
Performance Analysis of Distributed

Real-Time Embedded Systems

Master thesis

M.M.C.M. de Hoon (535078)

22nd December 2005

Performance Analysis of Distributed Real-Time Embedded System
M.M.C.M. de Hoon

Final report for Master of science project
conducted from December 2004 - December 2005

Department of Electrical Engineering
Information and Communication Systems/Electronic Systems

(ICS/ES)
Technische Universiteit Eindhoven

Professor:
Prof.dr.ir. R.H.J.M. Otten (TU/e)

Supervisors:
Dr. ir. J.P.M. Voeten (TU/e)
M. Sc. O. Florescu (TU/e)

i

Abstract

The design of a distributed real-time embedded system is a difficult job. The
hardware and software is often designed sequentially, leading to overly conser-
vative and expensive systems. A more reliable and optimal system is obtained
by introducing performance analysis in the early design phases. This analysis is
performed with models designed in an ad-hoc way.
We propose a method which uses models to analyse distributed real-time embed-
ded systems that capture both functional and timing properties, in a early design
phase. The models are based on SHE (Software/Hardware Engineering). SHE
is a system-level design methodology based on the formal modelling language
POOSL (Parallel Object-Oriented Specification Language), and on the fast exe-
cution engine Rotalumis. The modelling method is based on the Y-chart scheme
and involves specification of the environment, the application, the architecture
and the mapping between them. This thesis presents modelling patterns for com-
mon input/output devices, real-time tasks and platform resources. With these
patterns a model of a distributed real-time embedded can be build conveniently.
The patterns are validated by means of a realistic case study of an in-car navi-
gation system. The outcome of the performance analysis is compared with the
outcome of a Modular Performance Analysis (MPA), a method based on worst-
case execution analysis. The comparison shows that the proposed method produce
performance numbers that approximate the worst case execution as opposed to
MPA which is sometimes overly conservative. The proposed method effectively
captures the behaviour of both soft and firm real-time embedded systems.

ii

Acknowledgements

I hereby thank the people from the TU/e ICS/ES department for giving me this
opportunity. I would also like to thank Jeroen Voeten, my supervisor, for giving
me the opportunity to develop my own ideas. My special thanks goes to Oana
Florescu for coaching my during this thesis. From the early stages until the final
version she was always able to help me structure my thesis and gave me helpful
feedback to improve my work. I also want to thank Marcel Verhoef, a member of
the Embedded System Institute, for giving me the In-Car navigation system case
study.

Finally, I wish to express my thanks to my family and friends, who have
supported me during my time on the TU/e and my graduation. Especially my
parents for giving me the chance to continue my study at the University and their
support in reaching this goal.

Eindhoven, December 2005
Menno de Hoon

iii

Contents

Abstract i

Acknowledgements i

1 Introduction 1
1.1 Problem definition . 1
1.2 Objectives . 2
1.3 Main contributions . 2

List of Figures 1

2 Modelling approach 5
2.1 Introduction . 5
2.2 Software/Hardware Engineering (SHE) 6
2.3 Parallel Object Oriented Specification Language 6
2.4 Tools . 7

2.4.1 SHEsim . 7
2.4.2 Rotalumis . 7

2.5 Modelling Method . 7
2.6 Report Structure . 8

3 Modelling of Functional Characteristics 11
3.1 Introduction . 11
3.2 Environment Modelling . 12

3.2.1 Registering of Timing Properties 12
3.2.2 Modelling Sporadic Event Streams 14
3.2.3 Modelling Periodic Event Streams 14
3.2.4 Modelling Periodic Event Streams with Jitter 15
3.2.5 Receiving Event Streams 16

3.3 Application modelling . 17
3.3.1 Software Tasks . 17
3.3.2 Communication Tasks . 18

4 Modelling of Architecture characteristics 21
4.1 Introduction . 21
4.2 Modelling of Computation . 22

4.2.1 Static Time Slicing Scheduling 23
4.2.2 Priority Based Scheduling 24
4.2.3 Earliest Deadline First Scheduling 25

4.3 Modelling of Communication Resources 26

5 Mapping 29

iv

6 A case study: Distributed In-car radio navigation system 33
6.1 Introduction . 33
6.2 Distributed In-Car Radio Navigation System 33
6.3 POOSL Model . 36

6.3.1 Worst Case Performance Analysis 37
6.4 Modular Performance Analyse . 39
6.5 POOSL and MPA Comparison . 42
6.6 Average Performance Analysis . 43

6.6.1 Reduction of Resource Performance 46
6.6.2 Approximation of Worst Case Performance 48

7 Conclusion and recommendations 49
7.1 Realised Objectives and conclusion 49
7.2 Recommendations and future research 50

A Simulation Results of the Distributed In-car Navigation System 51
A.1 Performance results of architecture A 51
A.2 Performance results of architecture B 51
A.3 Performance results of architecture C 52
A.4 Performance results of architecture D 52
A.5 Performance results of architecture E 52

A Real-time calculus definitions 53
A.1 Min-plus Convolution and Deconvolution 53
A.2 Max-plus Convolution and Deconvolution 53

References 55

v

vi

List of Figures

2.1 Two execution phases of a POOSL model. 7
2.2 The Y-chart design approach. 8
2.3 Structure of the report based on the Y-chart. 9

3.1 Simple view of a real-time embedded system in an environment. . . 11
3.2 Timing properties of events. 12
3.3 POOSL specification of the EventProperties data class 13
3.4 Sporadic event stream generated by an event component. 14
3.5 POOSL specification of a sporadic event stream 14
3.6 Periodic event stream generated by an event component. 15
3.7 POOSL specification of a periodic event stream 15
3.8 Periodic event stream with jitter generated by an event component. 15
3.9 POOSL specification of the jitter generator class 16
3.10 POOSL specification of a periodic event stream with jitter 16
3.11 POOSL specification of a receiving event model 16
3.12 Application model represented as a directed task graph 18
3.13 POOSL specification of a periodic event stream 18
3.14 Application model consist of application and communication com-

ponents . 19
3.15 Communication interpretation of a distributed real-time embedded

system. The communication is specified as a communication task
executed on a resource model. The incoming event represent the
head of the message and the outgoing event represents the tail of
the message. 19

3.16 POOSL specification of a functional communication component . . 20

4.1 Architecture modelled as decoupled SHE components 21
4.2 An example of a specification of an architecture which consist of

three processor cores and one shared bus. 22
4.3 An example of a specification of an architecture which consist of

two processor cores and one shared bus. 22
4.4 POOSL specification of a computation component without scheduler 23
4.5 Task queue of a time line scheduling algorithm. 23
4.6 POOSL specification of a preemptive computation resource based

on the static time slicing scheduler 24
4.7 POOSL specification of computation with priority scheduling policy 25
4.8 This POOSL specification is needed in figure 4.7 to model a earliest

deadline first scheduler. 26
4.9 General communication networks 26
4.10 POOSL specification of a direct point-to-point communication re-

source . 26

5.1 Mapping phase. 29

vii

5.2 Mapping of application and architecture models where the commu-
nication channels defines the hardware structure of the system. . . 30

5.3 Sequence diagram of communication for execution demand in the
mapping phase. 30

6.1 High-level of a distributed radio navigation system 34
6.2 Annotated Sequence Diagram for ”Change Volume” 34
6.3 Annotated Sequence Diagram for ”Address Look-up” 35
6.4 Annotated Sequence Diagram for ”TMC Message Handling” 36
6.5 Alternative system architecture to explore 36
6.6 SHEsim model of architecture A 37
6.7 Occurrence of ADDR delays when ADDR and TMC are executed

in parallel on architecture A . 38
6.8 A basic performance component with abstract models as input and

output and Real-Time Calculus to process internal transformations. 39
6.9 MPA model for system architecture A of figure 6.5 40
6.10 MPA model of two event streams sharing one resource. 40
6.11 Event stream A and B in milliseconds 40
6.12 Arrival curves of Stream A, (a) number of events against ∆, (b)

number of resource against ∆ . 41
6.13 (a) Resource curves of β and β′ . 41
6.14 Arrival and serve curve of event stream B 42
6.15 Maximum delay and maximum buffer space obtained from arrival

and service curves . 42
6.16 Timing diagram which visualise the domain of POOSL and MPA

analysis . 43
6.17 Delay frequency functions of scenario VOL, ADDR and TMC . . . 45
6.18 Frequency delay functions of scenarios VOL-TMC, ADDR-TMC

and TMC-VOL when instruction load has a uniform distribution . 47

viii

Chapter 1

Introduction

The real-time embedded systems industry today must realise its product ideas
even quicker than in the past. To be competitive, these new real-time embedded
systems must support more functionality, make use of latest technical innovations
and, of course, must be low cost. Real-time embedded systems which support
much functionality are complex and hard to design. The industry often uses
methods to specify hardware and software separately, often leading to overly con-
servative systems. Overly conservative systems largely contribute to the product
cost. One of the reasons is the lack of a proper modelling methodology to give
insight in the behaviour of the system, which would help in finding the optimal
hardware and software combination. A modelling methodology enables modelling
of complex real-time embedded systems and provides insight in the behaviour of
the system in the early design phases. Such modelling methodologies must take
both the software and the hardware part of embedded system into account. This
eventually must result in a reliable and optimal embedded system, designed in
less time.

1.1 Problem definition

Existing design methods, for instance object-oriented design methods, focus on
reusing and maintaining large systems. These design methods have proven their
benefit especially for traditional software development. However these methods
are not adequate for designing real-time embedded systems. A design method
for real-time embedded system should provide a modelling technique that can
appropriately capture functional and timing properties. A design method called
Software/Hardware Engineering (SHE) is presented in [1]. SHE is a system-level
design methodology based on the formal modelling language POOSL (Parallel
Object-Oriented Specification Language), and on the fast execution engine Rota-
lumis. The POOSL models can be specified with the graphical tool SHESim. The
methodology allows specification and analysis of real-time discrete-event control
systems, such as a high-speed packet-switch, a network processor, a printer con-
troller and a wafer-stepper controller. The specification of these system is done
ad-hoc. A suitable way to model and analyse these kinds of systems is necessary.
Therefore a modelling method should provide an approach to model a system in
an adequate way. To speed up the design process a method should be supported
by a library. This library must contain components that have common character-
istics of a real-time embedded system. To simplify the design space explorations
these patterns must be modular (plug-and-play).

1

Chapter 1. Introduction

1.2 Objectives

The objectives in this thesis to cope with problem definition are given in the
following enumeration:

1. Develop a modelling method which is suitable for performance
analysis and design space exploration of distributed real-time em-
bedded systems. A modelling method should be defined which helps to
design a model of a real-time embedded system. The model needs to capture
both the functional and timing behaviour and should be suitable for per-
formance analysis. This method should be supported with a library which
consists of a basic set of components that capture common characteristics
of a real-time embedded system. The use of predefined components must
speed up the modelling process. A modular design approach should simplify
the design space exploration.

2. Show applicability of the modelling method. The applicability of the
method should be demonstrated by an industrial case study. A performance
analysis should be used to validate the components of the modelling method.

1.3 Main contributions

During the project we developed a method for modelling distributed real-time em-
bedded systems. This modelling method describes how to capture both functional
and timing behaviour. The method is based on the Y-chart. The Y-chart scheme
structure a system for design space exploration. For each part of the Y-chart
scheme we present components which models common characteristics of real-time
embedded systems. The following list presents parts of the Y-chart scheme.

• Environment: In the environment section components characterise com-
mon input and output devices of a real-time embedded system by generating
event patterns.

• Application: The application section defines the functional behaviour of
a real-time embedded system.

• Architecture: Architecture components characterises processor and com-
munication resources. The processor components models the computation
with rate monotonic, earliest deadline first or time sliced scheduling. The
communication components model data exchange with a first come first
serve discipline.

• Mapping: In the mapping section we have specifies how an application is
mapped on an architecture in a modular way.

• Performance analysis: By analysing the combined model the perfor-
mance properties (throughput, occupation, delay, etc.) can be deduced.

All these components are specified in a modular way (plug-and-play) which
simplifies the exploration of the design space. The method was validated by
means of a realistic industrial case study. The outcome of the performance analy-
sis is compared with the outcome of a Modular Performance Analysis (MPA),
a method based on worst-case execution analysis. The comparison showed that
POOSL performance numbers approximate the worst case execution and MPA is
sometimes overly conservative. As the POOSL analysis technique relies on simu-
lation; the discovery of the worst case execution can not be claimed. Moreover,

2

1.3. Main contributions

the accuracy of the performance results depends on the simulation length. How-
ever the advantage is that the realistic behaviour of the system can be captured
using distributions.

