemels and H. Nijmeijer (2006). Ro-
bust stability of networked control systems with time-varying network-induced Delays. In:
Proceedings of the IEEE Conference on Decision and Control, San Diego, USA.

[19] Cockburn, A. (2000). Writing effective use cases. Addison-Wesley.
[20] Culler, D., J. Hill, P. Buonadonna, R. Szewczyk and A. Woo (2001). A network-centric ap-

proach to embedded software for tiny devices. In: Proceedings of 1st International Work-
shop of Embedded Software, Tahoe City, California, October 8–10.

[21] Dodds, S.J. (1981). Adaptive, high precision, satellite attitude control for microprocessor
implementation. In: Automatica, Vol. 17, No. 4, pp. 563–573.

[22] Doff, R.C., M.C. Fatten and C.A. Phillips (1962). Adaptive sampling frequency for
sampled-data control systems. In: IRE Transactions on Automatic Control, Vol. AC-7,
pp. 38–47.

[23] ElGamal, A., C. Nair, B. Prabhakar, E.U. Biyikoglu and S. Zahedi (2002). Energy effi-
cient scheduling of packet transmissions over wireless networks. In: Proceedings of IEEE
INFOCOM, pp. 1773–1780.

[24] Förstner, D., and J. Lunze (2001). Discrete-event models of quantized systems for diagno-
sis. In: International Journal of Control, Vol. 74, No. 7, pp. 690–700.

[25] Franklin, G.F., J.D. Powell and M.L. Workman (1998). Digital Control of Dynamic Sys-
tems. Third edition, MA: Addison-Wesley.

[26] Franklin, G.F., J.D. Powell and A. Emami-Naeini (2005). Feedback Control of Dynamic
Systems. Fifth edition, Prentice Hall.

[27] Freriks, H.J.M., W.P.M.H. Heemels, G.J. Muller and J.H. Sandee (2006). On the system-
atic use of budget-based design. In: Proceedings of 16th annual international symposium
of the INCOSE, Orlando, Florida, USA.

[28] Freriks, H.J.M. (2005). White paper on designing with stepper motors. Online:
http://www.esi.nl.

[29] Friedland, B. (1973). Optimum steady-state position and velocity estimation using sam-
pled position data. In: IEEE transactions on Aerospace and Electronic Systems. Vol. AES-
9, No. 6, pp. 906–911.

[30] Geer, D.(2005). Is it time for Clockless Chips? In: Computer, Vol. 38, No. 3, pp. 18–21.
[31] Glad, T. and L. Ljung (1984). Velocity estimation from irregular, noisy position mea-

surements. In: Proceedings of the IFAC 9th Triennial World Congress, Budapest, No. 2,
pp. 1069–1073.

[32] Goodman, J. (2005). Inroduction to fourier optics. 3rd ed., Robers & Company, 2005.
[33] Grewal, M.S. and A.P. Andrews (1993). Kalman filtering: theory and practice. Englewood

Cliffs: Prentice Hall.
[34] Grieder, P. (2004). Efficient computation of feedback controllers for constrained systems.

Ph.D. thesis ETH Zurich, Switzerland.
[35] Hayes, M.H. (1996). Statistical Digital Signal Processing and Modeling. New York: John

Wiley & Sons.
[36] Heemels, W.P.M.H., R.J.A. Gorter, A. van Zijl, P.P.J. van den Bosch, S. Weiland, W.H.A.

Hendrix and M.R. Vonder (1999). Asynchronous measurement and control: a case study
on motor synchronization. In: Control Engineering Practice, Vol. 7, pp. 1467–1482.

[37] Heemels, W.P.M.H., B. de Schutter and A. Bemporad (2001). Equivalence of hybrid dy-
namical models. In: Automatica, Vol. 37, No. 7, pp. 1085–1091.



Bibliography 143

[38] Heemels, W.P.M.H., and J.H. Sandee (2006). Practical stability of perturbed event-driven
controlled linear systems. In: Proceedings of the American Control Conference, Min-
neapolis, Minnesota, USA, pp. 4379–4386.

[39] Heemels, W.P.M.H., E. v.d. Waal, and G.J. Muller (2006). A multi-disciplinary and model-
based design methodology for high-tech systems. In: Proceedings of CSER, Los Angeles,
California, USA, April 7–8.

[40] Heemels, W.P.M.H., and J.H. Sandee (2006). Analysis of event-based controllers for linear
systems. Submitted for journal publication.

[41] Henriksson, D. and A. Cervin (2005). Optimal on-line sampling period assignment for
real-time control tasks based on plant state information. In: Proceedings of the 44th IEEE
Conference on Decision and Control and European Control Conference, Seville, Spain,
December 2005.

[42] INCOSE Technical Board (2004). Systems engineering handbook. A ”what to”guide for
all system engineering practitioners.

[43] Jazayeri, M., A. Ran, and F. vd Linden (2000). Software architecture for product families.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

[44] Jongeneel, C. (2005). Klokloze chips. In: De Ingenieur. Vol. 117, No. 4, pp. 52–53.
[45] Kao, C.-Y. and B. Lincoln (2004). Simple stability criteria for systems with time-varying

delays. In: Automatica, Vol. 40, pp. 1429–1434.
[46] Kawka, P.A., and A.G. Alleyne (2005). Stability and Feedback Control of Wireless Net-

work Systems. In: Proceedings of the American Control Conference, Portland, OR.
[47] Kerrigan, E. (2000). Robust Constraint Satisfaction: Invariant Sets and Predictive Control.

Ph.D thesis. University of Cambridge.
[48] Kolmanovsky, I. and E.G. Gilbert (1998). Theory and computation of disturbance invariant

sets for discrete-time linear systems. In: Mathematical Problems in Engineering, Vol. 4,
pp. 317–367.

[49] Kopetz, H. (1993). Should responsive systems be event-triggered or time-triggered? In:
Transactions on Information and Systems, Vol. E76-D, No. 11, pp. 1325–1332.

[50] Krucinski, M., Cloet, C., Tomizuka, M. and R. Horowitz (1998). Asynchronous Observer
for a Copier Paper Path. In: Proceedings of the 37th IEEE Conference on Decision and
Control, Tampa, Florida, Vol. 3, 1998, pp. 2611–12.
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Samenvatting

Regelsystemen zijn onmisbaar voor het goed functioneren van veel industriële high-
tech systemen, zoals bijvoorbeeld kopieermachines en wafer steppers. In digitale re-
gelsystemen worden tijd-continue signalen beschreven door middel van bemonstering
op een veelal vaste frequentie, geı̈mplementeerd in een real time software omgeving.
Als gevolg van het tijdgestuurde karakter van de regelsystemen stellen regeltechnici
zware, niet bespreekbare eisen aan de real time implementatie van hun algoritmen,
omdat op deze manier de vereiste regelprestaties gegarandeerd kunnen worden. Dit
kan leiden tot niet optimale oplossingen als het ontwerpprobleem vanuit een breder
multidisciplinair oogpunt wordt beschouwd. Een tijdgestuurde regelaar berekent bij-
voorbeeld voortdurend nieuwe actuatorsignalen op een vaste frequentie, ook als er
niets significant is veranderd in het proces. Dit is een onnodige verspilling van midde-
len als processor-rekentijd en communicatie-bandbreedte en is daarom niet optimaal
als ook deze aspecten in beschouwing worden genomen.

Om de strenge real time eisen die de regeltechnici opleggen te verminderen, inclu-
sief de daarbij behorende nadelen, stelt dit proefschrift voor om de strikte eisen van
equidistant bemonsteren te laten vallen. Dit stelt de systeemontwerpers in staat om
beter gebalanceerde multidisciplinaire afwegingen te maken en resulteert in een verbe-
terd systeemgedrag en in een gereduceerde kostprijs. Door geen equidistante bemon-
stering te eisen is het mogelijk om de bemonsterfrequentie te variëren en het uitvoeren
van de regelalgoritmen dynamisch te plannen om zo de processor-rekentijd te optimali-
seren. Ook is het mogelijk om de regelaar te activeren op het moment dat nieuwe meet-
data is ontvangen. Op deze wijze kunnen reconstructiefouten, kwantisatie-effecten en
vertragingen aanzienlijk worden verminderd, zodat de benodigde sensorresolutie, en
daarmee de kostprijs, kunnen worden gereduceerd. Omdat in deze regelaars een ge-
beurtenis, of “event”, de regelaar activeert (bijvoorbeeld het ontvangen van nieuwe
meetdata), in plaats van de tijd, noemen we dit type regelaars gebeurtenisgestuurd,
oftewel “event-driven”.