3

Chapter 1. Introduction

4

Chapter 2

Modelling approach

2.1 Introduction

Real-time embedded systems are difficult to design. They consist of both hard-
ware and software components. The technological advance and the demand for
more functionality make these systems more complex. The software behaviour
in a real-time embedded system depends on the system hardware (architecture).
Typically, software and hardware design methodologies are applied in isolation,
which, after the combination of their results, result in an over-dimensioned or
even non-working system. Some of the classical design methodologies are:

• Structured analysis and design methods (Ward and Mellor [2], Hatley and
Pribhai [3])

• Object-oriented and object-based analysis and design methods (UML [4],
ROOM [5], etc.)

• Formal description methods (SDL [6], Estelle [7])

For a complete comparison of these methodologies see [1] and [8]. These classical
design methodologies do not often adequate help the design process in considerate
design alternatives for realising the desired functionality. Early in the design
process, the choice for a specific design alternative may have a deep impact on,
for example, the performance of the final implementation. To assist the designer
in taking well-founded design decisions, system-level design methodologies can be
applied. A system-level methodology which supports the construct models that
allows the analysis of the system in the early design phase is very helpful.

A suitable modelling methodology which can be used for modelling real-time
embedded systems is the Software/Hardware Engineering (SHE) introduced in [1]
and briefly described in section 2.2. This modelling methodology has proven its
usefulness in modelling several kinds of real-time embedded systems, like [9], [10]
and [11]. The designer experienced several disadvantages during the modelling
process, such as; a long modelling time, the low degree of reusability and that
each model is complex. A reason for this is that these models are modelled
without applying a method. The advantages of applying a method for modelling
a real-time embedded system are:

• Reducing the modelling time. The construction of a real-time embed-
ded system is done by the use of components. The modelling time can be
reduced when the designer is able to re-use earlier designed components. To
overcome inconsistency these components must comply with the (interface)
specifications described in the upcoming chapters.

5

Chapter 2. Modelling approach

• Understandability. A predefined subdivision of how to model a real-time
embedded system model will increase readability.

• Analysability. A method is taking care of the possibility to perform a
system analyse, for example the performance or occupation.

• Assist the designer in taking well-founded design decisions. Ap-
plying a method that uses components and predefined system subdivision
allows a Design Space Exploration (DSE). A DSE helps the designer to take
well-founded design decisions.

In this thesis a modelling method is described to improve the modelling process.
The method is extended with several examples of components which can be used
for modelling (distributed) real-time embedded systems. These components are
specified in the expressive modelling language POOSL, formalised in [1]. A short
description of POOSL is given in section 2.3. The tools used for specification and
execution of the POOSL components, namely SHEsim and Rotalumis, are briefly
discussed in section 2.4. In section 2.5 and 2.6 the guidelines of the modelling
method, which is the content of this thesis.

2.2 Software/Hardware Engineering (SHE)

SHE is a system-level design methodology, as defined in [12], that allows analysis
of both correctness and performance properties of design alternatives based on
models. To construct such models, SHE uses Parallel Object-Oriented Specifica-
tion Language (POOSL) to formulate and formalise the behaviour of a system.
The actual evaluation is based on the application of several techniques for formal
verification of correctness properties and performance analysis. A key feature of
the SHE methodology is that it is based on formal methods which ensures that
the obtained analysis results are unambiguous.

2.3 Parallel Object Oriented Specification Lan-
guage

In this section, we present a brief overview of the POOSL (Parallel Object Ori-
ented Specification Language) language, which was developed at Eindhoven Uni-
versity of Technology. POOSL is a very expressive modelling language with a
small set of powerful primitives whose semantics are defined with mathematical
axioms and rules. POOSL can describe concurrency, distribution, communica-
tion, timing and functional features of a system in a single executable model.
POOSL consists of a process part and a data part. The process part (processes
and clusters) is based on a real-time extension of the process algebra CCS [13].
This part is specified in components which performs certain functionality of a
system. The data part are passive components that specify the information that
is generated, exchanged, interpreted or modified by the system. The data part
is based upon the concepts of traditional sequential object-oriented programming
languages like Smalltalk and C++. The execution of a POOSL model is based on
a two phases execution model [14], as shown in figure 2.1. The state of a model
can either change by asynchronously executing atomic (communication or data
processing) actions (taking no time) or by letting the time pass (synchronously).

The formal semantics of POOSL enable the application of model checking tech-
niques for formal verification of correctness properties and Markov-chain based
performance analysis techniques. Furthermore, it serves as basis for a timing
property-preserving approach for real-time software synthesis.

6

2.4. Tools

Asynchronous

Execution of Actions

Synchronous

Passage of Time

Figure 2.1: Two execution phases of a POOSL model.

2.4 Tools

2.4.1 SHEsim

SHESim is an interactive modelling and simulation tool, which enables the con-
struction of complex concurrent systems in accordance with the SHE methodol-
ogy. It is used to incrementally specify and modify POOSL data classes, process
classes and cluster classes. SHESim allows the (graphical) entry of POOSL mod-
els and their interactive simulation. The messages and parameters that are passed
between the different processes and clusters are indicated on the appropriate
channels. To inspect the history of messages that have been exchanged between
different entities, interaction diagrams can be generated automatically during a
simulation. For more information see [15].

2.4.2 Rotalumis

Rotalumis is a high-speed execution engine which allows fast simulations of POOSL
models. In comparison with the execution speed of the SHEsim tool where the
execution takes place in an interpretive way, the execution speed is improved by
a factor of 100. Rotalumis compiles the POOSL model into intermediate format
that is executed on a virtual machine implemented in C++. For more information
see [16]. This academic tool was used for the simulation of all models presented
in this thesis. In general, the models are validated in the SHEsim tool and then
executed in Rotalumis.

2.5 Modelling Method

The guideline of the modelling method is based on the Y-chart scheme structure.
As described in [17], the Y-chart with one extension involves the following:

• Environment: Specify the environment behaviour capturing the charac-
teristics of the surroundings, such as input and output devices connected to
the real-time embedded system.

• Application: An abstraction of the software is defined in the application
section. The environment is linked to a set of tasks in the application section.
The environment triggers this set of tasks.

• Architecture: The modeler describes a particular architecture of the real-
time embedded system.

7

Chapter 2. Modelling approach

• Mapping: In this section the application is mapped on the architecture.

• Performance analysis: The mapped architecture and application model
are used for performance analysis.

• Performance numbers: This analysis yields performance numbers which
can propose improvements in the architecture, application and/or mapping.
This processes is indicted in figure 2.2 by the light bulbs.

Architecture

Mapping

Application

Performance

Analysis

Performance

Numbers

Environment

Figure 2.2: The Y-chart design approach.

This procedure can be repeated in an iterative way until a satisfactory architec-
ture, set of application and mapping is found. To be able to use the Y-chart
approach, the following modelling steps must be followed:

1. Specify the environment components.

2. Specify the application.

3. Specify the architecture components.

4. Map application components onto the architectural components.

5. Analyse the performance.

The specification of the functional part of the real-time embedded system is de-
scribed in steps 1 and 2, where the specification of the environment and applica-
tion models are made. The functional part is ”independent” of the architecture
specified in step 3. Step 4 is to map the application to the architectural compo-
nents. After applying the performance analysis, steps 2 till 4 can be reconsidered
for optimisation of the system. This modelling process gives the engineer a struc-
tured framework to explore the design space of a computation intensive real-time
embedded system.

2.6 Report Structure

The structure of this report follows the earlier presented Y-chart scheme, see fig-
ure 2.3. The functional model which specifies the environment and application
components, is described in chapter 3. The application components require ar-
chitectural components for execution. The architectural modelling is described
in chapter 4. The mapping of the application components onto the architectural
components is discussed in chapter 5. Chapter 6 shows the utilisation of the de-
scribed design approach in a case study. Chapter 7 provides the conclusions and
future work related to this thesis.

8

2.6. Report Structure

Architecture

Mapping

Application

Performance

Analysis

Performance

Numbers

Environment

Chapter 4: Architecture modelling

Chapter 5: Mapping

Chapter 3: Functional modelling

Figure 2.3: Structure of the report based on the Y-chart.

9

Chapter 2. Modelling approach

10

Chapter 3

Modelling of Functional
Characteristics

3.1 Introduction

A real-time embedded system performs software tasks that are executed on proces-
sors. These software tasks are activated by the working environment of the system.
The software tasks and the working environment belong to the functional part of
a real-time embedded system model. Figure 3.1 visualises an example of a real-
time embedded system in a working environment which helps engineers reason
about the total system behaviour. Note: These graphical representations are

Environment

(Actors)

Environment

(Sensors)

Knob

Antenna

Speaker

Input

Output

Output
Input

Real-time Embedded

System

M

Motor

Figure 3.1: Simple view of a real-time embedded system in an environment.

not restricted by drawing rules; their purpose is to clarify the system and working
environment.

To model the functional characteristics of a real-time embedded system, the
design consists of environment and application components. The environment
components model the characteristics of the environment given by input and
output devices. Some examples of such devices are sensors, knobs, antennas,
motors, speakers and displays. The application components model the software
part of a real-time embedded system which are presented as a directed graph
of tasks. Event activation patterns generated by the environment components
are used for modelling the behaviour of input devices connected to the real-time
embedded system.

This chapter is organised as follows:

11

Chapter 3. Modelling of Functional Characteristics

• Subsection 3.2 describes an approach to model the environment of a real-
time embedded system, by use of several kinds of event patterns.

• Subsection 3.3 presents a pattern to model an application, which reflects
the software part of the system.

3.2 Environment Modelling

The functional characteristics of the environment are specified in environment
components. Environment component models the generation or consumption of
event streams. In an event stream each event has a specific time at which it
must occur. These event streams are specified as having periodic or sporadic
patterns. [18] and [19] define a set of such general event patterns. Important
patterns for analysing performance of a real-time embedded systems are events
that occur sporadically, periodically (with jitter) or within a burst. Our modelling
approach uses a data object to exchange event-related information such as timing
variables. This event-related information can be updated during simulation. The
specification of this data class is described in section 3.2.1. Sections 3.2.2, 3.2.3
and 3.2.4 describe possible event patterns which commonly occur in real-time
embedded system and are suitable for modelling. Finally, section 3.2.5 describes
a modelling component which consumes the event stream passed through the
system model.

3.2.1 Registering of Timing Properties

The complete model is used to predict the performance of a real-time embedded
system. A data class which registers performance properties is used in this mod-
elling method. A new data object is initialised each time when an environment
component generates an event. At this moment the release time of the event is
registered in this data object. When the environment component triggers the
application model (described later on) by an event the start time is registered in
the data object. During the execution of the application model the data object is
exchanged between tasks. Each task updates the communication or computation
variable when it is involved with in, respectively, communication or computation.
Finally, the data object will reach a consuming environment component which
register the finish time.
POOSL allows the creation of data objects, which are instances of data classes,
for modelling passive components (see [20] for more details). Each time when an
environment component generates an event, it exchanges this data by sending the
data object (making a Deepcopy) along with a message to another component. A
characterisation of the timing properties is given in figure 3.2. In this illustration,

t

r
i
 d
i
s
i
 f
i

slack
e
i
c
i

L

l
i

Figure 3.2: Timing properties of events.

i stands for the identification number of the event. A description of the illustrated
properties are given below:

Release time ri: is the time at which an event becomes ready for execution;

12

3.2. Environment Modelling

Start time si: is the time at which a task start its execution;

End of release li: li = ri + L is the time when the event is not able to trigger
a task anymore;

Event Lifetime L: is the amount of time an event is active and able to trigger
a task;

Finish time fi: is the time at which an event finishes its execution;

Communication time ci: is the time used by the communication link;

Computation time ei: is the time necessary to the processor for executing the
task;

Deadline di: is the moment before which a task should be completed to avoid
damage to the system;

Slack : Xi: Xi = di − fi is the maximum time an event can be delayed on its
release to complete within its deadline;

Note that such a data object is exchanged by several tasks in the application
model. Every time the data object is in a new task component, the current val-
ues of the communication and computation time are accumulated with the new
communication or computation time.
The timing properties are defined in the EventProperties data class which mod-
ifies and registers the above presented timing properties. Figure 3.3 presents
the EventProperties data class specified in POOSL. Methods SetReleaseTime,

<< data class >>
EventProperties : Object

<< instance variables >>
Id : Integer

RelativeDeadline : Real

ReleaseTime : Real

StartTime : Real

FinishTime : Real

ComputationTime : Real

CommunicationTime : Real

<< methods >>
Ini(t : Real) : Object

SetReleaseTime(t : Real) : Object

SetStartTime(t : Real) : Object

SetFinishTime(t : Real) : Object

AddComputationTime(t : Real) : Object

AddCommunicationTime(t : Real) : Object

1 Ini(t : Real) : Object

2 RelativeDeadline := t;

3 return self.