In dit proefschrift worden twee verschillende event-driven regelaarstructuren be-
handeld. De eerste is een sensor-gestuurde event-driven regeling, waar de regelaar
wordt geactiveerd door het ontvangen van nieuwe sensordata. Deze regelaarstructuur
is gebruikt voor het nauwkeurig sturen van een motor, op basis van een (extreem) lage
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encoderresolutie. Het regelaarontwerp is gebaseerd op een transformatie van de sys-
teemvergelijkingen in het tijddomein naar het hoekpositiedomein (spatiële domein).
Omdat de regelaaraansturing synchroon is ten opzichte van de hoekpositie van de mo-
tor, kan de klassieke regeltheorie worden toegepast voor het ontwerpen en instellen
van de regelaar. Door de transformatie worden ook de regelkarakteristieken, afkom-
stig uit de systeemanalyse, geformuleerd in het spatiële domein. De bandbreedte van
de regelaar wordt niet meer uitgedrukt in Hertz (s−1), maar in rad−1 en de tijd waar-
in het systeem tot rust komt wordt vervangen door een afstand waaronder rust wordt
bereikt. Deze spatiële maten relateren in veel high-tech systemen direct aan de ech-
te eisen aan de prestatie. Bovendien kunnen verstoringen vaak eenvoudiger worden
geformuleerd als functie van de positie dan als functie van de tijd. Ter validatie van
de theorie is de voorgestelde regelaar geı̈mplementeerd in een systeem dat met hoge
snelheden documenten print. De regelaar stuurt nauwkeurig een motor aan op basis
van een encoder met een resolutie van slechts 1 puls per omwenteling. Middels analy-
se, simulatie en metingen wordt aangetoond dat de regelaarprestaties vergelijkbaar zijn
met de initieel toegepaste industriële regelaar die is gebaseerd op een veel hogere en-
coderresolutie. Bovendien vraagt de voorgestelde event-driven regelaar een significant
kleinere processorbelasting. Vanuit systeemperspectief kan geconcludeerd worden dat
deze regelaar de tijdgestuurde regelaar overtreft.

Het tweede type event-driven regelaar heeft als specifieke doel de processorbelas-
ting en communicatie-bandbreedte voor de regelaar implementatie te reduceren. De
regelaar wordt alleen aangestuurd als het werkelijk noodzakelijk is. Als voorbeeld
wordt een regelaar gepresenteerd die alleen wordt geactiveerd als de volg- of stabi-
lisatiefout groter is dan een bepaalde drempelwaarde. Door deze drempelwaarde te
kiezen wordt er een directe afweging gemaakt tussen de regelaarprestaties en de pro-
cessorbelasting. Om meer inzicht in deze afweging te krijgen, wordt een theorie ge-
presenteerd om de regelaarprestaties te analyseren die worden uitgedrukt in maximale
begrenzingen, “ultimate bounds”, van de volg- of stabilisatiefout. De theorie is ge-
baseerd op afgeleide eigenschappen (zoals robuuste positieve invariantie, “ultimate
boundedness” en convergentie indices) van het event-driven bestuurde systeem vanuit
tijd-discrete lineaire systemen en stuksgewijs lineaire systemen. Naast de theoretische
analyse zijn simulaties en experimenten uitgevoerd op het papierpad van een printer
testopstelling. Voor de specifieke opstelling is aangetoond dat de processorbelasting
gereduceerd is met een factor 2, ten opzichte van een tijdgestuurde implementatie, zon-
der significante achteruitgang van de regelaarprestaties. Bovendien is er een methode
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ontwikkeld om de processorbelasting nauwkeurig te voorspellen voor verschillende
processoren. De methode is gebaseerd op simulatiemodellen en micro-metingen op
de processor, zodat de processorbelasting voorspeld kan worden voordat het regel al-
goritme is geı̈mplementeerd.

Naast deze bijdragen op het gebied van event-driven regelaars is de systeem engi-
neering techniek “threads of reasoning” uitgebreid en toegepast op het printerontwerp
om als ontwerper te focussen op de juiste ontwerpproblemen en -afwegingen.

Samenvattend zijn er twee event-driven regelaars theoretisch geanalyseerd en ex-
perimenteel gevalideerd op een prototype high-tech print systeem. De resultaten illu-
streren de potentiële voordelen van event-driven regelen met betrekking tot het totale
systeemgedrag en voor het maken van afwegingen tussen regelaarprestatie, software-
inspanning en kostprijs.
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