4 SetReleaseTime(t : Real) : Object

5 ReleaseTime := t;

6 return self.

7 SetStartTime(t : Real) : Object

8 StartTime := t;

9 return self.

10 SetFinishTime(t : Real) : Object

11 FinishTime := t;

12 return self.

13 AddComputationTime

14 (t : Real) : Object

15 ComputionTime :=

16 ComputionTime + t;

17 return self.

18 AddCommunicationTime

19 (t : Real) : Object

20 CommunicationTime :=

21 CommunicationTime + t;

22 return self.

Figure 3.3: POOSL specification of the EventProperties data class

SetStartTime and SetFinishTime specify the release, start and finish time re-
spectively of an event captured in an EventProperties data object. When the
event data object travels through the application model and reaches a consum-
ing environment component, the timing properties are used for analysis pur-
pose. Methods AddComputationTime and AddCommunicationTime add repeti-
tively computation and communication time in the data object. The following
sections describe several components which generate event patterns that use the
EventProperties data class.

13

Chapter 3. Modelling of Functional Characteristics

3.2.2 Modelling Sporadic Event Streams

Sporadic event stream components model the activation of an input device con-
nected to the real-time embedded system. This component is used for modelling
devices that are activated irregularly, such as a knob or a remote control. An ex-
ample of a sporadic event stream is given in figure 3.4. At every r in figure 3.4 an

Knob

(sporadic)

t

r
i
 r
i+2

L

r
i+1
l
i
 l
i+1
 l
i+2

Figure 3.4: Sporadic event stream generated by an event component.

event is released; l denotes the end time of the event lifetime. A task can be trig-
gered by the event between the r and l. The triggering of tasks is only done when
the application (the tasks) is capable to serve a new event (the system could be
busy). In this way, event misses can be analysed and event releases do not overlap.
The specification of a component which produces is given in figure 3.5. In fig-

<< process >>
SporadicEventModel

<< instantiation parameters >>
eventLifetime : real;

<< instance variables >>
t : RandomGenerator;

<< methods >>
Ini()()

SporadicEventStream()()

<< initial method call >>
Ini()()

<< messages >>
out!event

1 ini()()

2 t := new(Distribution);

3 SporadicEventStream()().

4 SporadicEventStream()()

5 | E : EventProperties |

6 E := new(EventProperties)

7 SetReleaseTime(currentTime);

8 par

9 abort out!event(E) with

10 delay eventLifetime

11 and

12 delay (t random + eventLiftime);

13 SporadicEventStream()()

14 rap.

Figure 3.5: POOSL specification of a sporadic event stream

ure 3.5 eventLifetime is an instantiation parameter of the SporadicEventModel
which specifies the life of an event. The instance t is of a distribution type, and
used for generating different time between event actuation. In this example a
random distribution is used. To guarantee that the occurrences of events do not
overlap other events, the specified eventLifetime is added to the period of the
next released event at line 12.

3.2.3 Modelling Periodic Event Streams

Devices connected to an embedded system that have periodic characteristics, like
radio antennas and sensors, are modelled as components that generate events
periodically. An example of a periodic event pattern is given in figure 3.6, where
r, l and T denote respectively the release time, the end of the event actuation
lifetime and the period of the event release. A component which generates a
periodic event pattern can be specified in POOSL as described in figure 3.7. As
the specification in figure 3.6 describes, eventLifetime and period are instance
parameters that characterise the event activation pattern. To guarantee that
every event is activated at the specified time instances, the PeriodEventStream
is specified as a parallel method. In line 5, an event is offered during the specified

14

3.2. Environment Modelling

Sensor

(periodic)

t

r
i

T

l
i
 l
i+1
 l
i+2
 l
i+3
r
i+1
 r
i+2
 r
i+3

Figure 3.6: Periodic event stream generated by an event component.

<< process >>
PeriodicEventModel

<< instantiation parameters >>
eventLifetime : Real;

period : Real;

<< instance variables >>
<< methods >>

PeriodicEventStream()()

<< initial method call >>
PeriodicEventStream()()

<< messages >>
out!event

1 PeriodicEventStream()()

2 | E : EventProperties |

3 E := new(EventProperties) SetReleaseTime(currentTime);

4 par

5 abort out!event(E) with delay eventLifetime

6 and

7 delay period;

8 PeriodicEventStream()()

9 rap.

Figure 3.7: POOSL specification of a periodic event stream

eventLifetime. When the amount of time specified in eventLifetime is elapsed
the offering of the event is stopped (an event miss).

3.2.4 Modelling Periodic Event Streams with Jitter

In common distributed real-time embedded systems, input devices produce a fixed
number of events in a certain time unit. The exact period between these events
is often hard to specify. A component which produces events each period with a
jitter is therefore useful. This component is also useful for performance analysis
of distributed real-time embedded system where several input devices produce
events in different periods. Modelling these input devices with components which
generate events periodically will not cover all the states of the system, because
combining of periodical events patterns will result in a repetitive occurrence of
events. A periodic event pattern with jitter is represented in figure 3.8. In figure

Sensor

(periodic w/

jitter)

t

J
 T

Admissible occurrence of event

r
i
 l
i
 r
i+1
 l
i+1
 r
i+2
 l
i+2
 r
i+3
l
i+3

Figure 3.8: Periodic event stream with jitter generated by an event component.

3.10 T , J , r and l denote the period, jitter, release time and end of the release time
of an event. The event actuation is between iT− 1

2J and iT + 1
2J . To guarantee no

event overlap, the abstract environment model must comply with T > 1
2J+d. The

environment component which generates jittery events uses the specially defined
JitterGenerator data class, which is specified in figure 3.9. The next method in
JitterGenerator data class returns a value between − 1

2J and +1
2J , which eases

the specification in an environment component. This JitterGenerator data
class is specified with the use of a distribution (see the instance variables). In
this example a random distribution (RandomGenerator) is used. An environment
component that generates the periodic event stream with jitter is specified in

15

Chapter 3. Modelling of Functional Characteristics

<< data class >>
JitterGenerator : Object

<< instance variables >>
jitter : Real

r : RandomGenerator

<< methods >>
SetJitter(i : Real) : Object

next() : Real

1 SetJitter(i : Real) : Object

2 jitter := i;

3 return self.

4 next() : Real | n : Real |

5 if jitter > 0 then

6 n := (r random * jitter) - (0.5 * jitter)

7 else

8 n := 0;

9 fi;

10 return n.

Figure 3.9: POOSL specification of the jitter generator class

POOSL and shown in figure 3.10. As figure 3.8 shows, the jitter is centralised at

<< process >>
PeriodicJitterEventModel

<< instantiation parameters >>
duration : Real;

period : Real;

j : Real;

<< instance variables >>
jitter : JitterGenerator;

<< methods >>
Ini()()

PeriodicJitterEventStream()()

<< initial method call >>
Ini()()

<< messages >>
out!event

1 ini()()

2 jitter := new(JitterGenerator)

3 SetJitter(j);

4 PeriodicJitterEventStream()().

5 PeriodicJitterEventStream()()

6 | E : EventProperties |

7 par

8 delay period + jitter next;

9 abort out!event(E) with delay duration

10 and

11 delay (period);

12 PeriodicJitterEventStream()()

13 rap.

Figure 3.10: POOSL specification of a periodic event stream with jitter

each period. This means that the first event can occur at negative time. An event
which occur in negative time can not be modelled. The limitation of this process
is that the release time of the first event is equal to or bigger than T − 1

2J .

3.2.5 Receiving Event Streams

Each event stream that passes through the application model will be received by
the environment model. This environment model reflects the actuator devices
connected to a real-time embedded system, like motors, displays, speakers, etc. A
simple event consuming component is specified in figure 3.11. This tail-recursive

<< process >>
EventReceiverModel

<< instantiation parameters >>
<< instance variables >>

<< methods >>
ReceiveEvent()()

<< initial method call >>
ReceiveEvent()()

<< messages >>
in?event

1 ReceiveEvent()()

2 | E : EventProperties |

3 in?event(E);

4 ReceiveEvent()();

Figure 3.11: POOSL specification of a receiving event model

specification of an event consumer component receives event streams from the
application model without any restriction. The received event data object E is
used especially for analysis purposes.

16

3.3. Application modelling

3.3 Application modelling

In the Y-chart scheme, presented in figure 2.2, the environment components trig-
ger the application model. The software behaviour of a real-time embedded sys-
tem is specified in the application model. The application model consists of nodes
which represent tasks of the software. During the modelling phase the actual be-
haviour of a task does not need to be specified. Finding a good abstraction of
a task is hard and typically done by experienced engineers. Characteristics and
methods to determine proper abstractions of software task is outside the scope
of this thesis. The application model is a directed graph where nodes represent
tasks and edges represent activation channels. Note that the edges are not nec-
essary infinite FIFO queues as in the case of Kahn Process Networks, introduced
in [21]. A task in this model can also block other tasks. Real-time embedded
systems consist not only of processors but also of communication resources. The
communication taking place in these resources can be seen as tasks, therefore the
application model also exists of components which models the communication in
the system. Task components used for modelling the software is described in
section 3.3.1. In section 3.3.2 the communication tasks are described.

3.3.1 Software Tasks

In the early design phases, where this modelling approach is used, the software of
the embedded system is typically not known in detail. To speedup the modelling
process, task components model the main functionality of the software. Repre-
senting the application model as a directed graph makes it possible to execute
tasks in parallel. When a task is triggered by an event it performs an abstracted
software task. These active tasks will trigger new task components to model the
complete software. Parameters that involve computation behaviour are defined
in the task component, however some general parameters are:

Computation load: each task is specified with a computation load, which can
be specified in the amount of cycles or instructions (depending on the type
of processor architecture used in the system). When specifying an instruc-
tion name it is possible to retrieve the computation load out of a predefined
computation table specified in the resource component (described in chap-
ter 4);

Task identifier: a unique identifier in the application graph, which can be a
name or a number. The identifier is used to follow the order in which
computations are carried out;

Priority / relative deadline [optional]: this number is used for scheduling the
computations of tasks;

Note that these parameters depend on the resources of the system. Specifying
these parameters at the resource components (see chapter 4) will make the model
less suitable for exploration of design alternatives (each task must be known by
the resource). Figure 3.12 represents a directed task graph which is part of the
application model. Note: For reasons of simplification, the communication com-
ponents are not displayed in this graph. A POOSL specification example of a task
component is given in figure 3.13. The described HandleEvent method (line 1 to
9) is tail recursive which allows the task component to serve any incoming event.
Each incoming event is served by the Execute method, which sends (as a message)
an execution request to the architecture components. The parameters involved
in the computation behaviour are also passed through in the message. When the
request of a task execution is granted and served at the architecture level (as

17

Chapter 3. Modelling of Functional Characteristics

Task

1

Task

2

Task

5

Task

3

Task

4

Figure 3.12: Application model represented as a directed task graph

<< process >>
Task

<< instantiation parameters >>
TaskName : String;

ComputationLoad : Real;

Priority : Integer;

<< instance variables >>
TaskId : Integer;

<< methods >>
HandleEvent()()

Execute()()

<< initial method call >>
HandleEvent()()

<< messages >>
in!event

out?event

task!execute

task?executed

1 HandleEvent()()

2 | E : Event|

3 in?event(E);

4 par

5 HandleEvent()()

6 and

7 Execute()();

8 out!event(E)

9 rap.

10 Execute()()

11 task!execute(TaskId, ComputationLoad,

12 Priority);

13 task?executed(TaskServed

14 | TaskServed = TaskId).

Figure 3.13: POOSL specification of a periodic event stream

described in chapter 4), the task component is returned a message executed and
will generate a new event for a new task component. At line 13 and 14 the task
receives an acknowledgement (task?executed) when the computation is executed
in the architectural level. TaskServed is an identifier which is used to check if
the right task is executed.
This specification specifies a task component with one input and one output. Task
components with for example multiple inputs and/or output can be specified in
the same way. Specifying these kinds of tasks must comply with the message pro-
tocol used in this method, which are: the in?event and out!event channels sends
and receives an Event data classes; communication with the architecture level is
done with the parameters TaskID, ComputationLoad, Priority and TaskServed
over the task!execute and task?executed channel.

3.3.2 Communication Tasks

As early described, distributed real-time embedded systems commonly consist of
communication links. The communication itself depends on the used link (for ex-
ample bandwidth) and involves the behaviour of the application. In this method
the communication taken place over these links are therefore specified in the tasks
and resource components. The advantage of this approach is that it improves the
exploration of the design space (explore alternative architectures). In this way
communication load can easily be mapped on resource component. Each task
in the application model exchanges data through communication components, as
shown in figure 3.14. From the application point of view, the communication
tasks are not specific about the operation of the hardware, with respect to block-
ing, non-blocking or bandwidth limitation. These communication tasks hold the

18

3.3. Application modelling

Task

1

Task

2

Com-

munication

1

Figure 3.14: Application model consist of application and communication components

communication parameters which involve the application behaviour. Some com-
munication parameters which are specified in the communication tasks are:

Message ID : a unique value used for identification;

Message size : specified in the amount of bytes needed to transfer; other unities
are also allowed.

The incoming event in the communication task represents the tail of the mes-
sage. The outgoing event of the communication task represents the tail of the
transferred message through the link, see figure 3.15. The advantage of this

Com-

munication

Task

t

Head of message

t

Tail of the message

t

message stream through bus

Processor
 Processor
Bus

Bus

resource

Resource model

Application model

'Pysical hardware'

Figure 3.15: Communication interpretation of a distributed real-time embedded system. The
communication is specified as a communication task executed on a resource model. The incoming
event represent the head of the message and the outgoing event represents the tail of the message.

approach is that processor resource components are not involved with the com-
munication, which simplifies the modelling process. A disadvantage is that this
approach models complete buffering of data, which is not always wanted, for ex-
ample with multimedia streams. A solution would be to transfer long data stream
in segments. On the other hand, specifying a communication bridge takes less
effort (an extra software and communication task are needed to be specified). A
POOSL specification of a communication task component is given in figure 3.16.
The method HandleEvent is initially called when the model is executed. This re-
cursive method receives all incoming events (seen as the tail of the message) and
will model information exchange on a resource component, see the TransferMsg
method.

19

Chapter 3. Modelling of Functional Characteristics

<< process >>
CommunicationTask

<< instantiation parameters >>
MessageId : Integer;

MessageSize : Real;

<< instance variables >>
<< methods >>

HandleEvent()()

TransferMsg()()

<< initial method call >>
HandleEvent()()

<< messages >>
in!event

out?event

msg!transfer

msg?transferred

1 HandleEvent()() | E : EventProperties |

2 in?event(E);

3 par

4 HandleEvent()()

5 and

6 TransferMsg()();

7 out!event(E)

8 rap.

9 TransferMsg()()

10 msg!transfer(MsgId, MessageSize);

11 msg?transferred(MsgTransferred

12 | MsgTransferred = MsgId).

Figure 3.16: POOSL specification of a functional communication component

20

Chapter 4

Modelling of Architecture
characteristics

4.1 Introduction

This chapter describes a method to model the hardware of a real-time embedded
system. The hardware model encapsulates the hardware properties. As architec-
tures are so diverse and complex, it is not possible to provide components that
cover all possible system architectures. Therefore this chapter presents a set of
basic components to model generic hardware structures, which can be used for
specification of common (distributed) real-time embedded systems. In this section
all physical architectural devices are specified as decoupled resource components
as shown in figure 4.1. The interconnections of the architecture are implemented

Processor

Core

Processor

Core

Processor

Core

Bus

Processor

Core

Processor

Core

Processor

Core

Bus

Architecture
 SHE Resource model

Mapping

Figure 4.1: Architecture modelled as decoupled SHE components

in the mapping section of this modelling approach. This technique provides a
modular modelling approach which allows exploration of alternative architectures.
Replacing architecture components is possible without changing the specification
of other components. Figure 4.2 shows an example of specifying different archi-
tectures on a application model. In this example an architecture which consists
of three processors and one shared bus is specified. Figure 4.2 shows an applica-
tion graph which is mapped on resource components. The channels between the
application model and resources model map each task on a resource component.
Task 1,2 and 3 are computed on processor core A, B and C respectively. The
communication between these task is performed on the bus resource component.
A design exploration of a system which consist of two processors and one com-
munication link can easily be established. By removing processor core B and

21

Chapter 4. Modelling of Architecture characteristics

Task

3

Task

1

Task

2

Com.

1

Com.

2

Processor

core

A

Processor

core

B

Processor

core

C

BUS

Application

Mapping

Resources

Figure 4.2: An example of a specification of an architecture which consist of three processor
cores and one shared bus.

inserting a channel between task 1 and processor core C defines a real-time em-
bedded system which consists of two processors and one shared bus. Figure 4.3
visualises the specification of an application performed on two processor cores and
a shared bus.

Task

3

Task

1

Task

2

Com.

1

Com.

2

Processor

core

A

Processor

core

C

BUS

Application

Mapping

Resources

Figure 4.3: An example of a specification of an architecture which consist of two processor cores
and one shared bus.

This chapter is organised as follows:

• Section 4.2 describes several components to model the computational part
of the hardware in a real-time embedded system.

• Section 4.3 describes how to model communication behaviour of the hard-
ware.

4.2 Modelling of Computation

In this thesis, the processor component models the computation behaviour of the
architecture. A simple processor component is given in figure 4.4. This computa-
tion component models task executions using a First Come First Served (FCFS)
discipline. When a task is received (line 3) the component models a computation
using the delay procedure (see line 4). When the computation terminates a mes-
sage is returned to the application model (line 5).

To be able to model basic computation behaviour, it is useful to capture the
commonly used scheduling policies. A commonly used scheduling policy is based
on an off-line table-driven approach (time-slice scheduling), where the time line is
divided into fixed-sized slices. Tasks are statically allocated to slots based on their

22

4.2. Modelling of Computation

<< process >>
Computation

<< instantiation parameters >>
MIPS : Real;

<< instance variables >>
<< methods >>

ComputeTask()()

<< initial method call >>
ComputeTask()()

<< messages >>
execute?task

execute!task

1 ComputeTask()()

2 |Task : TaskElement, ComputationLoad:Real|

3 execute?task(Task, ComputationLoad);

4 delay ComputationLoad / MIPS;

5 executed!task(Task);

6 ComputeTask()().

Figure 4.4: POOSL specification of a computation component without scheduler

rates (periods of execution) and execution requirements. A scheduling approach
based on priorities is also commonly used. In this policy a priority is assigned
(statically or dynamically) to each task and the execution order is generated on-
line based on the current priority value. Two main scheduling algorithms based
on priorities are Rate Monotonic (RM) and Earliest Deadline First (EDF). In the
RM approach, tasks are assigned with fixed priorities according to their period.
The task which needs to be executed at the highest rate receives the highest pri-
ority. Once the execution is started, the task can be preempted at any time by a
task with a higher priority. With the EDF algorithm priorities are dynamically
assigned to tasks, depending on their absolute deadline. EDF is harder to im-
plement but may perform better results, see [22]. The next sections discuss the
implementation of a processor model using an off-line table-driven, a RM and an
EDF approach.

4.2.1 Static Time Slicing Scheduling

Time slice schedulers assign a time slot to a task for computation. When the com-
putation of the task is not able to be finished in time, the computation will be pre-
empted and placed in a buffer. After this the scheduler activates the next process,
see figure 4.5. This technique is comparable to Round Robin (RR) scheduling,

Processor

Core

Task queue

Task done

Time-out

Figure 4.5: Task queue of a time line scheduling algorithm.

see [23]. Both scheduling policies assign a fixed computation time to each task.
The RR scheduler is always (during execution) able to accept new tasks in the
task queue (as First Come First Serve), where in static time slicing scheduling
the order of process execution is fixed and assigned to a time slot by the engineer.
The advantage of this approach is that the computation order is fixed when each
process is dedicated to a time slot which is large enough to finish the computation.
Assigning an execution (task) to multiple slots is allowed. When a process is not
able to be finished in the assigned time slot(s), the process will be preempted
which consumes time. On the other hand this scheduling approach is not suitable
for execution of unknown processes, each task must be assigned to a slot before
execution. Figure 4.6 shows the preemptive static time slicing scheduling algo-
rithm specified in POOSL. The ContextSwitch and HandleTaskQueue methods

23

Chapter 4. Modelling of Architecture characteristics

<< process >>
Computation

<< instantiation parameters >>
MIPS : Real;

SliceTime : Real;

TaskQueue : Dictionary;

<< instance variables >>
<< methods >>

ini()()

ContextSwitch()()

HandleTask()()

HandleTaskQueue()()

<< initial method call >>
ini()()

<< messages >>
task?execute

task?executed

1 ini()()

2 par

3 ContextSwitch()();

4 and

5 HandleTaskQueue(1)();

6 rap.

7 ContextSwitch()()

8 | i : Integer | i := 1;

9 while i <= TaskQueue occupation do

10 activeTask := TaskQueue at(i);

11 delay SliceTime;

12 i := i + 1

13 od;

14 ContextSwitch()().

15 HandleTask(SliceId : Integer)()

16 |TaskId, SeveringTask : Integer,

17 ComputationLoad : Real|

18 SeveringTask := TaskQueue at(SliceId);

19 task?execute(TaskId | TaskId =

20 ServingTask);

21 [activeTask = TaskId]

22 delay ComputationLoad / MIPS;

23 task!executed(TaskId);

24 HandleTask(SliceId)().

25 HandleTaskQueue(SliceId : Integer)()

26 if TaskQueue occupation > SliceId then

27 par

28 HandleTask(SliceId)()

29 and

30 HandleTaskQueue(SliceId + 1)()

31 rap

32 fi.

Figure 4.6: POOSL specification of a preemptive computation resource based on the static time
slicing scheduler

described in figure 4.6 at line 3 and 5 are executed in parallel. The tail-recursive
ContextSwitch method changes the activeTask when a predefined time slice
period has elapsed. The activeTask guard represents the identification of a task
that is allowed to be executed. The method HandleTask is executed several times
depending on the number of scheduled tasks. The most important issue in time
slice scheduling is the size of a slice. When the time slice is set small, tasks with
a short execution time are finished fast whereas tasks with large execution time
are finished late. When task have a short deadline this must be avoided.

4.2.2 Priority Based Scheduling

Most priority based algorithms such as the Rate Monotonic (RM) approach are
pre-emptive scheduling policies. This means that a context switch will take place
when a task of a higher priority is received. In this method (see section 3.3.1)
the priorities are assigned in the task at the application level. The priorities
are assigned to tasks before execution and do not change over time. To comply
to the RM approach tasks with shorter periods (higher request rates) will have
higher priorities. Moreover, the following condition must be met; for every task i
(i = 1, 2, 3, ...), Ci < Ti, where Ci and Ti denotes the computation time and period
of task i. To comply with RM scheduling each task must be independent and have
a zero offset (for more details see [24]). In figure 4.7, the POOSL specification of a
computation resource with priority based scheduling is presented, which also can
be used for computation based RM scheduling. Note: For complying to the RM

24

4.2. Modelling of Computation

<< process >>
PriorityBasedComputation

<< instantiation parameters >>
MIPS : Real;

<< instance variables >>
<< methods >>

HandleTask()()

ComputeTask()()

<< initial method call >>
HandleTask()()

<< messages >>
task?execute

task?executed

1 HandleTask()()

2 task?execute(Task, ComputationLoad, Priority);

3 Computetask(Task, ComputationLoad, Priority)();

4 HandleTask()().

5 ComputeTask(ServingTask : Integer, ServingComputationLoad : Real,

6 ServingPriority : Integer)()

7 | ReqTask, ReqPriority : Integer, ReqComputationLoad : Real |

8 interrupt delay ServingComputationLoad / MIPS with

9 (

10 task?execute(ReqTask, ReqComputationLoad, ReqPriority |

11 ReqPriority > ServingPriority);

12 ComputeTask(ReqTask, ReqComputationLoad, ReqPriority)()

13);

14 task!executed(ServingTask).

Figure 4.7: POOSL specification of computation with priority scheduling policy

scheduling discipline the priorities must be assigned with respect to their periods.

The initialisation method HandleTask is tail-recursive which becomes an end-
less running process. This procedure guarantees the handling of a computation
request of a task. After receiving a task, which has a specific priority and com-
putation load, the computeTask method is started. The computation is then
preformed on line 8 with the delay statement. During the computation this
process can be preempted with the interrupt statement. The computation will
be preempted when a new task is received with higher priority (see line 10 and 11).
When a task is preempted the ComputeTask method is started again (recursive).
When a computation is able to be finished the ComputeTask method returns a
task!executed message to the application level. When the ComputeTask is fin-
ished the tail-recursive procedure HandleTask is restarted.

4.2.3 Earliest Deadline First Scheduling

The Earliest Deadline First (EDF) scheduling algorithm dynamically assigns pri-
orities with respect to the absolute deadline of each task. As described in [22],
EDF can results in less runtime overhead than RM, when context switches are
taken into account. (It is commonly believed that EDF introduces a larger run-
time overhead than RM, because in EDF absolute deadlines need to be updated
from one task to the other. It is true that this needs extra computation time, but
it reduces the costly context switches.) Replacing line 10 and 11 of figure 4.7 by
the one given in figure 4.8, result in an EDF based computation model.

25

Chapter 4. Modelling of Architecture characteristics

10 task?execute(ReqTask, ReqComputationLoad, ReqDeadline

11 | ReqDeadline > ServingDeadline);

Figure 4.8: This POOSL specification is needed in figure 4.7 to model a earliest deadline first
scheduler.

4.3 Modelling of Communication Resources

A communication resource is a facility to exchange data between processors (ap-
plications). Today many real-time embedded systems support more functionality
by use of multiple processors. To exchange data these systems contain commu-
nication resources. [25] discusses several kinds of communication networks used
in real-time embedded systems. As existing communication networks are so di-
verse and complex, it is not possible to provide components that cover all possible
communication networks. In general, communication networks can be divided in
point-to-point and broadcast networks as shown in figure 4.9. In simple point-

CPU

2

CPU

1

CPU

3

Bus 1
 Bus 2

(a) Point-to-point network

CPU

2

CPU

1

CPU

3

Bus

(b) Broadcast network

Figure 4.9: General communication networks

to-point communication network a task sends a message to another one by using
a communication resource that has a direct connection between two processors.
In common used point-to-point switched networks, where several switched are
used, there is no direct connection. In this thesis, a simple example of a point-
to-point resource used for a direct connection between two processors is specified.
Figure 4.10 specifies a (simple) point-to-point communication component, which
models message passing between tasks through the communication resource. This

<< process >>
Point2PointCommunication

<< instantiation parameters >>
Bandwidth : Integer;

<< instance variables >>
<< methods >>

HandleMsg()()

TransferingMsg()()

<< initial method call >>
HandleMsg()()

<< messages >>
msg?transfer

msg?transferred

1 HandleMsg()()

2 | MessageId, MessageSize : Integer |

3 msg?transfer(MessageId, MessageSize);

4 TransferingMsg(MessageSize)();

5 msg!transferred(MessageId);

6 HandleMsg()().

7 TransferingMsg(MessageSize : Integer)()

8 delay MessageSize / Bandwidth;

Figure 4.10: POOSL specification of a direct point-to-point communication resource

point-to-point resource exchange data as First Come First Serve (FCFS). Method
HandleMsg sequentially receives requests through the msg?transfer messages
from the communication task model. When receiving a communication request,
method TransferingMsg models a data exchange through the communication re-
source. The transfer time in this resource depends on the data(MessageSize) and
bandwidth (see line 8).

Nowadays communication through a broadcasted network (shared medium)

26

4.3. Modelling of Communication Resources

is often used in embedded systems consisting of multiprocessors. A task sends a
message through the network to another task running on a different processor.
The presented example is able to model the basic behaviour of such networks.
For example a central arbiter is neglected. As existing broadcast networks are so
diverse and complex it is difficult to model each behaviour and therefore out of
the scope of this thesis.

27

Chapter 4. Modelling of Architecture characteristics

28

Chapter 5

Mapping

When the application and the architecture models have been defined as described
in chapters 3 and 4, the design modelling can be continued using the Y-chart
approach (fig 2.2). Mapping is the next section of the Y-chart. In this mapping
phase, application components are dedicated to resource components. The task
in the application graph will be executed on the resource components. In other
words, the workload of the application is assigned to resource components in
the architecture model. Figure 5.1 shows the mapping phase of the modelling
methodology. This modelling method uses communication channels provided by

Processor

Core

Processor

Core

Processor

Core

Bus

Figure 5.1: Mapping phase.

the POOSL language to map application components to resource components.
Figure 5.2 shows an application model mapped on an architecture model specified
using the earlier described modelling approach. The figure shows three sections of
the Y-chart, namely the application, mapping and architecture(resource models).
Creating a mapping channel in SHEsim is done by creating a message channel
between the task and the resource components. In this figure (software) task 1
to task 4 and communication task 1 and 2 are defined in the application model.
(Software) Task 1 and 2 are mapped on processor A (a resource component). Task
1 will be executed, with respect to the scheduling policy, on processor A when
an event has triggered the application model. When processor A has finished
the execution of task 1, it sends a message back to task 1 (consuming no time).

29

Chapter 5. Mapping

Task

1

Task

2

Task

3

Task

4

Com.

T. 2

Com.

T. 1

Processor

B

Processor

A

Bus

Mapping

Application model

Resource model

Figure 5.2: Mapping of application and architecture models where the communication channels
defines the hardware structure of the system.

When task 1 receives this message, it triggers task 2 and communication task 1.
Task 2 will then be executed on processor A and communication task 1 on the
bus resource. This process will continue till task 4 is executed on processor B.
The outgoing event at task 4 can be used for analysis purposes. Figure 5.3 shows
a possible sequence diagram of the communication which takes place between
the application and the resource components. This sequence diagram visualises

:Application

:Resource

task

task

Application
 Resource

execute(..)

executed(..)

<<delay>>

ComputationLoad

Application Architecture
... ...

task!execute(TaskId, ComputationLoad, priority); task?execute(TaskId, ComputationLoad, Priority);

task?executed(TaskServed | TaskServed = TaskId); delay ComputationLoad

... task!executed(TaskId)

...

Figure 5.3: Sequence diagram of communication for execution demand in the mapping phase.

the communication between a task in the application level and a processor in
the resource level. A task component sends the message task!execute to a
resource component. The resource component receives this message with a task
identification, computation load and a priority. This exchange of data consumes
no time. The resource component will execute (with respect to a scheduling
policy) the computation load with the delay statement. This execution will
consume time. When the execution is finished the resource component sends
a task!executed with the task identification back. The application will only
accept messages where the identification is identical of the original. This must be

30

checked because multiple tasks can be mapped on one resource.
A possible extension of this work is to define a dynamic mapping approach.

This is possible because this model is specified modular. The dynamic mapping
approach must use the same message protocol used between the application com-
ponents and resource components. This extension is out of the scope of this thesis
and therefore proposed as future work.

31

Chapter 5. Mapping

32

Chapter 6

A case study: Distributed
In-car radio navigation
system

6.1 Introduction

This chapter describes the application of the modelling approach proposed though
a case study. This case study, an in-car distributed radio navigation system, is pre-
sented in [26]. This is a realistic and well defined system and therefore interesting
for performance analysis. In [26] the system is evaluated using Modular Perfor-
mance Analysis (MPA). MPA is an alternative, analytical performance analysis
approach based on the Real-Time Calculus developed at ETH Zurich.

The first section gives a description of the case study. Next the POOSL
implementation using the modelling approach defined of chapter 3 to chapter 5.
Section 6.3 presents the performance results obtained from the POOSL model.
The MPA analysis of the case study is discussed in section 6.4 and followed with
a comparison of the POOSL and MPA results (section 6.5). The final section
discusses average performance analysis.

6.2 Distributed In-Car Radio Navigation System

The case study presented in [26] is inspired by a system architecture definition for
a distributed in-car navigation system. An overview of the system is presented in
figure 6.1. It is composed of three main clusters of functionality:

• The Man-Machine Interface (MMI) which takes care of all interaction with
the user, such as handling key inputs and graphical display output.

• The navigation functionality (NAV) which is responsible for destination
entry, route planning and turn-by-turn route guidance giving the driver
both audible and visual advices. The navigation functionality relies on
the availability of a map database, typically stored on a CD or DVD, and
positioning information, e.g. speed and Global Positioning System (GPS).
The latter is not shown here.

• The radio functionality (RAD) which is responsible for basic tuner and
volume control as well as handling of traffic information services such as
Radio Data System (RDS) / Traffic Message Channel (TMC). RDS TMC
is broadcast along with the audio signal of radio channel.

33

Chapter 6. A case study: Distributed In-car radio navigation system

DB

MMI

RAD
NAV

Figure 6.1: High-level of a distributed radio navigation system

The key question that is investigated in [26] is how to distribute the functionality
over the available resources, such that we meet our global timing requirements.
The functionality is specified with Use-Cases and their associated sequence di-
agrams. The three selected distinctive scenarios that are used for performance
analysis are:

1. ”Change Volume” - The user turns the rotary button and expects instanta-
neous audible feedback from the system. Furthermore, the visual feedback
(volume setting on the screen) should be timely and synchronised with the
audible feedback. This seemingly trivial Use-Case is actually quite complex
because many components are affected. Changing volume might involve
commanding a digital signal processor (DSP) and an amplifier in such a
way that the quality of the audio signal is maintained while changing the
volume. This scenario is shown in detail in figure 6.2. Note that three op-
erations are identified, HandleKeyPress, AdjustVolume and UpdateScreen.
Execution times, event rates and message sizes are estimated and anno-
tated in the Sequence Diagram together with the main timing requirements
applicable to this scenario.

Figure 6.2: Annotated Sequence Diagram for ”Change Volume”

34

6.2. Distributed In-Car Radio Navigation System

2. ”Address Look-up” - The destination entry is supported by a smart ”type-
writer” style interface. By turning a knob the user can move from letter to
letter. The map database is searched for each letter that is selected and only
those letters in the on-screen alphabet are enabled that are potential next
letters in the list. This scenario is shown in detail in figure 6.3. Note that
the DatabaseLookup operation is expensive compared to the other opera-
tions and that the size of the output value the operations and that the size
of the output value of operation is 16 times larger than the input message.

Figure 6.3: Annotated Sequence Diagram for ”Address Look-up”

3. ”TMC Message Handling” - Digital traffic information is very important
for in-car radio navigation systems. It enables features such as automatic
replanning of the planned route in case a traffic jam occurs ahead. It is also
increasingly important to enhance road safety by warning the driver, for
example when a ghost driver is spotted on the planned route. RDS RMC is
such a digital traffic information service. TMC messages are broadcast by
radio stations together with stereo audio sound. RDS TMC message types
are transmitted. The map database is accessed to translate these identifiers
and to construct human readable text. The TMC message handling scenario
is shown in figure 6.4.

The above presented scenarios can occur in parallel, which means that the
system receives TMC messages while a user is pressing the rotary knob. The ar-
chitectures shown in figure 6.1 suggest to assign the three clusters of functionality
each to its own processing unit. Figure 6.5 propose more potential architectures
that might be applicable. Those architectures are specified from datasheets of
several commercially available automotive CPUs.

35

Chapter 6. A case study: Distributed In-car radio navigation system

Figure 6.4: Annotated Sequence Diagram for ”TMC Message Handling”

(A)

(E)
(D)
(C)

(B)

22 MIPS

113 MIPS
 11 MIPS

72 kbps

22 MIPS

113 MIPS
 11 MIPS

72 kbps
 57 kbps

260 MIPS
 22 MIPS

72 kbps

113 MIPS
 130 MIPS

72 kbps

260 MIPS

MMI

RAD

NAV

MMI

RAD
NAV

MMI

RAD

NAV

MMI

RAD
NAV

MMI

RAD
NAV

Figure 6.5: Alternative system architecture to explore

6.3 POOSL Model

The SHESim tool, which supports modelling and specification of complex concur-
rent systems in accordance with the SHE methodology, is used for modelling the
distributed in-car radio navigation system. The approach described in chapter 2
is followed to model the in-car radio navigation system. Figure 6.6 shows the
model of the in-car navigation on architecture A (see figure 6.5 for the structure
of architecture A). As shown in the figure, the KnobVol, KnopAddr and Radio
are models of input devices which trigger the application of the distributed in-
car navigation system. The triggering is done by events which are messages in
POOSL. The KnopVol and KnopAddr component generate event streams which
models volume change and inserting an address by the user respectively. The
Radio component generates events which models TMC messages coming from a
radio station. These components are specified as described in section 3.2. The
Speaker and Display component are models of output devices. These compo-
nents register events (messages) produced by the application. This registration
is used for analysis purposes. These components are specified as a consuming
event component described in section 3.2.5. The components in the centre of the
figure represent the application of the system. The components are task processes
or communication processes as specified in 3.3. The task components and com-

36

6.3. POOSL Model

Figure 6.6: SHEsim model of architecture A

munication components are mapped on a processor component (P1MMI, P2NAV or
P3RAD) or on a communication component (BUS1). The mapping is done by us-
ing POOSL communication channels (see chapter 5 for more information). The
processor resources are implemented with a priority scheduler as described in sec-
tion 4.2.2. The resource components1 do not have a connection between other
resources.

6.3.1 Worst Case Performance Analysis

The model described in the previous section is used for analysing the performance
of the system. The models of the input devices generate events (messages) pe-
riodically as specified in the sequence diagrams in figures 6.2, 6.3 and 6.4. The
system performance is analysed with all possible architectures when each sce-
nario is executed individually and when scenarios ”Change Volume” or ”Address
Lookup” are executed in parallel with the ”TMC Message Handling” scenario2.
Note that ”Change Volume” and ”Address Lookup” are generated from the same
knob which means that these scenarios cannot be executed in the same time. The
execution of the model is done with the high-speed execution engine Rotalumis
which improves the execution speed by a factor of 100. The execution is stopped
when no higher WCET is received in half an hour. The results of this analysis are
presented in appendix A. Table 6.1 shows the performance numbers of system
executed on architecture A. The performance numbers presented in this table and
chapter are obtained from the in-car navigation system with architecture A. Tasks
executed on this architecture are more distributed then other architectures (with

1In this chapter the following abbreviation of resources functionalities are used:
MMI = Man-Machine Interface, NAV = Navigation, and RAD = Radio.

2For clarity the following abbreviations are used: VOL = ”Change Volume” scenario, ADDR
= ”Address Lookup” scenario and TMC = ”TMC Message Handling” scenario.

37

Chapter 6. A case study: Distributed In-car radio navigation system

Table 6.1: POOSL performance results of architecture A

Measured Active Worst case Slack Idle time [%]
scenario scenarios delay [ms] [ms] CPU(MMI) CPU(NAV) CPU(RAD)

VOL VOL 41.80 158.20 12.73 100.00 70.91
ADDR ADDR 79.08 120.92 97.27 95.58 100.00
TMC TMC 249.20 750.80 99.24 98.53 96.97
VOL VOL and TMC 75.72 124.28 11.98 98.53 67.88
TMC VOL and TMC 266.94 733.06 11.98 98.53 67.88

ADDR ADDR and TMC 86.19 113.81 96.52 94.10 98.77
TMC ADDR and TMC 244.26 755.74 96.52 94.10 98.77

an exception of architecture B) and it uses a shared communication link. These
properties deliver the most interesting performance results. The tables in ap-
pendix A shown that all possible architectures meet the application requirements
(the requirements (deadlines) are given in section 6.2). The performance analysis
showed that for all architectures the slack time is high and that most processors
have a long idle time. For example for architecture A, the minimal idle time for
the NAV processor is 94.10%. Further analysis of the performance numbers visu-
alises that the obtain worst case delays occurring sporadically. This observation
can be shown in a graph, where the horizontal axis denote the measured delay
of the event and the vertical axis the occurrence. An example of such a graph is
given in figure 6.7 where the ADDR delays are obtained when ADDR and TMC
are executed in parallel on architecture A. The circle in the graph display that

80 90 100 110 120 0.13
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
4

x = End-to-end delay [ms]

f(
x
)

=
 D

e
n

s
it
y

Delay occurrence

20 130

Figure 6.7: Occurrence of ADDR delays when ADDR and TMC are executed in parallel on
architecture A

the worst case delay occurs sporadically (the occurrence of a delay is presented
with a bar, which accumulates when a delay is in the bounds of the bar).
A performance analysis is also done in [26]. In [26] the system is evaluated using
Modular Performance analysis (MPA). MPA is an alternative, analytical per-
formance analysis approach based on the Real-time Calculus developed at ETH
Zurich. To make a comparison of the performance values obtained form the
POOSL model and MPA method the following section gives a brief description of
the MPA method.

38

6.4. Modular Performance Analyse

6.4 Modular Performance Analyse

Modular Performance Analyse (MPA) uses performance components as basic
building blocks to construct a performance model. They define how application
tasks are executed on architectural elements and they are the basis for analysis.
MPA describe and analyse such a component using real-time calculus. Such a
component is given in figure 6.8. An incoming event stream, represented as a

Real Time

Calculus

[,]a a
l u [,]a a

l’ u’

[,]b b
l u

[,]b b
l’ u’

Figure 6.8: A basic performance component with abstract models as input and output and
Real-Time Calculus to process internal transformations.

set of upper and lower arrival curves are offered to a FIFO buffer in front of the
performance component. The component is triggered by these events and will
process them while being restricted by the availability of resources, which are a
set of upper and lower services curves. On its output, the component generates
an outgoing event stream, represented as a set of upper and lower arrival curves.
Resources that are not consumed by the component will be made available again
on the resource output of the performance component, again represented as a set
of upper and lower service curves. These components are described and analysed
using Real-Time Calculus, see [27]. A performance component often computes
the convolution and deconvolution defined in min-plus and max-plus calculus.
The min-plus convolution and deconvolution definitions are given in appendix A.
The performance component uses the following set of equations that describes the
processing of abstract event streams and resources:

αu′
= min{(αu ⊗ βu)� βl, βu} (6.4.1)

αl′ = min{(αl � βu)⊗ βl, βl} (6.4.2)

βu′
= (βu − αl)�0 (6.4.3)

βl′ = (βl − αu)⊗0 (6.4.4)

For an extensive discussion about these formulas see [28], [27] and [29]. Per-
formance components can be connected into a network according to the model
of a system architecture. Event flows that exit performance components from an
event flow output can be connected to an event flow input of another performance
component; this will result in horizontal connections. Similarly, resource capac-
ity that is not consumed by a performance component and exits from a resource
output can be connected to a resource input of another component; this will re-
sult in vertical connections. Together with the models of system resources, i.e.,

39

Chapter 6. A case study: Distributed In-car radio navigation system

the service curves, and with the incoming event streams from the environment,
i.e., the arrival curves, can obtain a performance model of a complete system
that can be used for performance analysis. An example of specifying the in-car
navigation system with architecture A is given in figure 6.9. For better under-

CPU1

ChangeVolume

CPU1 CPU1 CPU1

ReceiveTMC

NAV RADMMI

a

a

b b b

Figure 6.9: MPA model for system architecture A of figure 6.5

standing, this performance method is applied on an example where two event
streams are generated in parallel. These two event streams are executed on one
resource (processor). The construction of the MPA performance model is given
in figure 6.10 The two independent (strictly periodic) event streams A and B are

Resource

Event stream A

Event stream B

aA

aB

a’A

a’B

b

b’

b

Figure 6.10: MPA model of two event streams sharing one resource.

depicted in figure 6.11a and 6.11b respectively. The figure represents the number
of events in time. It is assumed that each event requires 1000 resource cycles (the
computation). The MPA performance model describes event streams in terms

0
 1
 2
 3
 4
 5

t [ms]

(a) Event stream A

0
 1
 2
 3
 4
 5

t [ms]

(b) Event stream B

Figure 6.11: Event stream A and B in milliseconds

40

6.4. Modular Performance Analyse

of the minimum and maximum number of events that arrive in a certain time
interval (for more details see [27]). From figure 6.11a the arrival curve of event
stream A is derived.
Figure 6.12a shows the representation of the number of events against a time
window of size ∆. ∆ denotes the size of time (windows) when events occur be-
tween 0 and 5 milliseconds. The figure shows the minimum (αl

A) and maximum
(αu

A) number of events that occur in time window (∆). Figure 6.12b shows the

0 1 2 3 4 5
0

1

2

3

4

∆ [ms]

ev

en
ts

ᾱ
l

A

ᾱ
u

A

(a) Arrival curve of stream A

0 1 2 3 4 5
0

1000

2000

3000

4000

∆ [ms]

re

so
ur

ce
s

α
u

A

α
l

A

(b) Arrival curve against the number of re-
sources of stream A

Figure 6.12: Arrival curves of Stream A, (a) number of events against ∆, (b) number of resource
against ∆

representation of the number of resources (minimum and maximum) against ∆.
The αu

A curve represents the upper bound of the required resources (cycles) and
αl

A curve represents the lower bound of the amount of required resources (cycles).
The resource service curve of a resource that carries out 1000 cycles each mil-
lisecond is given in figure 6.13a. In this case the upper and lower resource service
curves are equal. The service curves are linear because of the fixed served cycles of
the resource. To calculate the output resource curve β′A, formulas 6.4.3 and 6.4.4
are used. The result is given in figure 6.13b. From event stream B, given in figure

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

βu = βl

∆ [ms]

(a) Resource service curve of β (available re-
sources)

0 1 2 3 4 5
0

1000

2000

3000

4000

∆ [ms]

#
c
y
c
le
s βu’

βl’

(b) Resource service curve of β′ (remaining re-
sources)

Figure 6.13: (a) Resource curves of β and β′

6.11b, the arrival curve is derived and shown in figure 6.14. This figure shows
the representation of the arrival curve, where the number of events (minimum
and maximum) are depicted against time (∆). When event stream B with arrival
curve αB is processed by the second performance component with service curve
β′, then the maximum delay dmax experienced by event B on the event stream is
bounded (horizontal) by the upper event curve and the available resources out of

41

Chapter 6. A case study: Distributed In-car radio navigation system

0 1 2 3 4 5
0

1

2

3

4

∆ [ms]

ev

en
ts

ᾱ
l

B

ᾱ
u

B

(a) Arrival curve against the number of re-
sources of stream B

0 1 2 3 4 50

1000

2000

3000

4000

5000

βl’’ = βu’’

∆ [ms]

#
cy
cl
es

(b) Serve curve of β′′

Figure 6.14: Arrival and serve curve of event stream B

the performance component, see dmax in figure 6.15. The maximum buffer space
bmax that is required to buffer event stream B with arrival curve αB in the input
queue of the second performance component on a resource with service curve β′

is bounded (vertical) by the upper event curve and the available resources out
of the performance component, see bmax in figure 6.15. Figure 6.15 shows the
relations between αu

B , βl′′

B , dmax and bmax. With the chosen event streams and

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

βl’’

∆ [ms]

#
 c

y
c
le

s

αu
B

buffer space bm ax

delay dm a

Figure 6.15: Maximum delay and maximum buffer space obtained from arrival and service curves

resource model a delay (time between of releasing and finishing of an event) of
only 1 millisecond occurs. The maximum delay derived form the MPA model is
5 milliseconds. This example visualises that MPA can be too conservative. The
MPA performance model describes an event stream as a minimum and maximum
number of events that arrive in a certain time interval. So these streams do not
contain information about when events occur. This is a reason why MPA can
result in being too conservative. Creating MPA models is a relatively simple
task that require little effort. The advantage of MPA is that the performance
calculation is very fast.

6.5 POOSL and MPA Comparison

The case study described in this thesis was used for comparison of different analy-
sis techniques. This and other performance analysis case studies are therefore

42

6.6. Average Performance Analysis

made public on [30]. In this section the performance results from the POOSL
model are compared with the MPA model. For clarity, this section only describes
the comparison of the use case executed on architecture A. The conclusion of this
comparison are the same as for the other configurations of the system. A com-
parison of the worst case performance numbers obtained from the POOSL and
MPA analysis is given in table table 6.2. The MPA worst case performance num-

Table 6.2: POOSL and MPA performance results of architecture A

Measured Active Worst case delay [ms]
scenario scenarios POOSL MPA

VOL VOL 41.80 40.91
ADDR ADDR 79.08 76.07
TMC TMC 249.20 -
VOL VOL and TMC 75.72 398.29
TMC VOL and TMC 266.94 398.29

ADDR ADDR and TMC 86.19 276.74
TMC ADDR and TMC 244.26 276.74

bers of scenario TMC were not available at the time of writing this thesis. Note
that the MPA analysis only provided the maximum execution time that occur
when two scenarios are running in parallel. Noticeable, as expected (MPA can
be overconservative because it does not contain information about when events
occur) the MPA analysis produces higher worst execution delays when two sce-
narios are executed in parallel. Comparing the performance numbers obtained
when one scenario is executed we see (in the table) that MPA and POOSl are
almost equal. The difference between these analysis methods is that MPA is an
analytical approach whereas POOSL is based on simulation. This means that
POOSL approximates the worst case situation during simulation and MPA de-
rives the upper bound of the worst case execution time. Figure 6.16 shows the
domain of these analysis techniques. Figure 6.16 shows a timing diagram where

BCET
 'Real' WCET

POOSL
 MPA

t

Figure 6.16: Timing diagram which visualise the domain of POOSL and MPA analysis

the best case execution time and the worst case execution time are reflected on a
time line. The figure visualises that the POOSL analysis results approximate the
’Real’ WCET where the MPA analysis provides upper bound results.

6.6 Average Performance Analysis

In this case study the load of the application is specified in number of instructions.
The number of instructions specified in each task denotes the worst case amount
needed to execute a task. Using worst case values for performance analysis of hard
real-time embedded system is useful. System damage occurs when the system will
not fulfil the requirements (e.g deadlines). However, the case study described in
this thesis is a soft real-time embedded system, deadline misses will not result
in system damage. Therefore performance analysis with worst case values can
lead to an over-conservative dimensioning of the system. Specifying the system

43

Chapter 6. A case study: Distributed In-car radio navigation system

load (number of instructions) between bounds will provide a more realistic per-
formance result.
POOSL is able to specify the load of a system as an distribution. In this thesis
the number of instructions is specified as a uniform distribution (Note: Find-
ing a suitable(realistic) load distribution is out of the scope of this thesis and
therefore proposed as future work). In this analysis, the number of instruction
varies 50% around the worst case value. For example, the amount of instructions
of TaskVolume (original specified with 1E5 instructions) varies uniform between
5E4 and 15E4 instructions. Figure 6.17 shows the occurrences of the delays when
scenarios VOL-TMC, ADDR-TMC, and TMC-VOL are executed in parallel.

44

6.6. Average Performance Analysis

100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

x = End-to-end delay [ms]

f(
x
)

=
 D

e
n

s
it
y

Delay frequency of scenario VOL-TMC

Deadline

(a) scenarios VOL-TMC

40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

End-To-end delay [ms]

f(
x
)

=
 D

e
n

s
it
y

Delay frequency of scenario ADDR-TMC

Deadline

(b) scenarios ADDR-TMC

200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

4

x = End-to-end Delay

f(
x
)

=
 D

e
n

s
it
y

Delay frequency of scenario TMC-VOL

Deadline

(c) scenarios TMC-VOL

Figure 6.17: Delay frequency functions of scenario VOL, ADDR and TMC

45

Chapter 6. A case study: Distributed In-car radio navigation system

These graphs provide us more insight in the performance of the system. The
delay frequency curve shows that most of the delays are close to the end-to-end
delay of the scenarios executed separately and obtained by the simulation with
fixed load. Table 6.3 presents the average and the worst case delays obtained
from the model with uniform load. The results given in table 6.3 shows that the

Table 6.3: Average and WCET obtained from modelling the system with uniform load.

Measured Average worst case Req. deadline Deadline misses
scenario delay [ms] delay [ms] [ms] [%]

VOL-TMC 42.3 638.3 200.0 0.0036
ADDR-TMC 77.2 181.5 200.0 0
TMC-VOL 361.6 1305.7 1000.0 0.0010

average delays meet the requirements. On the other hand the worst case delay
does not meet the requirements, but the deadlines are missed sporadically which
is seen from the delay frequency curve and in the right column of the table. Note:
these results are obtained from 7.962.000 samples.

6.6.1 Reduction of Resource Performance

The performance of the architecture will be discussed in this section. The relative
low deadline misses and the low processor utilisation shows that this architecture
(in this example architecture A) is over-dimensioned. An optimal soft real-time
system may have a few deadline misses (depending of the type of system) and
high processor occupations. Increasing processor occupation is done by reducing
processor speed. The following performance reductions are explored:

• MMI - The utilisation of this processor is 88.02%. Simulation has demon-
strated that deadlines are already missed. The processor receives VOL
events with a period of 32 each second, which means that this processor is
loaded with high execution demands. The period and load of the tasks on
this processor limits the possibility to reduce the processor speed.

• NAV - This processor is involved with the execution of scenario ADDR
and TMC. The processor is utilised only for 5.80%. The frequency delay
functions of scenario ADDR and TMC (figures 6.17b and 6.17c) show a
slack of 80 and 200 milliseconds respectively between the obtained delays
and the deadline. Analysis has demonstrated that speed reduction of this
processor is feasible without great deadline misses.

• RAD - The utilisation of this processor is 32.12%. This processor is involved
with the execution of scenario VOL and TMC. Where the VOL scenario has
a high rate of execution demands and TMC has a high computation load.
The analysis showed a slack time of 100 and 200 milliseconds for ADDR
and TMC respectively.

Figures 6.18a, 6.18c and 6.18e show the delay frequency functions of scenarios
VOL-TMC, ADDR-TMC and TMC-VOL. These frequency delay are obtained
with half of the initial speed of processor 2(NAV) and 3(RAD).

46

6.6. Average Performance Analysis

100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

40

x = End−to−end delay [ms]

f(
x)

 =
 D

en
si

ty

Delay frequency of scenario VOL−TMC

(a) Frequency delay of scenario VOL-TMC

100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

40

x = End-to-end delay [ms]
f(

x
)

=
 D

e
n

s
it
y

Delay frequency of scenario VOL-TMC

Deadline

(b) Fitted normal distribution of scenario VOL-TMC

100 150 200 250 300
0

5

10

15

x = End−to−end delay [ms]

f(
x)

 =
 D

en
si

ty

Delay frequency of scenario ADDR−TMC

(c) Frequency delay of scenario ADDR-TMC

100 150 200 250 300
0

5

10

15

x = End-to-end delay [ms]

f(
x
)

=
 D

e
n

s
it
y

Delay frequency of scenario ADDR - TMC

Deadline

(d) Fitted normal distribution of scenario ADDR-TMC

400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

x = End−to−end delay [ms]

f(
x)

 =
 D

en
si

ty

Delay frequency of scenario TMC−VOL

(e) Frequency delay of scenario TMC-VOL

400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

x = End-to-end delay [ms]

f(
x
)

=
 D

e
n

s
it
y

Delay frequency of scenario TMC

Deadline

(f) Fitted normal distribution of scenario TMC-VOL

Figure 6.18: Frequency delay functions of scenarios VOL-TMC, ADDR-TMC and TMC-VOL
when instruction load has a uniform distribution

47

Chapter 6. A case study: Distributed In-car radio navigation system

Table 6.4 shows that the average end-to-end delay meets the requirements
(deadlines). The maximum obtained end-to-end delay of the analysis does not
meet the requirements. Evaluation of the delay frequency curves show that the
deadlines are only missed sporadically.

Table 6.4: Obtained average and maximum delays from the analysis of the POOSL model with
a uniform instruction load and reduced resources.

Measured Average end-to-end Max. end-to-end Req. deadline Deadline
scenario delay [ms] delay [ms] [ms] misses [%]

VOL-TMC 53.6 724.7 200.0 0.0077
ADDR-TMC 120.8 311.2 200.0 0.3618
TMC-VOL 688.1 1731.2 1000.0 0.0155

6.6.2 Approximation of Worst Case Performance

The obtained end-to-end delays from the analysis (based on simulation) of the
POOSL model does not always find the worst case delays. A distribution curve
which fits over the obtained delays provide us values about the worst case delay
and the absolute deadline miss. The right graphs of figure 6.18 visualises the end-
to-end probability density function fitted on the analysis results. Figure 6.18b,
6.18d and 6.18f are normal distributions. A normal distribution results if the end-
to-end delays are the sum of a large number of independent, identically-distributed
executions of tasks. This distributions helps to approximate the WCET and to
determine the percentage of deadline misses. Table 6.5 shows the probability of

Table 6.5: Calculated deadline misses gathered from the fitted distribution curves

Measured deadline P (Event > deadline) 95% Confidence bound
scenario [ms] [%] Lower [%] Upper [%]

VOL-TMC 200.0 ∼0.0 - -
ADDR-TMC 200.0 3.988 3.984 3.993
TMC-VOL 1000.0 5.726 5.464 5.998

deadline misses obtained from the fitted distribution curves. Note that scenario
VOL almost never miss the deadline. Applying a distribution curve on obtained
performance results (delays) will help to determine the worst case delay of the
system. The benefit of this approach is that the simulation time can be reduced
and an approximation of the worst case delay can (still) be given.

48

Chapter 7

Conclusion and
recommendations

This chapter describes the realised goals, conclusions and gives recommendations
for future developments.

7.1 Realised Objectives and conclusion

In the following enumeration, the numbers relate to the objectives stated in sec-
tion 1.2.

1. In this thesis we provide a modelling method based on patterns to model
and analyse distributed real-time embedded systems. The patterns describe
common components of real-time embedded systems like input/output de-
vices, real-time tasks and platform resources. These components are used to
specify distributed real-time embedded system model in a modular fashion
(plug-and-play). These patterns act as templates that can be applied in
other situations by setting the right values of their parameters.

2. The modelling method proposed in this thesis is applied to a realistic case
study. The model could be constructed rapidly and in a modular fashion
making it suitable for design space exploration. A performance analysis was
carried out on this model.

The developed patterns of distributed real-time embedded systems are validated
by a performance analysis. The results are compared with an other performance
analysis technique (MPA). This comparison shows that the model of the proposed
method approximates worst-case values during simulation and MPA derives up-
per bounds of the worst case execution time. The comparison shows that the
proposed method produce performance numbers that approximate the worst case
execution as opposed to MPA which is sometimes overly conservative. The pro-
posed method effectively captures the behaviour of both soft and firm real-time
embedded systems by use of distributions. As the POOSL analysis technique
relies on simulation, the accuracy of the performance results depends on the sim-
ulation length. However, we are able to provide deadline miss probabilities by
fitting a distribution on the performance analysis results which lead in a less
costly platform.

49

Chapter 7. Conclusion and recommendations

7.2 Recommendations and future research

During the thesis some interesting observations are made to extend the modelling
method and to improve the comparison of analysis techniques. The following
enumeration describes recommendations and future research.

• In this thesis a method to model distributed real-time embedded systems
is described. This method is supported with processor and communication
resource components. Specifying memory models increase the modelling of
real-time embedded systems domain.

• A static mapping in a modular fashion is applied in this thesis. To decrease
the design space exploration time a dynamic mapping approach can be
implemented.

• The analysis results are compared based on a single case study. By de-
scribing several case studies, each capturing an different analyse problem, a
comparison can be made in a systematic way, by considering their pros and
cons. Some benchmark issues could be set up based on average performance
analysis, worst case performance analysis, the accuracy, the amount of time
needed to specify a model, the time needed for performance analysis and
the readability of the technique.

50

Appendix A

Simulation Results of the
Distributed In-car
Navigation System

A.1 Performance results of architecture A

End-to-end Slack Occupation [#] Idle time [%] Blocktime
Scenario Reaction delay [ms] [ms] P1 P2 P3 P1 P2 P3 BUS [ms]

1 VisualChangeVOL 41.80 158.20 2 0 1 12.73 100.00 70.91 97.16 4.55
1 AudibleChangeVOL 14.08 35.92 2 0 1 12.73 100.00 70.91 97.16 4.55
2 VisualChangeADDR 79.08 120.92 1 1 0 97.27 95.58 100.00 99.24 0.00
3 VisualChangeTMC 249.20 750.80 1 1 1 99.24 98.53 96.97 99.53 77.09

1 and 3 VisualChangeVOL 75.72 124.28 2 1 2 11.98 98.53 67.88 96.68 38.46
1 and 3 AudibleChangeVOL 14.08 35.92 2 1 2 11.98 98.53 67.88 96.68 0.00
1 and 3 VisualChangeTMC 266.94 733.06 2 1 2 11.98 98.53 67.88 96.68 94.83
2 and 3 VisualChangeADDR 86.19 113.81 2 2 1 96.52 94.10 98.77 98.77 7.11
2 and 3 VisualChangeTMC 244.26 755.74 2 2 1 96.52 94.10 98.77 98.77 72.15

A.2 Performance results of architecture B

End-to-end Slack Occupation [#] Idle time [%] Blocktime
Scenario Reaction delay [ms] [ms] P1 P2 P3 P1 P2 P3 BUS1 BUS2 [ms]

1 VisualChangeVOL 42.03 157.97 0 1 1 100.00 83.01 70.91 100.00 96.41 0.00
1 AudibleChangeVOL 14.20 35.80 0 1 1 100.00 83.01 70.91 100.00 96.41 0.00
2 VisualChangeADDR 79.08 120.92 1 1 0 77.27 99.47 100.00 99.24 100.00 0.00
3 VisualChangeTMC 270.57 729.43 1 1 1 92.43 99.85 96.97 99.76 99.40 199.77

1 and 3 VisualChangeVOL 70.33 129.67 1 2 2 92.43 82.86 67.85 99.76 95.80 8.8483
1 and 3 AudibleChangeVOL 14.20 35.80 1 2 2 92.43 82.86 67.85 99.76 95.80 0.00
1 and 3 VisualChangeTMC 367.67 632.33 1 2 2 92.43 82.86 67.85 99.76 95.80 47.958
2 and 3 VisualChangeADDR 86.18 113.82 2 2 1 69.69 99.32 96.97 99.01 99.40 6.7056
2 and 3 VisualChangeTMC 270.29 729.71 2 2 1 69.69 99.32 96.97 99.01 99.40 332.67

51

Chapter A. Simulation Results of the Distributed In-car Navigation System

A.3 Performance results of architecture C
End-to-end Slack Occupation [#] Idle time [%] Blocktime

Scenario Reaction delay [ms] [ms] P1 P2 P1 P2 BUS [ms]
1 VisualChangeVOL 28.55 171.45 1 1 98.77 12.73 97.16 0.00
1 AudibleChangeVOL 5.37 44.63 1 1 98.77 12.73 97.16 0.00
2 VisualChangeADDR 54.06 145.94 1 1 98.08 97.27 99.24 0.00
3 VisualChangeTMC 68.30 931.70 2 1 99.17 99.24 99.53 8.27

1 and 3 VisualChangeVOL 62.10 137.90 2 2 98.00 11.97 96.68 33.55
1 and 3 AudibleChangeVOL 5.37 44.63 2 2 98.00 11.97 96.68 0.00
1 and 3 VisualChangeTMC 80.96 919.04 2 2 98.00 11.97 96.68 20.93
2 and 3 VisualChangeADDR 61.04 138.96 2 2 97.31 96.52 98.77 6.98
2 and 3 VisualChangeTMC 101.28 898.72 2 2 97.31 96.52 98.77 41.26

A.4 Performance results of architecture D
End-to-end Slack Occupation [#] Idle time [%] Blocktime

Scenario Reaction delay [ms] [ms] P1 P2 P1 P2 BUS [ms]
1 VisualChangeVOL 6.27 193.73 0 1 100.00% 82.77% 100.00% 0.00
1 AudibleChangeVOL 1.98 48.02 0 1 100.00% 82.77% 100.00% 0.00
2 VisualChangeADDR 56.42 143.58 1 1 95.58% 99.54% 99.24% 0.00
3 VisualChangeTMC 70.01 929.99 1 1 98.53% 99.62% 99.53% 0.00

1 and 3 VisualChangeVOL 16.77 183.23 1 2 98.53% 82.38% 96.68% 10.50
1 and 3 AudibleChangeVOL 1.98 48.02 1 2 98.53% 82.38% 96.68% 0.00
1 and 3 VisualChangeTMC 76.16 923.84 1 2 98.53% 82.38% 96.68% 6.15
2 and 3 VisualChangeADDR 63.43 136.57 2 2 94.10% 99.15% 98.77% 7.01
2 and 3 VisualChangeTMC 120.72 879.28 2 2 94.10% 99.15% 98.77% 50.71

A.5 Performance results of architecture E
End-to-end Slack Occupation [#] Idle time [%] Blocktime

Scenario Reaction delay [ms] [ms] P1 P1 [ms]
1 VisualChangeVOL 2.69 197.31 1 91.38% 0.00
1 AudibleChangeVOL 0.77 49.23 1 91.38% 0.00
2 VisualChangeADDR 21.54 178.46 1 97.85% 0.00
3 VisualChangeTMC 25.00 975.00 2 99.17% 0.00

1 and 3 VisualChangeVOL 4.60 195.40 2 90.55% 1.91
1 and 3 AudibleChangeVOL 0.77 49.23 2 90.55% 0.00
1 and 3 VisualChangeTMC 27.69 972.31 2 90.55% 2.69
2 and 3 VisualChangeADDR 25.38 174.62 3 97.01% 3.85
2 and 3 VisualChangeTMC 6.54 953.46 3 97.01% 21.54

52

Appendix A

Real-time calculus
definitions

In this appendix the definitions of the Min-plus and the Max-plus convolution
and deconvolution are given. These definitions are used in the MPA performance
components described in section 6.4. For an extensive discussion about these for-
mulas see [28], [27] and [29].
The denoted F function in the definition refereing to a catalog of functions: Peak
rate function , burst-delay function, rate-latency function, affine function, stair-
case function and step function. For more information see [27].

A.1 Min-plus Convolution and Deconvolution

Definition A.1.1. [MIN-PLUS CONVOLUTION] Let f and g be two functions
or sequences of F . The min-plus convolution of f and g is the function

(f ⊗ g)(∆) = inf
0≤λ≤∆

{f(∆− λ) + g(λ)}

If ∆ < 0, (f ⊗ g)(∆) = 0.

Similar manner the deconvolution is defined as:

Definition A.1.2. [MIN-PLUS DECONVOLUTION] Let f and g be two func-
tions or sequences of F . The min-plus deconvolution of f and g is the function

(f � g)(∆) = sup
λ≥0

{f(∆ + λ)− g(λ)}

A.2 Max-plus Convolution and Deconvolution

When replacing the infimum (or minimum, it is exists) by a supremum (or maxi-
mum, if it exists) similar definition can be derived. For the max-plus convolution
⊗ and the max-plus deconvolution � of two functions f and g are defined as:

Definition A.2.3. [MAX-PLUS CONVOLUTION] Let f and g be two functions
or sequences of F . The max-plus convolution of f and g is the function

(f⊗g)(∆) = sup
0≤λ≤∆

{f(∆− λ) + g(λ)}

53

Chapter A. Real-time calculus definitions

If ∆ < 0, (f⊗g)(∆) = 0.

Definition A.2.4. [MAX-PLUS DECONVELUTION] Let f and g be two func-
tions or sequences of F . The max-plus deconvolution of f and g is the function

(f�g)(∆) = inf
λ≥0

{f(∆ + λ)− g(λ)}

54

References

[1] P.H.A. van der Putten and J.P.M. Voeten. Specification of reactive hard-
ware/software systems: the method software/hardware engineering (SHE).
PhD thesis, Eindhoven University of Technology, Eindhoven (The Nether-
lands), 1997.

[2] S.J. Mellor and P.T. Ward. Structured Development for Real-Time Systems.
Yourdon Press, 1985.

[3] D.J. Hartley and A.I. Pirbhai. Strategies for Real-Time System Specification.
Dorset House Publishing Co., 1987.

[4] Object management group: Unified model language, www.omg.org/, 2005.

[5] Rational rose realtime. http://www.rational.com/, 2005.

[6] Cinderella sdl 1.3. http://www.cinderella.dk/, 2005.

[7] K.J. Turner. Using formal description techniques: an introduction to Estelle.
Chichester, 1993.

[8] J. Huang, J.P. M. Voeten, A. Ventevogel, and L. van Bokhoven. Platform-
independent design for embedded real-time systems. Languages for system
specification FDL’03, pages 35–50, 2004.

[9] Z. Huang, J.P.M. Voeten, and B.D. Theelen. Modelling and simulation of a
packet switch system using poosl. In PROGRESS, 2002.

[10] J. Huang, J. Voeten, P. van der Putten, A. Ventevogel, R. Niesten, and
W. van der Maaden. Performance evaluation of complex real-time systems:
A case study. In PROGRESS ’02. STW Technology Foundation, October
2002.

[11] B. D. Theelen, J. P. M. Voeten, and R. D. J. Kramer. Performance modelling
of a network processor using poosl. Comput. Networks, 41(5):667–684, 2003.

[12] J.P.M. Voeten. Poosl: An object-oriented specification language for the
analysis and design of hardware/software systems. EUT 95-E-290, Tech-
nische Universiteit Eindhoven, may 1995.

[13] R. Milner. Communication and Concurrency. Prentice Hall International
Series in Computer Science, 1989.

[14] X. Nicollin and J. Sifakis. An overview and synthesis on timed process alge-
bras. In Proceedings of the Real-Time: Theory in Practice, REX Workshop,
pages 526–548, London, UK, 1992. Springer-Verlag.

55

REFERENCES

[15] M.C.W. Geilen, J.P.M. Voeten, P.H.A. van der Putten, L.J. van Bokhoven,
and M.P.J. Stevens. Object-oriented modelling and specification using she.
Journal of Computer Languages, 27(2):19–38, December 2001.

[16] L.J. van Bokhoven. Constructive Tool Design for Formal Languages: From
semantics to Executing Models. PhD thesis, Eindhiven University of Tech-
nology, Eindhoven (The Netherlands), 2002.

[17] B.A.C.J. Kienhuis. Design Space Exploration of Stream-based Dataflow Ar-
chitectures: Methods and Tools. PhD thesis, Delft University of Technology,
The Netherlands, January 1999. Explains the Y-chart approach in great
detail.

[18] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition for
scheduling analysis in platform design. In DAC ’02: Proceedings of the 39th
conference on Design automation, pages 287–292, New York, NY, USA, 2002.
ACM Press.

[19] L. Thiele and E. Wandeler. Performance analysis of embedded systems. In
The Embedded Systems Handbook. CRC Press, 2004.

[20] B.D. Theelen. Performance modelling for system-level design. PhD thesis,
Eindhoven : Technische Universiteit Eindhoven, 2004.

[21] G. Kahn. The semantics of a simple language for parallel programming. In
IFIP 74, volume IFIP, pages 471–475, 1974.

[22] Giorgio C. Buttazzo. Rate monotonic vs. edf: judgment day. Real-Time
Syst., 29(1):5–26, 2005.

[23] William Stallings. Operating Systems: Internals and Design Principles.
Prentice-Hall inc., third edition, 1998.

[24] Giorgio C. Buttazzo. Hard real-time computing systems : predictable schedul-
ing algorithms and applications. Dordrecht : Kluwer Academic Publishers,
1st edition, 1997.

[25] Bhargav P. Upender and Philip J. Koopman. Communication protocols for
embedded systems. Embedded Systems Programming, 11(7):46–58, November
1994.

[26] E. Wandeler, L. Thiele, M. H. G. Verhoef, and P. Lieverse. System archi-
tecture evaluation using modular performance analysis - a case study. In In
1st International Symposium on Leveraging Applications of Formal Method
(ISoLA), volume 1, Paphos Cyprus, October 2004.

[27] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of
deterministic queuing systems for the internet. Springer-Verlag New York,
Inc., New York, NY, USA, 2001.

[28] Samarjit Chakraborty, Simon Kunzli, and Lothar Thiele. A general frame-
work for analysing system properties in platform-based embedded system
designs. In DATE ’03: Proceedings of the conference on Design, Automa-
tion and Test in Europe, page 10190, Washington, DC, USA, 2003. IEEE
Computer Society.

[29] Martin Naedele Lothar Thiele, Samarjit Chakraborty. Real-time calculus for
scheduling hard real-time systems. International Symposium on Circuits and
Systems ISCAS 2000, Geneva, Switzerland, 4:101–104, March 2000.

[30] http://people.ee.ethz.ch/ leiden05/.

56

